On the CLT for spectral statistics of Wigner and sample covariance random matrices

Anna Lytova

Opole University, Poland

October 4, 2017

A D F A A F F A

October 4, 2017

Why random matrices?

Mathematics:

- Statistics
- Combinatorics
- Topology
- Probability
- Functional Analysis
- Integrable systems

Physics:

- Nuclear Physics
- Quantum Chaology
- Quantum Field Theory
- Condensed Matter
- Statistical Physics
- Wave propagation
- Structural Mechanics
- Telecommunications
- Quantitative Finances
- Quantum Information Theory

• Wigner and Sample Covariance random matrices.

メロト メロト メヨト メ

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.

メロト メロト メヨト メ

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.
- An analog of the Law of Large Numbers. The Wigner semicircle law.

・ロト ・日下・ ・ ヨト・

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.
- An analog of the Law of Large Numbers. The Wigner semicircle law.
- An analog of the Central Limit Theorem.

・ロト ・日下・ ・ ヨト・

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.
- An analog of the Law of Large Numbers. The Wigner semicircle law.
- An analog of the Central Limit Theorem.
- An example contradicting universality.

Image: A math the second se

Wigner real symmetric matrices

$$M_n = n^{-1/2} W_n$$

•
$$W_n = \{W_{jk}\}_{j,k=1}^n$$
, $W_{jk} = W_{kj} \in \mathbb{R}$,

• W_{jk} , $1 \le j \le k \le n$, are independent,

•
$$\mathbf{E}W_{jk} = 0$$
, $\mathbf{E}W_{jk}^2 = w^2(1 + a^2\delta_{jk})$.

Eugene Paul Wigner

Wigner real symmetric matrices

$$M_n = n^{-1/2} W_n$$

•
$$W_n = \{W_{jk}\}_{j,k=1}^n$$
, $W_{jk} = W_{kj} \in \mathbb{R}$,

• W_{jk} , $1 \le j \le k \le n$, are independent,

•
$$\mathbf{E}W_{jk} = 0$$
, $\mathbf{E}W_{jk}^2 = w^2(1 + a^2\delta_{jk})$.

Eugene Paul Wigner

・ロト ・回ト ・ヨト ・

In particular, if all entries of M_n are independent Gaussian random variables,

 $W_{jk} \sim N(0, 1 + \delta_{jk}), \quad 1 \leq j \leq k \leq n,$

then we call M_n the Gaussian Orthogonal Ensemble (GOE).

Sample Covariance Matrices

Consider m independent samples of n observables

$$X_1 = \begin{pmatrix} X_{11} \\ \vdots \\ X_{n1} \end{pmatrix}, \quad \dots, \quad X_m = \begin{pmatrix} X_{1m} \\ \vdots \\ X_{nm} \end{pmatrix}$$

and construct an $n \times m$ matrix

$$X = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix}.$$

A Sample Covariance Matrix is an $n \times n$ matrix of the form

$$M=M_{n,m}:=n^{-1}XX^{T}.$$

• • • • • • • • • • • •

Sample Covariance Matrices

Consider m independent samples of n observables

$$X_1 = \begin{pmatrix} X_{11} \\ \vdots \\ X_{n1} \end{pmatrix}, \quad \dots, \quad X_m = \begin{pmatrix} X_{1m} \\ \vdots \\ X_{nm} \end{pmatrix}$$

and construct an $n \times m$ matrix

$$X = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix}.$$

A Sample Covariance Matrix is an $n \times n$ matrix of the form

$$M=M_{n,m}:=n^{-1}XX^{T}.$$

We suppose that

•
$$\mathbf{E}\{X_{j\alpha}\} = 0, \ \mathbf{E}\{X_{j\alpha}^2\} = 1, \ j \le n, \ \alpha \le m,$$

•
$$m = m_n$$
: $m_n/n \to c \in (0,\infty)$, $n \to \infty$.

