Spectral optimization for the Robin Laplacian on exterior domains

Vladimir Lotoreichik

in collaboration with D. Krejčiřík

Czech Academy of Sciences, Řež near Prague

Ostrava Seminar on Mathematical Physics
Ostrava, 05.12.2017

Outline

(1) Motivation \& background

- Optimization in bounded domains
- The Robin Laplacian on an exterior domain
(2) Spectral optimization in exterior domains
- Two dimensions and the role of connectedness
- Higher dimensions and the Willmore energy
- Planes with cuts
(3) Summary and open questions

Classical geometric isoperimetric inequality

Geometric setting

Bounded domain $\Omega \subset \mathbb{R}^{d}, d \geq 2$, with \mathcal{C}^{∞}-boundary $\partial \Omega$; ball $\mathcal{B}=\mathcal{B}_{R} \subset \mathbb{R}^{d}$.

Classical isoperimetric inequality

$$
\left\{\begin{array}{l}
|\Omega|=|\mathcal{B}| \\
\Omega \neq \mathcal{B}
\end{array} \quad \Longrightarrow \quad|\partial \Omega|>|\partial \mathcal{B}|\right.
$$

\Longleftarrow It was known to ancient Greeks.
$d=2$: J. Steiner (1882), completed by C. Caratheodory. $d=3$: H. Schwarz (1890). $d>3$: E. Schmidt (1939).

[^0]
The Faber-Krahn inequality

$\Omega, \mathcal{B} \subset \mathbb{R}^{d}, d \geq 2$

Dirichlet eigenvalues of the Laplacian on Ω

$$
\left\{\begin{array}{ll}
-\Delta u=\lambda u, & \text { in } \Omega, \\
u=0, & \text { on } \partial \Omega,
\end{array} \quad \Longrightarrow \quad 0<\lambda_{1}^{\mathrm{D}}(\Omega) \leq \lambda_{2}^{\mathrm{D}}(\Omega) \leq \lambda_{3}^{\mathrm{D}}(\Omega) \leq \ldots\right.
$$

The Faber-Krahn inequality

$$
\left\{\begin{array}{l}
|\Omega|=|\mathcal{B}| \\
\Omega \nRightarrow \mathcal{B}
\end{array} \quad \Longrightarrow \quad \lambda_{1}^{\mathrm{D}}(\Omega)>\lambda_{1}^{\mathrm{D}}(\mathcal{B})\right.
$$

Conjecture: Lord Rayleigh (1877). Proofs: $\left\{\begin{array}{l}d=2: \text { G. Faber (1923), } \\ d \geq 3: \text { E. Krahn (1926). }\end{array}\right.$

Faber-Krahn inequality for other boundary conditions?

Dirichlet $\mathrm{BC}: u=0$ on $\partial \Omega$ (quantum mechanics,...)

One of many that give well-posed spectral problem for $-\Delta$ in Ω.

Could one generalise the Faber-Krahn inequality for other BC?
$\partial_{n} u$ - normal derivative with the outer normal n to Ω.
Neumann BC: $\partial_{n} u=0$ on $\partial \Omega$ (heat insulators,..)
Trivial setting: the lowest eigenvalue $=0$.
Robin $\mathrm{BC}: \partial_{n} u+\alpha u=0$ on $\partial \Omega, \alpha \in \mathbb{R}$ (elasticity, superconductivity)
Non-trivial! In physics, searching for the shape minimizing the critical temperature of the superconductivity (Giorgi-Smits-07).
$\alpha>0:$ complete

$d=2:$ M. Bossel
$d \geq 3:$ D. Daners
V. Lotoreichik (NPI CAS)

$\alpha<0$: partial results
Freitas-Krejčiřík-15
Antunes-Freitas-Krejčiřík-17

The Robin Laplacian on a bounded domain

Robin eigenvalues of the Laplacian on Ω

$$
\left\{\begin{array}{ll}
-\Delta u=\lambda u, & \text { in } \Omega, \\
\partial_{n} u+\alpha u=0, & \text { on } \partial \Omega .
\end{array} \quad \Longrightarrow \quad \lambda_{1}^{\alpha}(\Omega) \leq \lambda_{2}^{\alpha}(\Omega) \leq \lambda_{3}^{\alpha}(\Omega) \leq \ldots\right.
$$

