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Part I - PDEs and singularities



PDEs and singularities

The following equation was investigated in
[Bizoń, Chmaj, Tabor],[Kycia 2012]:

Semilinear wave equation

Utt −4U − Up = 0, (1)

U = U(x, t), x ∈ Rn, p > 1-integer;

There is a dichotomy:

’Small’ initial data disperse to infinity as for linear equations.

’Large’ initial data blows up in finite time.

Movies - wave and nonlinear wave equations...
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Self-similar solutions

Transformation

U(t, r) = (T − t)−αu(ρ), ρ :=
r

T − t
, α :=

2

p− 1
, (2)

Equation for self-similar profiles

(1− ρ2)u′′ +
(
n− 1

ρ
− 2(p+ 1)

p− 1
ρ

)
u′ − 2(p+ 1)

(p− 1)2
u+ up = 0 (3)

The Huygens principle - blowup appears for t = T which
corresponds to the inner part of the cone.

The inner part of the cone corresponds to ρ ∈ [0; 1].
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Self-similar solutions

Transformation

U(t, r) = (T − t)−αu(ρ), ρ :=
r

T − t
, α :=

2

p− 1
, (4)

Figure : Inner part of the cone corresponds to ρ ∈ [0; 1].



Self-similar profiles

Equation for self similar profiles

(1− ρ2)u′′ +
(
n− 1

ρ
− 2(p+ 1)

p− 1
ρ

)
u′ − 2(p+ 1)

(p− 1)2
u+ up = 0 (5)

Equation has fixed singularities at ρ = 0, ρ = ±1 and ρ =∞.

Task: Construct (global) analytic solution on the unit interval.

It is not a trivial task as

ρ = 0 and ρ = 1 are fixed singularities of the equation.
There can be movable singularities of the solutions inside [0; 1].

How to construct an analytic solution?
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Matching conditions



Construction of global analytic solutions

The method of construction of solutions was provided in
[Bizoń, Maison, Wasserman] for n = 3 and was extended for n > 3
in [Kycia2011].

Figure : Analytic continuation along the curve.
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The method of construction of solutions was provided in
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Construct local analytic solution at ρ = 0.

Construct local analytic solution at ρ = 1.

Prove that local analytic solution ρ = 0 can be extended
toward ρ = 1.

Prove that local analytic solution ρ = 1 can be extended
toward ρ = 0.

Match these local solution at some point x0 ∈ (0; 1).
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Construction of global analytic solutions cont.

Local analytic solution extended towards x0 is parametrized by
initial data.

When initial data are varied then on the plane (u(x0), u
′(x0))

the curves are prescribed:

The curve C0 is a local analytic solution extended from ρ = 0.
The curve C1 is a local analytic solution extended from ρ = 1.
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Construction of global analytic solutions cont.
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Construction of global analytic solutions cont.

Every intersection gives global analytic solution on [0; 1].

There is countable many intersections, i.e., countable family
of global solutions.
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The Lane-Emden equation - a digression



The Lane-Emden equation

The problem of movable singularities for local solutions at ρ = 0
has close connection with the singularities of the Lane-Emden
equation:

Equation for self similar profiles

(1− ρ2)u′′ +
(
n− 1

ρ
− 2(p+ 1)

p− 1
ρ

)
u′ − 2(p+ 1)

(p− 1)2
u+ up = 0 (6)

...and its generalization [Kycia, Filipuk 1, Kycia, Filipuk 2]

The Generalized Emden-Fowler equation

d2u(x)

dx2
+
α

x

du(x)

dx
+ xnu(x)p = 0 (7)

with solutions analytic at x = 0.
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The Lane-Emden equation

Location of singularities [Kycia, Filipuk 1, Kycia, Filipuk 2]

A nonzero analytic solutions of the Generalized Emden-Fowler
equation have n+ 2 singularities located symmetrically with
respect to the origin on the rays connecting the origin with all
(n+ 2) roots of −1 in the complex plane.

An example - p = 5 and u(0) = 1.5:
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Generalization



Construction of global analytic solutions cont.

Natural questions arise:

Is an exact matching a coincidence?

How to significantly generalize these results?