• • • • • • • • • • • •

Counting Measure of eigenvalues $\{\lambda_k\}_{k=1}^n$: $\mathcal{N}_n(\Delta) = |\{k : \lambda_k \in \Delta\}|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の≪

Counting Measure of eigenvalues $\{\lambda_k\}_{k=1}^n$: $\mathcal{N}_n(\Delta) = |\{k : \lambda_k \in \Delta\}|.$

Linear Eigenvalue Statistic (LES) for a given test-function $\varphi : \mathbb{R} \to \mathbb{C}$:

$$\mathcal{N}_n[\varphi] := \sum_{j=1}^n \varphi(\lambda_j) = \operatorname{Tr} \varphi(M_n).$$

Image: A math a math

Counting Measure of eigenvalues $\{\lambda_k\}_{k=1}^n$: $\mathcal{N}_n(\Delta) = |\{k : \lambda_k \in \Delta\}|.$

Linear Eigenvalue Statistic (LES) for a given test-function $\varphi : \mathbb{R} \to \mathbb{C}$:

$$\mathcal{N}_n[\varphi] := \sum_{j=1}^n \varphi(\lambda_j) = \operatorname{Tr} \varphi(M_n).$$

Important examples of LES:

• Counting Measure of eigenvalues $\mathcal{N}_n(\Delta)$ corresponds to

$$arphi(\lambda) = \left\{egin{array}{cc} 1 & ext{if } \lambda \in \Delta, \ 0 & ext{otherwise.} \end{array}
ight.$$

Note that $\mathcal{N}_n[\varphi] = \int_{\mathbb{R}} \varphi(\lambda) \mathcal{N}_n(d\lambda).$

Image: A math a math

Counting Measure of eigenvalues $\{\lambda_k\}_{k=1}^n$: $\mathcal{N}_n(\Delta) = |\{k : \lambda_k \in \Delta\}|.$

Linear Eigenvalue Statistic (LES) for a given test-function $\varphi : \mathbb{R} \to \mathbb{C}$:

$$\mathcal{N}_n[\varphi] := \sum_{j=1}^n \varphi(\lambda_j) = \operatorname{Tr} \varphi(M_n).$$

Important examples of LES:

• Counting Measure of eigenvalues $\mathcal{N}_n(\Delta)$ corresponds to

$$arphi(\lambda) = \left\{egin{array}{cc} 1 & ext{if } \lambda \in \Delta, \ 0 & ext{otherwise}. \end{array}
ight.$$

Note that $\mathcal{N}_n[\varphi] = \int_{\mathbb{R}} \varphi(\lambda) \mathcal{N}_n(d\lambda)$.

Stieltjes transform of N_n(Δ) corresponds to φ(λ) = (λ − z)⁻¹:

$$\operatorname{Tr}(M_n-zI)^{-1}=\int_{\mathbb{R}}\frac{\mathcal{N}_n(d\lambda)}{\lambda-z},\quad \operatorname{Im} z\neq 0.$$

< □ > < 同 > < 回 > < Ξ > < Ξ

$$s(z) = \int_{\mathbb{R}} \frac{m(d\lambda)}{\lambda - z}, \quad \text{Im} \, z \neq 0$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

$$s(z) = \int_{\mathbb{R}} \frac{m(d\lambda)}{\lambda - z}, \quad \text{Im} \, z \neq 0$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

$$s(z) = \int_{\mathbb{R}} \frac{m(d\lambda)}{\lambda - z}, \quad \text{Im} \, z \neq 0$$

• the Stieltjes - Perron inversion formula:

$$m(\Delta) = \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} s(\lambda + i\varepsilon) d\lambda;$$

・ロト ・日下・ ・ ヨト・

$$f_{\sigma}(z) = \int_{\mathbb{R}} \frac{m(d\lambda)}{\lambda - z}, \quad \text{Im} \, z \neq 0$$

• the Stieltjes - Perron inversion formula:

$$m(\Delta) = \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} s(\lambda + i\varepsilon) d\lambda;$$

 There is a one-to-one correspondence between finite non-negative measures and their Stieltjes transforms. This correspondence is continuous if we use the uniform convergence of analytic functions on compact subsets of C \ R for Stieltjes transforms and the weak convergence of measures.