$\lambda_{k}^{\alpha}(\Omega)$ are eigenvalues of the self-adjoint operator in $L^{2}(\Omega)$:

$$
-\Delta_{\alpha}^{\Omega} u:=-\Delta u,
$$

$\operatorname{dom}\left(-\Delta_{\alpha}^{\Omega}\right):=\left\{u: u, \nabla u, \Delta u \in L^{2}(\Omega), \partial_{n} u+\alpha u=0\right.$ on $\left.\partial \Omega\right\}$.
$\alpha \mapsto \lambda_{1}^{\alpha}(\Omega)$ is increasing with the properties

$$
\begin{array}{ll}
\alpha>0: \lambda_{1}^{\alpha}(\Omega) \in\left(0, \lambda_{1}^{D}(\Omega)\right), & \alpha \rightarrow+\infty: \lambda_{1}^{\alpha}(\Omega) \rightarrow \lambda_{1}^{D}(\Omega), \\
\alpha<0: \lambda_{1}^{\alpha}(\Omega)<0, & \alpha \rightarrow-\infty: \lambda_{1}^{\alpha}(\Omega) \rightarrow-\infty .
\end{array}
$$

FK-inequality for Robin Laplacian on a bounded domain

The original Faber-Krahn technique fails!
The Bossel-Daners inequality $(\alpha>0$, Bossel-86, Daners-06)

$$
\left\{\begin{array}{l}
|\Omega|=|\mathcal{B}| \\
\Omega \neq \mathcal{B}
\end{array} \quad \Longrightarrow \quad \lambda_{1}^{\alpha}(\Omega)>\lambda_{1}^{\alpha}(\mathcal{B})\right.
$$

Flipped inequality $(d=2, \alpha<0$, Antunes-Freitas-Krejčiřík-17)

$$
|\partial \Omega|=|\partial \mathcal{B}| \quad \Longrightarrow \quad \lambda_{1}^{\alpha}(\Omega) \leq \lambda_{1}^{\alpha}(\mathcal{B})
$$

Many open questions left for $\alpha<0$:

- $|\Omega|=|\mathcal{B}|$: the inequality is wrong for $d \geq 2$, might be true for simply connected domains in \mathbb{R}^{2}.
- $|\partial \Omega|=|\partial \mathcal{B}|$: the inequality is wrong for $d \geq 3$, might be true for convex domains in $\mathbb{R}^{d}, d \geq 3$.
For $\alpha<0$ spectral optimization is also meaningful for unbounded Ω.

The Robin Laplacian on an exterior domain

Exterior domain

$\Omega^{\text {ext }}:=\mathbb{R}^{d} \backslash \bar{\Omega}$, where $\Omega \subset \mathbb{R}^{d}$ is a bounded domain, having $N_{\Omega}<\infty$ simply connected components.

$\Omega^{\text {ext }}$ is connected, unbounded and with compact boundary.

$$
-\Delta_{\alpha}^{\Omega^{e x t}} u:=-\Delta u
$$

$\operatorname{dom}\left(-\Delta_{\alpha}^{\Omega^{\mathrm{ext}}}\right):=\left\{u: u, \nabla u, \Delta u \in L^{2}\left(\Omega^{\mathrm{ext}}\right), \partial_{n} u-\alpha u=0\right.$ on $\left.\partial \Omega\right\}$.

Proposition

The Robin Laplacian $-\Delta_{\alpha}^{\Omega^{\text {ext }}}$ is self-adjoint in $L^{2}\left(\Omega^{\mathrm{ext}}\right)$.

Spectral portrait of $-\Delta_{\alpha}^{\Omega \mathrm{ext}}$

$\lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right):=\inf \sigma\left(-\Delta_{\alpha}^{\Omega^{\mathrm{ext}}}\right)$.

- $\sigma_{\text {cont }}\left(-\Delta_{\alpha}^{\Omega^{\mathrm{ext}}}\right)=[0, \infty) . \quad$ - $\lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right) \rightarrow-\infty$ as $\alpha \rightarrow-\infty$.

Proposition

(i) $d=2: \lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right)<0$ if, and only if, $\alpha<0$.
(ii) $d \geq 3: \lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right)<0$ if, and only if, $\alpha<\alpha_{\star}\left(\Omega^{\mathrm{ext}}\right)<0$.

Why spectral shape optimization for $-\Delta_{\alpha}^{\Omega^{\text {ext }}}$

- New geometric setting: optimization in unbounded domains.
- Robin BC is crucial: for Dirichlet BC the problem is meaningless.
- Interplay with continuous spectrum: optimization of novel spectral quantities like $\alpha_{\star}\left(\Omega^{\mathrm{ext}}\right)$.