Some hints: Consider the simples equations of this kind [MAAR].
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Singularities

A simplified equation

(1− x)u′′(x) +
(α
x

+ β
)
u′(x) + δu(x)p = 0, (8)

where α > 0, β, δ 6= 0 are real numbers and p > 1 is odd.

Find solution on x ∈ [0; 1].



A simplified equation

It occurs that depending on the values of parameter:

There exists a countable family of solutions as in semilinear
wave profiles equations.

There is a finite family of global solutions.

There is only one solution - the trivial one.

The essential condition for the matching condition is the existence
of some special singular solution:

u(x) = b∞x
a, b∞ =

(
a(1− a− α)

δ

) 1
p−1

, a =
2

1− p
. (9)

...work in progress...
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A simplified equation
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A simplified equation
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Part II - General Context
Painlevé property



Function

Function

A function is an application of a set of objects into a set of images
which applies given object onto one and only one image.

Function is single valued prescription - there is no ’multivalued
functions’,

f : x→ ex - a function,

f : x→
√
x - not a function if defined on the whole C.
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Critical point

Critical point

A critical point of an application of the Riemann sphere CP 1 onto
itself is any singular point, isolated or not, around which at least
two determinations are permuted. Such a points is an obstacle for
an application to be a function.



Singularities

Singular points(x = 0):

Pole 1
xa , a ∈ Nr {0} (noncritical),

Branch point xa, a - noninteger; (critical),

Essential singularity:

e1/x (noncritical),
tg(log(x)) (critical and nonisolated).
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Uniformization

Uniformization

Consider a multivalued application of the Riemann sphere onto
itself. There exists two classical methods, called uniformizations,
to define from it a single valued application, i.e., a function.

Uniformization is possible only when the location of singularities is
known!

Figure : Riemann surface Figure : Defining cuts



Solution of ODEs

’Classical’/Cauchy version:
Find local solution in terms of a power series in some
neighbourhood of an expansion point and extend it by analytic
continuation.



Solution of ODEs

Painlevé version

To integrate an ODE is to find for the general solution a finite
expression, possibly multivalued, in a finite number of functions,
valid in the whole domain of definition.

For u′ + u2 = 0:

u = u0
∑∞

j=0[−(x− x0)u0]j - nonintegrated (no finite form,
locally defined),

if radius of convergence is known, summation performed and
result analytically continued with the meromorphic function
(x− x1)−1 it is solved.
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To integrate an ODE is to find for the general solution a finite
expression, possibly multivalued, in a finite number of functions,
valid in the whole domain of definition.

Painlevé Property(PP) is of an ODE is the uniformizability
of its solution.

’Double interest’ in differential equations:

Source of new functions (since 1614, Lord Napier (u′ = u
Galileo) ’Mirifici Logarithmorum Canonis Descriptio’ 1,
Class of equations that can be integrated with existing
functions available.

1’A Description of the Wonderful Law of Logarithms’
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Linear equations

Linear ODE

The general solution of a linear ODE is uniformizable.

N∑
k=0

ak(x)
dku

dxk
= 0, aN (x) 6= 0. (10)

The only solutions of these equations are singularities of the
coefficients ak(x) (Frobenius method).

Fixed singularities

The singularities of the equation coefficients are called fixed
singularities.
Linear equations have only fixed singularities.

Linear ODEs define functions (Airy, Bessel, etc.),

To extend a list of known functions it is necessary to consider
nonlinear ODEs.
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Nonlinear equations

Nonlinear ODEs posses two types of singularities:

fixed - singularities of the coefficients of ODE,

movable - the singularities of solutions; position depends on
initial data; not present in linear ODEs.

Up to now no general methods exist that allows to determine the
positions of movable singularities.

(Trivial) example [Goriely]

The equation
ẋ = x3, x(t0) = x0

has the solutions

x(t) = (2(t0 − t) + x−20 )−1/2.
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Paul Painlevé

French Prime Minister (1917), (1925),

ODEs: P. property, P. transcendents,

ODEs: In 1908, he became Wilbur Wright’s first airplane
passenger in France and in 1909 created the first university
course in aeronautics,

Painlevé conjecture: Among the solutions to the n-body
problem: there are noncollision singularities for n ≥ 4,

General Relativity: Gullstrand–Painlevé coordinates for
Schwarzschild metric.