• • • • • • • • • • • •

$$f(z) = \int_{\mathbb{R}} \frac{m(d\lambda)}{\lambda - z}, \quad \text{Im} \, z \neq 0$$

• the Stieltjes - Perron inversion formula:

$$m(\Delta) = \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} s(\lambda + i\varepsilon) d\lambda;$$

 There is a one-to-one correspondence between finite non-negative measures and their Stieltjes transforms. This correspondence is continuous if we use the uniform convergence of analytic functions on compact subsets of C \ R for Stieltjes transforms and the weak convergence of measures.

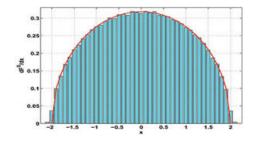
$$s_n(z) := \int_{\mathbb{R}} \frac{\mathcal{N}_n(d\lambda)}{\lambda - z} = \operatorname{Tr}(M_n - zI)^{-1}, \quad \operatorname{Im} z \neq 0.$$

• • • • • • • • • • • •

Wigner's Semicircle Law

For any bounded continuous function φ , with probability 1,

$$\lim_{n \to \infty} n^{-1} \sum_{\ell=1}^{n} \varphi(\lambda_{\ell}) = \lim_{n \to \infty} \int_{\mathbb{R}} \varphi(\lambda) dN_n(\lambda) = \int_{-2w}^{2w} \varphi(\lambda) \rho_{scl}(\lambda) d\lambda,$$
$$\rho_{scl}(\lambda) = \frac{1}{2\pi w^2} \sqrt{(4w^2 - \lambda^2)_+}.$$



・ロト ・回ト ・ヨト

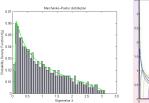
Marchenko-Pastur distribution

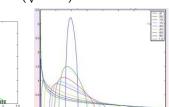
Let
$$M_n = n^{-1}B_nB_n^T$$
, $B_n = \{X_{j\alpha}\}_{j,\alpha=1}^{n,m}$,
 $\{X_{j\alpha}\}_{j,\alpha}$ are independent,
 $\mathbf{E}X_{j\alpha} = 0$, $\mathbf{E}X_{j\alpha}^2 = \mathbf{a}^2$,
 $m, n \to \infty, m/n \to c \ge 1$.

Then $N_n(d\lambda)
ightarrow
ho_{MP}(\lambda) d\lambda$ a.s.,

$$\rho_{MP}(\lambda) = \frac{\sqrt{((\lambda - a_-)(a_+ - \lambda))_+}}{2\pi a^2 \lambda},$$

$$a_{\pm}=a^2(\sqrt{c}\pm 1)^2.$$





Vladimir Marchenko

Leonid Pastur

・ロト ・日下・ ・ ヨト・

October 4, 2017 9 / 22

$$\lim_{n\to\infty} n^{-1}\sum_{\ell=1}^n \varphi(\lambda_\ell) = \int \varphi(\lambda) \rho(\lambda) d\lambda,$$

メロト メロト メヨトメ

$$\lim_{n\to\infty} n^{-1} \sum_{\ell=1}^n \varphi(\lambda_\ell) = \int \varphi(\lambda) \rho(\lambda) d\lambda,$$

This is an analog of the Law of Large Numbers.

$$\lim_{n\to\infty} n^{-1} \sum_{\ell=1}^n \varphi(\lambda_\ell) = \int \varphi(\lambda) \rho(\lambda) d\lambda,$$

This is an analog of the Law of Large Numbers.

What can be said about fluctuations?

$$\lim_{n\to\infty} n^{-1} \sum_{\ell=1}^n \varphi(\lambda_\ell) = \int \varphi(\lambda) \rho(\lambda) d\lambda,$$

This is an analog of the Law of Large Numbers.

What can be said about fluctuations?

