
Ostrava Seminar on Mathematical Physics
February 14th, 2014

Laplace operator in domains with many holes:
an overview

Andrii Khrabustovskyi

Institute for Analysis
Karlsruhe Institute of Technology

1 / 8 Andrii Khrabustovskyi Laplace operator in domains with many holes



Domain with holes

Ωε

Dε
i
A
AU

�
��

-� ε

Ωε = Ω \ Dε, Dε =
⋃

i

Dε
i

Ω ⊂ Rn is a bounded domain
Dε

i = ηεD + εi , where D ⊂ Rn, ε, ηε > 0, i ∈ Zn
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The problem

We consider the following problem:

−∆u + u = f , in Ωε,

u = 0, on ∂Ωε.

Here f ∈ L2(Ω) is a given function.

It is well-known that this problem has the unique solution

uε
f ∈ H1

0 (Ωε)

The goal: to describe the behaviour of uε
f as ε→ 0
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Critical regime is determined by α := lim
ε→0

ε−n

(ηε)n−2, n > 2

| ln ηε|−1, n = 2

Theorem 1: α <∞
For each f ∈ L2(Ω)

‖uεf − uf‖L2(Ωε) → 0 as ε→ 0.

Here uf is the solution to the problem

−∆u + u + Wu = f , in Ω,

u = 0, on ∂Ω,

where W = αCD.

Theorem 2: α =∞
‖uεf ‖L2(Ωε) → 0 as ε→ 0.
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Remark: non-periodic perforations

[KHRUSLOV, 1971], [BUTTAZZO–DAL MASO–MOSCO, 1987]
In the case of Dirichlet boundary conditions the form of the limiting
operator is independent of the removed domain Dε: it is always of the
form

−∆ + W ,

where W is a certain distribution.
W can be singular, e.g. if Dε is a union of holes distributed along
(n − 1)-dimensional hyperplane Γ then W = αδΓ, α > 0.

V.A. MARCHENKO, E.YA. KHRUSLOV, Homogenization of PDEs,
Birkhäuser, 2006

G. DAL MASO, Boll. Un. Mat. Ital. A 11 (1997)
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Remark
Theorem 1 can be reformulated on the language of the
resolvent convergence.

Namely, we denote by −∆Ωε and −∆Ω the Dirichlet Laplacians
in Ωε and Ω, respectively. By Rε and R we denote their
resolvents:

Rε = (−∆Ωε + I)−1, R = (−∆Ω + W + I)−1

Then Theorem 1 implies

‖Rεf − Rf‖L2(Ωε) → 0, ∀f ∈ L2(Ω),

i.e. the resolvents converges strongly.

The question: what about uniform resolvent convergence?
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Theorem, A.K., O. Post (2017)

‖Rε − R‖L2(Ωε) ≤ C(ε)‖f‖L2(Ω), where

C(ε) =


Cn,D ε, n = 2, 3
Cn,D,δ ε

1−δ, n = 4,

Cn,D ε
1− n−4

n−2 , n > 4

‖Rε − R‖L2(Ωε) ≤ Cn,D ε‖(−∆Ω + I)m/2‖L2(Ω), where

m = min
{

0,
[n

2

]
− 1

}
Theorem, A.K., O. Post (2017)

We denote by {λεk : k ∈ N} and {λk : k ∈ N} the eigenvalues of the
operators −∆Ωε and −∆Ω + W (as usual, we number them in the
ascending order and with account of multiplicity).

Then
|λεk − λk | ≤ ck ε
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Thank you for the attention...

...and Happy Valentine’s Day!
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