Photo from Wikipedia



Painlevé property

Painlevé property (refolmulated)

One calls Painlevé property of an ODE the absence of movable
critical singularities in its general solution.
General(i.e. not singular) solutions are considered.

Movable critical singularites are obstacles in uniformization.

One have to know where start cuts and how to do it.

Only noncritical movable singularities are tractable.

Class of abstractions of the equations with PP

The PP of an ODE is invariant under an arbitrary homographic
transformation of the dependent variable and an arbitrary
holomorphic change of independent variable:

(x, u)→ (X,U) : u =
a(x)U + b(x)

c(x)U + d(x)
, X = e(x), ad− bc 6= 0

(11)
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Painlevé program

Painlevé program

Determine all the algebraic differential equations of first order,
then second order, then third order, etc., whose general solution
has no movable critical points.

One have to know where start cuts and how to do it.

Only noncritical movable singularities are tractable.

Current state of classification:

1st order - Riccati and Weierstrass equation,
2ns order - 53 canonical equations, 47 integrable in terms of
known functions,
3rd order - nothing interesting...
4th order - in progress...
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Painlevé transcendents

Painlevé transcendents

6 algebraic ODEs which solutions has only noncritical movable
singularities. They cannot be integrated in terms of know
transcendet functions, they define new functions.

(PI) x′′ = 6x2 + λt,

(PII) x′′ = 2x3 + tx+ µ,

(PIII) txx′′ = tx′2 − xx′ + at+ bx+ cx3 + dtx4,

(PIV ) txx′′ = tx′2 − xx′ + at+ bx+ cx3 + dtx4,

(PV ) very long equation,

(PV I) very long equation.

(PIII) can be used to construct correlation function for 2D Ising
model: T.T. Wu, B.M McCoy, C.A.Tracy and E. Barouch (1976),
Spin-spin correlation functions for the two dimensional Ising model:
exact theory in the scaling region, Physical Review B13, 316-374
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Painlevé test



The Painlevé property/Painlevé test

Deduce global structure of solution (types of singularities)
from the local behaviour around some points in the complex
plane. Only sufficient conditions → by the contraposition - it
gives a result when it fails.

Consists of two steps:

(a local study) necessary conditions for absence of critical
points,
(a global study) proof of sufficiency (difficult).
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Painlevé test

Deduce global structure of solution (types of singularities) from the
local behaviour around some points in the complex plane. Only
sufficient conditions → by the contraposition - it gives a result
when it fails.
Substitute formal power series into an equation and do the
following steps:

Expansion around ’singular solutions’ - finding all dominant
balances.

Compute eigenvalues of the variational equation (the
Kovalevskaya exponents).

If the exponents are positive integer/rational then check
additional conditions.



Painlevé test
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Painlevé test - step 1

Scale-invariant solution

Vector field
−→
f is scale-invariant if for weight vector

−→w = {w1, . . . , wn} the weight of deg(fi,
−→w ) = wi.

t→ εt, xi → εwixi

If there exist non-trivial solution/solutions for

αiwi = fi(
−→α )

then the solution −→x = −→α t−→w .

Simple Mathematica notebook to search for scale-invariant terms
available on [Software] - for description see: [Kycia 2014].
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Painlevé test - step 1, dominant balance

Weight-homogeneous decomposition

Decompose (if it is possible) the vector field into
weight-homogenous components

−→
f =

−→
f (0) +

−→
f (1) + . . . ,

where
−→
f (0) is scale invariant with the solution −→x (0) = −→α t−→p and

f
(j)
i (tp−→x ) = tpi+q

(j)−1f
(j)
i (−→x ),

where
0 < q(i) < q(j), ∀i < j, q(i) ∈ Q.

Dominant balance

F = {−→p ,−→α } and decomposition which fulfils above conditions.
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Painlevé test - step 2, the Kovalevskaya exponents

The Kovalevskaya exponents

For given dominant balance F of the system −̇→x =
−→
f (−→x ) the

Kovalevskaya exponents R = {−1, ρ2, . . . , ρn} are the eigenvalues

of the matrix K := D
−→
f (0)(−→α )− diag(−→p ).



Painlevé test - step 3, formal solution

Puiseux series
Fix balance F .

R+ - set of Kovalevskaya exponents with positive real part.