?:
$$\nu_n(\mathcal{N}_n[\varphi] - \mathbb{E}\mathcal{N}_n[\varphi]) \underset{n \to \infty}{\longrightarrow} \mathcal{N}(0, V)$$
 in distribution

Variance of linear eigenvalue statistic $\mathcal{N}_n[\varphi] = \sum_{j=1}^n \varphi(\lambda_j)$

$$\mathsf{Var}\{\mathcal{N}_n[\varphi]\} = \mathsf{E}\{(\mathcal{N}_n^{\circ}[\varphi])^2\}, \quad \mathcal{N}_n^{\circ}[\varphi] = \mathcal{N}_n[\varphi] - \mathsf{E}\{\mathcal{N}_n[\varphi]\},$$

For $M \in \text{GOE}$ / Wigner ensemble / Sample Covariance matrices

 $\operatorname{Var}\{\mathcal{N}_n[\varphi]\} = O(1), \quad n \to \infty,$

provided that φ is smooth enough.

The typical size of fluctuations depends on the smoothness of the test-function!

A D F A B F A B F

Variance of linear eigenvalue statistic $\mathcal{N}_n[\varphi] = \sum_{j=1}^n \varphi(\lambda_j)$

$$\mathsf{Var}\{\mathcal{N}_n[\varphi]\} = \mathsf{E}\{(\mathcal{N}_n^{\circ}[\varphi])^2\}, \quad \mathcal{N}_n^{\circ}[\varphi] = \mathcal{N}_n[\varphi] - \mathsf{E}\{\mathcal{N}_n[\varphi]\},$$

For $M \in \text{GOE}$ / Wigner ensemble / Sample Covariance matrices

$$\operatorname{Var}\{\mathcal{N}_n[\varphi]\} = O(1), \quad n \to \infty,$$

provided that φ is smooth enough.

The typical size of fluctuations depends on the smoothness of the test-function! **Example.** If

$$arphi(\lambda) = \left\{egin{array}{cc} 1 & ext{if } \lambda \in \Delta, \ 0 & ext{otherwise}, \end{array}
ight.$$

then

$$\operatorname{Var} \{ \mathcal{N}_n(\Delta) \} = rac{1}{\pi^2} \ln n + O(1), \quad n o \infty.$$

A D F A A F F A

Variance of linear eigenvalue statistic $\mathcal{N}_n[\varphi] = \sum_{j=1}^n \varphi(\lambda_j)$

$$\mathsf{Var}\{\mathcal{N}_n[\varphi]\} = \mathsf{E}\{(\mathcal{N}_n^{\circ}[\varphi])^2\}, \quad \mathcal{N}_n^{\circ}[\varphi] = \mathcal{N}_n[\varphi] - \mathsf{E}\{\mathcal{N}_n[\varphi]\},$$

For $M \in \text{GOE}$ / Wigner ensemble / Sample Covariance matrices

$$\operatorname{Var}\{\mathcal{N}_n[\varphi]\} = O(1), \quad n \to \infty,$$

provided that φ is smooth enough.

The typical size of fluctuations depends on the smoothness of the test-function! **Example.** If

$$arphi(\lambda) = \left\{egin{array}{cc} 1 & ext{if } \lambda \in \Delta, \ 0 & ext{otherwise}, \end{array}
ight.$$

then

$$\operatorname{Var} \{ \mathcal{N}_n(\Delta) \} = rac{1}{\pi^2} \ln n + O(1), \quad n o \infty.$$

So, for smooth functions φ CLT, if any, is valid for the centered linear eigenvalue statistic $\mathcal{N}_n^{\circ}[\varphi]$ itself without any normalization constant in front.

October 4, 2017

11 / 22

Theorem.

Let $\widehat{M}_n = n^{-1/2} \widehat{W}_n$ be the GOE,

$$\widehat{W}_{jk} \sim \textit{N}(0, 1 + \delta_{jk}), \hspace{1em} j \leq k, \hspace{1em}$$
 are independent.

Let $\mathcal{N}_n[\varphi]$ be the linear eigenvalue statistic corresponding to a bounded test function φ with bounded derivative. Then $\mathcal{N}_n^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$V_{GOE}[\varphi] = \frac{1}{2\pi^2} \int_{-2}^{2} \int_{-2}^{2} \left(\frac{\varphi(\lambda_1) - \varphi(\lambda_2)}{\lambda_1 - \lambda_2} \right)^2 \frac{(4 - \lambda_1 \lambda_2) d\lambda_1 d\lambda_2}{\sqrt{4 - \lambda_1^2} \sqrt{4 - \lambda_2^2}}.$$

< □ > < 同 > < 回 > < Ξ > < Ξ

The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices

Theorem (AL, Pastur'09). Let $M_n = n^{-1/2} W_n$ be a Wigner matrix:

- $W_{jk} = W_{kj} \in \mathbb{R}$,
- W_{jk} , $j \leq k$, are independent,
- $\mathsf{E}\{W_{jk}\} = 0$, $\mathsf{E}\{W_{jk}^2\} = (1 + \delta_{jk})$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4} = \mathbf{E}\{W_{jk}^{3,4}\}$, do not depend on *j*, *k*, *n* when $j \neq k$.