Spectral isoperimetric inequality for exterior planar domains

Theorem (Krejčiřík-VL-17, $\boldsymbol{d}=2, \alpha<0$)

$$
\frac{|\partial \Omega|}{N_{\Omega}}=|\partial \mathcal{B}| \quad \Longrightarrow \quad \lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right) \leq \lambda_{1}^{\alpha}\left(\mathcal{B}^{\mathrm{ext}}\right)
$$

$\lambda_{1}^{\alpha}\left(\Omega^{\text {ext }}\right)<\lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right)$ for convex $\Omega \not \approx \mathcal{B}$ (convexity might be redundant).
For all $u_{\star} \in L^{2}\left(\Omega^{\mathrm{ext}}\right), u_{\star} \neq 0$, with $\nabla u_{\star} \in L^{2}\left(\Omega^{\mathrm{ext}}\right)$

$$
\lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right) \leq \frac{\int_{\Omega^{\mathrm{ext}}}\left|\nabla u_{\star}\right|^{2}+\alpha \int_{\partial \Omega^{\mathrm{ext}}}\left|u_{\star}\right|^{2}}{\int_{\Omega^{\mathrm{ext}}}\left|u_{\star}\right|^{2}}
$$

(The min-max principle

How to find u_{\star} such that the RHS in the min-max $\leq \lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right)$?

- Pick the ground-state $v: \mathcal{B}^{\text {ext }} \rightarrow(0, \infty)$ of $-\Delta_{\alpha}^{\mathcal{B}^{\text {ext }}}$.
- $u_{\star}:=$ transplantation of v onto $\Omega^{\text {ext }}$ via generalized polar coordinates (variable r replaced by distance from $\partial \Omega$) (Payne-Weinberger-61).

Necessity of N_{Ω} in the constraint

It is impossible to replace $\frac{|\partial \Omega|}{N_{\Omega}}=\left|\partial \mathcal{B}_{R}\right|$ by $|\partial \Omega|=\left|\partial \mathcal{B}_{R}\right|$.

Union of $N \geq 2$ disjoint disks

$\Omega_{\rho}=\cup_{n=1}^{N} \mathcal{B}_{\rho}\left(x_{n}\right) ;\left|x_{n}-x_{m}\right|>2 \rho, n \neq m$
$\left|\partial \Omega_{\rho}\right|=\left|\partial \mathcal{B}_{R}\right| \Longrightarrow \rho=\frac{R}{N}$

Strong coupling $\alpha \rightarrow-\infty$ (Pankrashkin-Popoff-16)

$\lambda_{1}^{\alpha}\left(\Omega_{\rho}^{\text {ext }}\right)-\lambda_{1}^{\alpha}\left(\mathcal{B}_{R}^{\text {ext }}\right)=|\alpha|\left(\frac{1}{\rho}-\frac{1}{R}\right)+o(\alpha)=|\alpha| \frac{N-1}{R}+o(\alpha)$.
For sufficiently large $|\alpha|$
The inequality flips $\lambda_{1}^{\alpha}\left(\Omega_{\rho}^{\text {ext }}\right)>\lambda_{1}^{\alpha}\left(\mathcal{B}_{R}^{\text {ext }}\right)$.

Spectral isochoric inequality for exterior planar domains

Proposition (Krejčiřík-VL-17, $d=2, \alpha<0$)

$$
\left\{\begin{array}{l}
|\Omega|=|\mathcal{B}| \\
N_{0}=1 . \Omega \neq \mathcal{B}
\end{array} \quad \Longrightarrow \quad \lambda_{1}^{\alpha}\left(\Omega^{\text {ext }}\right)<\lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right)\right.
$$

Proof.

\star Let $\widehat{\mathcal{B}}$ be a disk such that $|\partial \Omega|=|\partial \widehat{\mathcal{B}}|$.
\star Then $|\widehat{\mathcal{B}}|>|\mathcal{B}|$ and $\lambda_{1}^{\alpha}\left(\Omega^{\text {ext }}\right) \leq \lambda_{1}^{\alpha}\left(\widehat{\mathcal{B}}^{\text {ext }}\right)$.
\star Explicit computations give $\lambda_{1}^{\alpha}\left(\widehat{\mathcal{B}}^{\text {ext }}\right)<\lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right)$.
Trick fails for bounded domains: reverse monotonicity $\lambda_{1}^{\alpha}(\widehat{\mathcal{B}})>\lambda_{1}^{\alpha}(\mathcal{B})$.