1/s - the least common denominator of {q(1), . . . , q(m)} ∪ R+.

We assume the expansion

−→x (t) = t
−→p
(
−→α +

∞∑
i=0

−→c it
i/s

)

The recursion for the coefficients

K−→c j =
j

s

−→c j −
−→
P j(
−→c 1, . . . ,

−→c j−1).

If ρ = j
s is a Kovalevskaya exponents then compatibility conditions

have to be introduced

K is semi-simple.

The Fredholm alternative must holds β̄
−→
P = 0, ∀ρ ∈ R+.
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Painlevé test - step 3, formal solution

Otherwise:

Ψ-series

General solution, when Kovalevskaya exponents are irrational:

−→x (t) =

∞∑
i=0

∞∑
j=0

−→c ijt
−→p +i/s(tρ log(t))j/s



Integrability



Integrability

Integrability

The existence of sufficiently many first integrals.

Local integrability

Integrability of lienarized system. There is always local integrability.

Arnold-Lioville integrability (Hamiltonian systems)

The Hamiltonian H(p, q) = 0 is Liouville integrable if there exist n
independent analytic first integrals I1 = H, I2, . . . , In in
involution({Ii, Ij} = 0). Moreover, if

⋂n
i=1{Ii = ai, (p, q) ∈ R2n}

is compact and connected then it is topologically a real tori.

Algebraic integrability

A vector field ẋ = f(x) with x ∈ Kn is algebraically integrable if
there exist (n− 1) independent algebraic first integrals Ii.

Some integrals can appear from the second and higher integrals.
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Integrability and PP

Only algebraic integrability is closely connected with PP.

Arnold-Liouville integrability requires only a half of the first
integrals to exist and the remaining part (angle variables
integrals) are generally multivalued.

PP probably is not connected with chaos but no explicit proof
exists.



Integrability and PP

Theorem [Goriely]

Let I(x) be an algebraic first integral of vector field δf :=
∑
fi∂i.

Assume that there is a weight-homogeneous decomposition of
δf = δ0 + δ1 + . . .+ δp and a decomposition of
I = I(0) + . . .+ I(q). Then, I(0) is a first integral of δ0 and I(q) is a
first integral of δp. Conclusion: Let I be an algebraic first integral
of δf , a weight-homogeneous vector field of weight w. Then, every
weight-homogeneous component of I is a first integral of δf .

Yoshida’s theorem (1983)

If there is at least one irrational or imaginary Kovalevskaya
exponent, the system is not algebraically integrable.

(Non)integrability-like theorems

If there is a dominant balance such that the Kovalevskaya matrix is
semi-simple and the Kovalevskaya exponents are Z (N)
independent, then there is no rational (polynomial) first integral.
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Numerical scanning of the complex plane
Based on [Kycia 2014].



Problem statement

ODE as a system of first order DE

d~y(x)

dx
= ~f(~y;x), ~y(x) : x ∈ C→ Cn. (12)

Initial value ~y(x0) = ~y0.
Path, e.g., (t ∈ R+)

Semiline x(t) = x0 + (t+ shift) · eiφ
Spiral x(t) = (x0 + (at+ b)ei·dir·t)eiφ

Domain - path connected region (ideally connected by paths
along which integration is performed).
Condition for singularity proximity - the crude estimation
||~y|| < Large const. Not the state of art, but it can be
improved.
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Examples



Equations [Kycia, Filipuk 1]

The Emden-Fowler equation

d2u(x)

dx2
+
α

x

du(x)

dx
+ xnu(x)p = 0 (13)

Generalized Isothermal Sphere equation

d2u(x)

dx2
+
α

x

du(x)

dx
− xne−u(x) = 0, (14)

u(0) = 0

Location of singularities [Kycia, Filipuk 1]

A nonzero analytic solutions of the Generalized Emden-Fowler and
Isothermal Sphere equations have n+ 2 singularities located
symmetrically with respect to the origin on the rays connecting the
origin with all (n+ 2) roots of −1 in the complex plane.
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The Emden-Fowler equations [Kycia, Filipuk 1]
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Figure : p = 5 and u(0) = 1.5, the Generalized Emden-Fowler solution.



Generalized isothermal sphere equations

Figure : u(0) = 0, n = 1



Conclusions



Conclusions
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