< □ > < 同 > < 回 > < Ξ > < Ξ

The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices

Theorem (AL, Pastur'09). Let $M_n = n^{-1/2} W_n$ be a Wigner matrix:

- $W_{jk} = W_{kj} \in \mathbb{R}$,
- W_{jk} , $j \leq k$, are independent,
- $\mathsf{E}\{W_{jk}\} = 0$, $\mathsf{E}\{W_{jk}^2\} = (1 + \delta_{jk})$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4} = \mathbf{E}\{W_{jk}^{3,4}\}$, do not depend on *j*, *k*, *n* when $j \neq k$.

Suppose also that

$$arphi\,:\,\mathbb{R} o\mathbb{R}:\quad\int(1+|t|^5)|\mathcal{F}[arphi](t)|dt<\infty.$$

(日) (四) (日) (日) (日)

The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices

Theorem (AL, Pastur'09). Let $M_n = n^{-1/2} W_n$ be a Wigner matrix:

- $W_{jk} = W_{kj} \in \mathbb{R}$,
- W_{jk} , $j \leq k$, are independent,
- $\mathbf{E}\{W_{jk}\} = 0$, $\mathbf{E}\{W_{jk}^2\} = (1 + \delta_{jk})$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4} = \mathbf{E}\{W_{jk}^{3,4}\}$, do not depend on *j*, *k*, *n* when $j \neq k$.

Suppose also that

Then $\mathcal{N}_n^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$V_{Wig}[\varphi] = V_{GOE}[\varphi] + \frac{\kappa_4}{2\pi^2} \left(\int_{-2}^2 \varphi(\mu) \frac{2-\mu^2}{\sqrt{4-\mu^2}} d\mu \right)^2,$$

where $\kappa_4 = \mu_4 - 3$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ (□ ▶) < □ ▶ (□ ▶) < □ ♥ (○) October 4, 2017 13 / 22

 \sim

Limiting probability law of fluctuations of $\sqrt{n}\varphi_{jj}(M_n)$

E. Borel (1906): Let $X_{1,n}$ denote the first coordinate of X_n , an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1} ; then, as $n \to \infty$ the random variables $\sqrt{n}X_{1,n}$ converge in distribution to a standard normal random variable.

・ロト ・回ト ・ヨト・

Limiting probability law of fluctuations of $\sqrt{n}\varphi_{jj}(M_n)$

E. Borel (1906): Let $X_{1,n}$ denote the first coordinate of X_n , an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1} ; then, as $n \to \infty$ the random variables $\sqrt{n}X_{1,n}$ converge in distribution to a standard normal random variable.

We have

$$arphi_{jj}(M_n) = \sum_{\ell=1}^n \varphi(\lambda_\ell) |\psi_\ell \cdot e_j|^2,$$

where $\{\psi_{\ell}\}_{\ell}$ are unit eigenvectors and $\{e_j\}_j$ are unit coordinate vectors.

Image: A math a math

Limiting probability law of fluctuations of $\sqrt{n}\varphi_{jj}(M_n)$

E. Borel (1906): Let $X_{1,n}$ denote the first coordinate of X_n , an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1} ; then, as $n \to \infty$ the random variables $\sqrt{n}X_{1,n}$ converge in distribution to a standard normal random variable.

We have

$$\varphi_{jj}(M_n) = \sum_{\ell=1}^n \varphi(\lambda_\ell) |\psi_\ell \cdot e_j|^2,$$

where $\{\psi_{\ell}\}_{\ell}$ are unit eigenvectors and $\{e_j\}_j$ are unit coordinate vectors.

