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© Motivation & background
@ Optimization in bounded domains
@ The Robin Laplacian on an exterior domain

© Spectral optimization in exterior domains
@ Two dimensions and the role of connectedness
@ Higher dimensions and the Willmore energy
@ Planes with cuts

© Summary and open questions
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Classical geometric isoperimetric inequality

Geometric setting

Bounded domain QcRY, d>2, with
C>-boundary 9Q; ball B= Br CRY.

Classical isoperimetric inequality

|02 > |0B|

<= |t was known to ancient Greeks.

d =2: J.Steiner (1882),
completed by C. Caratheodory.
d = 3: H. Schwarz (1890).
d > 3: E. Schmidt (1939).
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The Faber-Krahn inequality

Q,BcRY d>2

S

Dirichlet eigenvalues of the Laplacian on £2

{—Au =Au, in €,

= 0<A(Q) <N <NQ)<...
u=0, on 09,

The Faber-Krahn inequality

‘Q’:’B’ D D
A7 (2 A7 (B
{Q;éB = 1 () > A7 (B)

Conjecture: Lord Rayleigh (1877).

d =2:G.Faber (1923),

Proofs: {d > 3:E.Krahn (1926).
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Faber-Krahn inequality for other boundary conditions?

Dirichlet BC: u = 0 on 0 (quantum mechanics,...)

One of many that give well-posed spectral problem for —A in Q.

[ Could one generalise the Faber-Krahn inequality for other BC?

Onu — normal derivative with the outer normal n to Q. J

Neumann BC: 9,u = 0 on 09 (heat insulators,..)

Trivial setting: the lowest eigenvalue = 0.

Robin BC: 0,u + au =0 on 99, a € R (elasticity, superconductivity)

Non-trivial! In physics, searching for the shape minimizing the critical
temperature of the superconductivity (Giorgi-Smits-07).

complete partial results

d =2: M. Bossel (1986) Freitas-KrejCitik-15
d > 3: D. Daners (2006) Antunes-Freitas-KrejCi¥ik-17
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The Robin Laplacian on a bounded domain

Robin eigenvalues of the Laplacian on 2

{—Au = \u, in Q,

— AYD) < AU < )\ < ...
Onpu+ au =0, on 0%, T(92) <A2(Q) <A3(Q) <

AY(Q) are eigenvalues of the self-adjoint operator in L2(Q):

—Agu = —Au,
dom (=A%) := {u: u,Vu, Au € L*(R),0,u+ au =0 on IN}.

a — A$(Q) is increasing with the properties

a>0: A¢(Q) € (0,\P(Q)), a — +o0: AF(Q) — AP(Q),
a < 0: A\ (Q) <0, a — —oo: AH(Q) = —c0.
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FK-inequality for Robin Laplacian on a bounded domain

The original Faber-Krahn technique fails!

The Bossel-Daners inequality ( Bossel-86, Daners-06)

=18 A3(Q) > \(B)
Q2B

0Q| = 0B8] = AT () < M1(B)

Many open questions left for o < 0:
e |Q] = |B|: the inequality is wrong for d > 2, might be true for simply
connected domains in R2
e |0Q| = |0B|: the inequality is wrong for d > 3, might be true for
convex domains in RY, d > 3.

For oo < 0 spectral optimization is also meaningful for unbounded Q.

V. Lotoreichik (NPI CAS) Optimization on exterior domains 05.12.2017 8 /24



The Robin Laplacian on an exterior domain

Exterior domain ‘
Qxt . =RI\ Q, where Q C R% is a

) ) . Qext
bounded domain, having N < oo simply '
connected components. ’ ~

Qt is connected, unbounded and with
compact boundary.

Qext i
—-A,, u:=—Auy,

dom (—A2™) = {u: u,Vu, Au € L2(Q%),0,u — au = 0 on 9Q}.

Proposition
The Robin Laplacian —AL™" s self-adjoint in L2(Q%).
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Qext

«

Spectral portrait of —A

AZ(Q) = inf o (—AL™).

o Teont(—AT™) = [0, 0). o M(Q™) - —coas o — —oo.J

Proposition

(i) d = 2: A¥(Q™) < 0 if, and only if, a < 0.
(i) d > 3: AH(Q%*) < 0 if, and only if, a < a, (Q2°) < 0.

)\{X (Qext)

0 U(_A?;Xt )

Why spectral shape optimization for —A2™

o New geometric setting: optimization in unbounded domains.
@ Robin BC is crucial: for Dirichlet BC the problem is meaningless.