The constraint $|\partial \Omega|=|\partial \mathcal{B}|$ is "wrong" for $d \geq 3$

Long cylinder with 2 hemispherical caps

$\Omega_{\rho, a}=\operatorname{Conv}\left(\mathcal{B}_{\rho}\left(x_{0}\right) \cup \mathcal{B}_{\rho}\left(x_{1}\right)\right)$, where $\left|x_{0}-x_{1}\right|=a$.

For any $\rho<R$ exists $a>0$ such that $\left|\partial \Omega_{\rho, a}\right|=\left|\partial \mathcal{B}_{R}\right|$.

Strong coupling $\alpha \rightarrow-\infty$

$$
\lambda_{1}^{\alpha}\left(\Omega_{\rho, a}^{\mathrm{ext}}\right)-\lambda_{1}^{\alpha}\left(\mathcal{B}_{R}^{\mathrm{ext}}\right)=|\alpha|\left(\frac{d-2}{\rho}-\frac{d-1}{R}\right)+o(\alpha) .
$$

$\rho<\frac{d-2}{d-1} R$ and $|\alpha|$ sufficiently large: $\lambda_{1}^{\alpha}\left(\Omega_{\rho, a}^{\text {ext }}\right)>\lambda_{1}^{\alpha}\left(\mathcal{B}_{R}^{\text {ext }}\right)$.
$\Omega_{\star} \subset \mathbb{R}^{d},\left|\partial \Omega_{\star}\right|=\left|\partial \mathcal{B}_{R}\right|$, exists s.t. $\lambda_{1}^{\alpha}\left(\Omega_{\star}^{\text {ext }}\right)<\lambda_{1}^{\alpha}\left(\mathcal{B}_{R}^{\text {ext }}\right)$ for large $|\alpha|$.
For bounded case, $|\partial \Omega|=|\partial \mathcal{B}|$ is expected to be suitable under convexity.

Curvatures

$\Omega \subset \mathbb{R}^{d}, d \geq 3$ - bounded domain.

Principal curvatures of $\partial \Omega$

$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{d-1}: \partial \Omega \rightarrow \mathbb{R}$ - non-negative for convex Ω.
The mean curvature of $\partial \Omega$

$$
M:=\frac{\kappa_{1}+\kappa_{2}+\cdots+\kappa_{d-1}}{d-1}: \partial \Omega \rightarrow \mathbb{R}
$$

Averaged $(d-1)^{\text {st }}$-power of the mean curvature

$$
\mathcal{M}(\partial \Omega)=\frac{1}{|\partial \Omega|} \int_{\partial \Omega} M^{d-1}(s) \mathrm{d} \sigma(s)
$$

$\mathcal{M}\left(\partial \mathcal{B}_{R}\right)=\left(\frac{1}{R}\right)^{d-1}$.

Spectral shape optimization for $d \geq 3$

Theorem (Krejčiřík-VL-17, $d \geq 3, \alpha<0$)

$$
\left\{\begin{array} { l }
{ \mathcal { M } (\partial \Omega) = \mathcal { M } (\partial \mathcal { B }) } \\
{ \Omega \text { convex } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
\lambda_{1}^{\alpha}\left(\Omega^{\mathrm{ext}}\right) \leq \lambda_{1}^{\alpha}\left(\mathcal{B}^{\mathrm{ext}}\right) \\
\alpha_{\star}\left(\Omega^{\mathrm{ext}}\right) \geq \alpha_{\star}\left(\mathcal{B}^{\mathrm{ext}}\right)
\end{array}\right.\right.
$$

Key points in the proof

- Common ideas with the two-dimensional case.
- Higher dimension complicates, but convexity simplifies.
- Gauss-Bonnet formula, Steiner polynomials,...
- Properties of convex bodies: Alexandrov-Fenchel inequality,...

Intermezzo: the Willmore energy

Let $\Omega \subset \mathbb{R}^{3}$.

$$
\mathcal{W}(\partial \Omega):=\int_{\partial \Omega} M^{2}(s) \mathrm{d} \sigma(s) \quad \text { (the Willmore energy) }
$$

$$
\mathcal{M}(\partial \Omega)=\frac{1}{\partial \partial \Omega} \int_{\partial \Omega} M^{2}(s) \mathrm{d} \sigma(s)=\frac{\mathcal{W}(\partial \Omega)}{|\partial \Omega|} \text { in } \mathbb{R}^{3} \text {. }
$$

$\mathcal{W}(\partial \Omega)$ - dimensionless and measures the discrepancy from the sphere.
In elasticity: cell membrane positions itself so as to minimize $\mathcal{W}(\partial \Omega)$

Isoperimetric inequality for the Willmore energy

 $\mathcal{W}(\partial \Omega) \geq \mathcal{W}(\partial \mathcal{B})=4 \pi$.The Willmore conjecture: F. Marques \& A. Neves, Ann. Math. 2014 $\mathcal{W}(\partial \Omega) \geq 2 \pi^{2}$ for $\partial \Omega$ diffeomorphic to a torus.