It is known that $\{\psi_\ell\}_\ell$ of a Wigner matrix possess a *delocalization property*: with high probability typical components $\{\psi_\ell \cdot e_i\}_i$ of ψ_ℓ are of the order $1/\sqrt{n}$.

(日)

E. Borel (1906): Let $X_{1,n}$ denote the first coordinate of X_n , an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1} ; then, as $n \to \infty$ the random variables $\sqrt{n}X_{1,n}$ converge in distribution to a standard normal random variable.

We have

$$arphi_{jj}(M_n) = \sum_{\ell=1}^n \varphi(\lambda_\ell) |\psi_\ell \cdot e_j|^2,$$

where $\{\psi_{\ell}\}_{\ell}$ are unit eigenvectors and $\{e_j\}_j$ are unit coordinate vectors.

It is known that $\{\psi_\ell\}_\ell$ of a Wigner matrix possess a *delocalization property*: with high probability typical components $\{\psi_\ell \cdot e_j\}_j$ of ψ_ℓ are of the order $1/\sqrt{n}$. So **heuristically**

$$\varphi_{jj}(M_n) \approx n^{-1} \sum_{\ell=1}^n \varphi(\lambda_\ell) = n^{-1} \mathcal{N}_n[\varphi].$$

⇒ one could expect that the asymptotic behaviors of $\varphi_{jj}(M_n)$ and $n^{-1}\mathcal{N}_n[\varphi]$ are the same.

We have (AL, Pastur, 2009):

• If *M* is a Wigner matrix, then, in probability,

$$\lim_{n\to\infty}\varphi_{jj}(M)=\lim_{n\to\infty}n^{-1}\sum_{j=1}^n\varphi_{jj}(M)=\int_{-2}^2\varphi(\lambda)\rho_{scl}(\lambda)d\lambda,$$

where $\rho_{scl}(\lambda) = \frac{1}{2\pi} \sqrt{(4-\lambda^2)_+}$.

< D > < A > < B > <</p>

We have (AL, Pastur, 2009):

۰

• If *M* is a Wigner matrix, then, in probability,

$$\lim_{n\to\infty}\varphi_{jj}(M)=\lim_{n\to\infty}n^{-1}\sum_{j=1}^n\varphi_{jj}(M)=\int_{-2}^2\varphi(\lambda)\rho_{scl}(\lambda)d\lambda,$$

where $\rho_{scl}(\lambda) = \frac{1}{2\pi} \sqrt{(4-\lambda^2)_+}$.

$$\operatorname{Var}\{\varphi_{jj}(M)\} = O(n^{-1/2}), \quad n \to \infty.$$

October 4, 2017 15 / 22

A D M A B M A B M

We have (AL, Pastur, 2009):

• If *M* is a Wigner matrix, then, in probability,

$$\lim_{n\to\infty}\varphi_{jj}(M)=\lim_{n\to\infty}n^{-1}\sum_{j=1}^n\varphi_{jj}(M)=\int_{-2}^2\varphi(\lambda)\rho_{scl}(\lambda)d\lambda,$$

where
$$ho_{scl}(\lambda)=rac{1}{2\pi}\sqrt{(4-\lambda^2)_+}$$

$$\operatorname{Var}\{\varphi_{jj}(M)\} = O(n^{-1/2}), \quad n \to \infty.$$

• If $\widehat{M_n}$ is the GOE matrix and φ is a bounded function with bounded derivative, then $\sqrt{n}\varphi_{jj}^{\circ}(\widehat{M_n})$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$V_{m.el.}^{GOE}[\varphi] = \int_{-2}^{2} \int_{-2}^{2} (\varphi(\lambda_1) - \varphi(\lambda_2))^2 \rho_{scl}(\lambda_1) \rho_{scl}(\lambda_2) d\lambda_1 d\lambda_2.$$

イロト イボト イヨト イヨ

We have (AL, Pastur, 2009):