@ Interplay with continuous spectrum: optimization of novel spectral
quantities like a ().
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Spectral isoperimetric inequality for exterior planar domains

89 e ex « (.¢
s = @ <6

AF Q=) < AY(B™Y) for convex Q % B (convexity might be redundant).
For all u, € [2(Q%), u, # 0, with Vu, € [2(Q°)

/ |Vu*|2—|—oz/ |y |? The mi
)\(lx(Qext) < Qext oQext ( € mm—max)

/ I 2 principle
Qext

How to find u, such that the RHS in the min-max < A\§$(B**)?

o Pick the ground-state v: B — (0, 00) of —AB™.
@ u, := transplantation of v onto Q% via generalized polar coordinates
(variable r replaced by distance from 0Q2) (Payne-Weinberger-61).
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Necessity of Ng in the constraint

It is impossible to replace % = |0BR| by |02| = |0BRg]. J

Union of N > 2 disjoint disks .Qext °
Q= UMy By(x0); [x0—Xm| >2p, n:m ’

09| = |0Bg] = p= &

For sufficiently large ||
The inequality flips )\f(ngt)> )\(fé(B(’e?xt)'

V. Lotoreichik (NPI CAS) Optimization on exterior domains 05.12.2017 13 /24



Spectral isochoric inequality for exterior planar domains

1] = |B] t t
AO& QeX < )\Oé BeX
{NQ Claxp O <G

Proof.

* Let B be a disk such that |9Q| = |9B].

* Then |B| > |B| and A% (Q%) < A¢(B).
* Explicit computations give A$(B*) < A%(B*).

| \

Trick fails for bounded domains: reverse monotonicity A% (B) > A(B).
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The constraint |0Q2| = |0B| is “wrong” for d > 3

Long cylinder with 2 hemispherical caps

p < d 9=2R and |a| sufficiently large: M(QSE) > AF(BEY). J

Q. CRY, |0Q,| = |0Bg|, exists s.t. AF(QSY) < A\ (BEY) for large |a. J

For bounded case, |092| = |0B] is expected to be suitable under convexity.
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Curvatures

Q c RY, d >3- bounded domain. J

Principal curvatures of 02

K1, K2, ..., Kkd—1: 0L — R — non-negative for convex €.

The mean curvature of 002
K1t R+ Ky

00— R.
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Spectral shape optimization for d > 3

Q convex

{M(aﬂ) =M(8)  _ { 1) < AF(B™)

Key points in the proof

@ Common ideas with the two-dimensional case.

@ Higher dimension complicates, but convexity simplifies.

@ Gauss-Bonnet formula, Steiner polynomials,...

@ Properties of convex bodies: Alexandrov-Fenchel inequality,...
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Intermezzo: the Willmore energy

Let Q C R3.
W(0R) = M?(s)da(s) (the Willmore energy)
o
M(9Q) = iy fon M3(s)do(s) = Zig? in R3. J

W(0Q2) — dimensionless and measures the discrepancy from the sphere.

In elasticity: cell membrane positions itself so as to minimize W(0Q) )

Isoperimetric inequality for the Willmore energy
W(02) > W(0B) = 4.

The Willmore conjecture: F. Marques & A. Neves, Ann. Math. 2014
W(0R) > 272 for 9Q diffeomorphic to a torus.
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The Robin Laplacian on a plane with a cut

Y C R? - smooth open arc. S C R? — a line segment. ]
=
\ R*\X R2\ S
Y
2
fAHO% = —Au,

dom(—AEz\z) = {u: u,Vu,Au € L>(R*\ X),0p,u=cauon ¥.}.

Basic spectral properties

Teont(— A% \F) = [0,00) and A(R?\ ) := inf o(— A% \F) < 0, Yo < 0.
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Spectral isoperimetric inequality for the plane with a cut

Theorem (VL-16, d = 2, [a < 0])

{|ZZ|;5|S| = [ ME®\I) <A (R?\S)

Key tools for the proof

| A

@ Min-max principle.
@ Reduction to integral operators in L2(X) and L%(S).

@ Line segment is the shortest path connecting two endpoints.
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In the two-dimensional setting (d = 2, a < 0)

For connected , the inequality A$(Q**) < A\$(B*) holds if

length of 02 =length of OB or area of () =area of B

v

For possibly disconnected Q, A$(Q%*) < A¢(B***) holds if

length of 0Q2
number of components in (2

= length of 0B

For an arc ¥ & a line segment S, \$(R? \ ) < A\Y(R?\ S) holds if

length of ¥ =length of S

Open direction
Results for higher eigenvalues are missing.
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Higher dimensions (d > 3, a < 0)

The constraint |0Q2| = |0B| is “wrong” as a counterexample shows. ]

For convex Q, A\{(Q2%) < A§(B™) & a, (Q2°*) > a, (B**) hold if

Willmore-type energy of 02 Willmore-type energy of 9B
the area of 0f2 N the area of 0B

Open problem

Is the result still true for (a class of ) non-convex Q7
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.....

eigenvalue in the exterior of a compact set, to appear in J. Convex
Anal., arXiv:1608.04896.

eigenvalue in the exterior of a compact set, Il: non-convex domains
and higher dimensions, arXiv:1707.02269.

[W V.L., Spectral isoperimetric inequalities for J-interactions on open
arcs and for the Robin Laplacian on planes with slits,
arXiv:1609.07598.

Thank you for your attention!
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