The Robin Laplacian on a plane with a cut

$\Sigma \subset \mathbb{R}^{2}$ - smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$$
-\Delta_{\alpha}^{\mathbb{R}^{2} \backslash \Sigma} u:=-\Delta u
$$

$\operatorname{dom}\left(-\Delta_{\alpha}^{\mathbb{R}^{2} \backslash \Sigma}\right):=\left\{u: u, \nabla u, \Delta u \in L^{2}\left(\mathbb{R}^{2} \backslash \Sigma\right), \partial_{n_{ \pm}} u=\alpha u\right.$ on $\left.\Sigma_{ \pm}\right\}$.

Basic spectral properties

$\sigma_{\text {cont }}\left(-\Delta_{\alpha}^{\mathbb{R}^{2} \backslash \Sigma}\right)=[0, \infty)$ and $\lambda_{1}^{\alpha}\left(\mathbb{R}^{2} \backslash \Sigma\right):=\inf \sigma\left(-\Delta_{\alpha}^{\mathbb{R}^{2} \backslash \Sigma}\right)<0, \forall \alpha<0$.

Spectral isoperimetric inequality for the plane with a cut

Theorem (VL-16, $d=2, \alpha<0$)

$$
\left\{\begin{array}{l}
|\Sigma|=|\mathcal{S}| \\
\Sigma \neq \mathcal{S}
\end{array} \quad \Longrightarrow \quad \lambda_{1}^{\alpha}\left(\mathbb{R}^{2} \backslash \Sigma\right)<\lambda_{1}^{\alpha}\left(\mathbb{R}^{2} \backslash \mathcal{S}\right)\right.
$$

Key tools for the proof

- Min-max principle.
- Reduction to integral operators in $L^{2}(\Sigma)$ and $L^{2}(\mathcal{S})$.
- Line segment is the shortest path connecting two endpoints.

In the two-dimensional setting $(d=2, \alpha<0)$

For connected Ω, the inequality $\lambda_{1}^{\alpha}\left(\Omega^{\text {ext }}\right) \leq \lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right)$ holds if
length of $\partial \Omega=$ length of $\partial \mathcal{B}$ or area of $\Omega=$ area of \mathcal{B}
For possibly disconnected Ω, $\lambda_{1}^{\alpha}\left(\Omega^{\text {ext }}\right) \leq \lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right)$ holds if
$\frac{\text { length of } \partial \Omega}{\text { number of components in } \Omega}=$ length of $\partial \mathcal{B}$
For an arc $\Sigma \&$ a line segment $\mathcal{S}, \lambda_{1}^{\alpha}\left(\mathbb{R}^{2} \backslash \Sigma\right) \leq \lambda_{1}^{\alpha}\left(\mathbb{R}^{2} \backslash \mathcal{S}\right)$ holds if length of $\Sigma=$ length of \mathcal{S}

Open direction

Results for higher eigenvalues are missing.

Higher dimensions $(d \geq 3, \alpha<0)$

The constraint $|\partial \Omega|=|\partial \mathcal{B}|$ is "wrong" as a counterexample shows.
For convex $\Omega, \lambda_{1}^{\alpha}\left(\Omega^{\text {ext }}\right) \leq \lambda_{1}^{\alpha}\left(\mathcal{B}^{\text {ext }}\right) \& \alpha_{\star}\left(\Omega^{\text {ext }}\right) \geq \alpha_{\star}\left(\mathcal{B}^{\text {ext }}\right)$ hold if

$$
\frac{\text { Willmore-type energy of } \partial \Omega}{\text { the area of } \partial \Omega}=\frac{\text { Willmore-type energy of } \partial \mathcal{B}}{\text { the area of } \partial \mathcal{B}}
$$

Open problem

Is the result still true for (a class of) non-convex Ω ?

Thank you

D. Krejčiřílk and V.L., Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, to appear in J. Convex Anal., arXiv:1608.04896.
D. Krejčiřík and V.L., Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions, arXiv:1707.02269.
V. L. , Spectral isoperimetric inequalities for δ-interactions on open arcs and for the Robin Laplacian on planes with slits, arXiv:1609.07598.

Thank you for your attention!

[^0]: V. Lotoreichik (NPI CAS)