• If *M* is a Wigner matrix, then, in probability,

$$\lim_{n\to\infty}\varphi_{jj}(M)=\lim_{n\to\infty}n^{-1}\sum_{j=1}^n\varphi_{jj}(M)=\int_{-2}^2\varphi(\lambda)\rho_{scl}(\lambda)d\lambda,$$

where
$$ho_{scl}(\lambda)=rac{1}{2\pi}\sqrt{(4-\lambda^2)_+}$$

$$\operatorname{Var}\{\varphi_{jj}(M)\} = O(n^{-1/2}), \quad n \to \infty.$$

• If $\widehat{M_n}$ is the GOE matrix and φ is a bounded function with bounded derivative, then $\sqrt{n}\varphi_{jj}^{\circ}(\widehat{M_n})$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$V_{m.el.}^{GOE}[\varphi] = \int_{-2}^{2} \int_{-2}^{2} (\varphi(\lambda_1) - \varphi(\lambda_2))^2 \rho_{scl}(\lambda_1) \rho_{scl}(\lambda_2) d\lambda_1 d\lambda_2.$$

But for Wigner matrices the limit is not necessarily Gaussianl,

We have (AL, Pastur, 2009):

• If *M* is a Wigner matrix, then, in probability,

$$\lim_{n\to\infty}\varphi_{jj}(M)=\lim_{n\to\infty}n^{-1}\sum_{j=1}^n\varphi_{jj}(M)=\int_{-2}^2\varphi(\lambda)\rho_{scl}(\lambda)d\lambda,$$

where
$$ho_{scl}(\lambda)=rac{1}{2\pi}\sqrt{(4-\lambda^2)_+}$$

$$\operatorname{Var}\{\varphi_{jj}(M)\} = O(n^{-1/2}), \quad n \to \infty.$$

• If $\widehat{M_n}$ is the GOE matrix and φ is a bounded function with bounded derivative, then $\sqrt{n}\varphi_{jj}^{\circ}(\widehat{M_n})$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$V_{m.el.}^{GOE}[\varphi] = \int_{-2}^{2} \int_{-2}^{2} (\varphi(\lambda_1) - \varphi(\lambda_2))^2 \rho_{scl}(\lambda_1) \rho_{scl}(\lambda_2) d\lambda_1 d\lambda_2.$$

But for Wigner matrices the limit is not necessarily Gaussianl,

Theorem (AL, Pastur'11)

Assume

•
$$M_n = n^{-1/2} \{ W_{jk} \}_{j,k=1}^n$$
, $W_{jk} = W_{kj} \in \mathbb{R}$ are i.i.d.,

•
$$\mathbf{E}\{W_{11}\} = 0$$
, $\mathbf{E}\{W_{11}^2\} = 1$,

• $f(x) := \mathbf{E}\{e^{i x W_{11}}\}$: $\ln f(z)$ is an entire function,

• $\int (1+|t|^3) |\mathcal{F}[\varphi](t)| dt < \infty.$

イロト イヨト イヨト イ

Theorem (AL, Pastur'11)

Assume

•
$$M_n = n^{-1/2} \{ W_{jk} \}_{j,k=1}^n$$
, $W_{jk} = W_{kj} \in \mathbb{R}$ are i.i.d.,

•
$$\mathbf{E}\{W_{11}\} = 0, \quad \mathbf{E}\{W_{11}^2\} = 1,$$

• $f(x) := \mathbf{E}\{e^{i x W_{11}}\}$: $\ln f(z)$ is an entire function,

• $\int (1+|t|^3) |\mathcal{F}[\varphi](t)| dt < \infty.$

Then $\sqrt{n}\varphi_{jj}^{\circ}(M_n)$ converges in distribution to a random variable ξ such that $\forall x \in \mathbb{R}$

$$\mathbf{E}\{e^{ix\xi}\} = \exp\{-x^2 V_{m.el.}^{W}[\varphi]/2 + x^{*2}\} \cdot f(x^*),$$

where $x^* = x \int_{-2}^{2} \varphi(\mu) \mu \rho_{\it scl}(\mu) d\mu$, and

$$V^W_{m.el.}[arphi] = V^{GOE}_{m.el.}[arphi] + \kappa_4 \Big| \int_{-2}^2 arphi(\mu)(1-\mu^2)
ho_{scl}(\mu)d\mu \Big|^2.$$

• • • • • • • • • • •

Theorem (AL, Pastur'11)

Assume

•
$$M_n = n^{-1/2} \{ W_{jk} \}_{j,k=1}^n$$
, $W_{jk} = W_{kj} \in \mathbb{R}$ are i.i.d.,

•
$$\mathbf{E}\{W_{11}\} = 0$$
, $\mathbf{E}\{W_{11}^2\} = 1$,

• $f(x) := \mathbf{E}\{e^{i x W_{11}}\}$: $\ln f(z)$ is an entire function,

•
$$\int (1+|t|^3) |\mathcal{F}[\varphi](t)| dt < \infty.$$

Then $\sqrt{n}\varphi_{jj}^{\circ}(M_n)$ converges in distribution to a random variable ξ such that $\forall x \in \mathbb{R}$

$$\mathbf{E}\{e^{ix\xi}\} = \exp\{-x^2 V_{m.el.}^{W}[\varphi]/2 + x^{*2}\} \cdot f(x^*),$$

where $x^* = x \int_{-2}^{2} \varphi(\mu) \mu \rho_{scl}(\mu) d\mu$, and

$$V^W_{m.el.}[arphi] = V^{GOE}_{m.el.}[arphi] + \kappa_4 \Big| \int_{-2}^2 arphi(\mu)(1-\mu^2)
ho_{ extsf{scl}}(\mu) d\mu \Big|^2.$$

Pizzo, A., Renfrew, D., Soshnikov, A. (2011). Fluctuations of matrix entries of regular functions of Wigner matrices. *Journal of Statistical Physics*, 146(3), 550-591.

All results concerning the CLT for linear eigenvalue statistics and limiting probability law for the fluctuations of $\sqrt{n}\varphi_{jj}(M_n)$ remain valid (with corresponding modifications) for the Sample Covariance Matrix

$$M = n^{-1}XX^T$$
, $X = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix}$,

where $m/n \to c \in (0,\infty), \quad n \to \infty.$

イロト イボト イヨト イヨ

All results concerning the CLT for linear eigenvalue statistics and limiting probability law for the fluctuations of $\sqrt{n}\varphi_{jj}(M_n)$ remain valid (with corresponding modifications) for the Sample Covariance Matrix

$$M = n^{-1}XX^{T}, \quad X = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix},$$

where $m/n \to c \in (0,\infty), \quad n \to \infty.$

We can also treat Sample Covariance matrices of the form $M = n^{-1}XDX^{T}$, where D is an $m \times m$ diagonal matrix and $\{X_{\alpha}\}_{\alpha}$ are independent samples with **dependent components**:

イロト イヨト イヨト

All results concerning the CLT for linear eigenvalue statistics and limiting probability law for the fluctuations of $\sqrt{n}\varphi_{jj}(M_n)$ remain valid (with corresponding modifications) for the Sample Covariance Matrix

$$M = n^{-1}XX^{T}, \quad X = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix},$$

where $m/n \to c \in (0,\infty), \quad n \to \infty.$

We can also treat Sample Covariance matrices of the form $M = n^{-1}XDX^{T}$, where D is an $m \times m$ diagonal matrix and $\{X_{\alpha}\}_{\alpha}$ are independent samples with **dependent components**:

O. Guedon, A. Lytova, A. Pajor, and L. Pastur, *The Central Limit Theorem for linear eigenvalue statistics of the sum of rank one projections on independent vectors.* Spectral Theory and Differential Equations. V. A. Marchenko 90th Anniversary Collection

イロン イ団 とく ヨン イヨン

Theorem.

Let $\widehat{M}_n = n^{-1/2} \widehat{W}_n$ be the GOE,

$$\widehat{W}_{jk} \sim \textit{N}(0, 1 + \delta_{jk}), \hspace{1em} j \leq k, \hspace{1em}$$
 are independent.

Let $\mathcal{N}_n[\varphi]$ be the linear eigenvalue statistic corresponding to a bounded test function φ with bounded derivative. Then $\mathcal{N}_n^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and variance

$$V_{GOE}[\varphi] = \frac{1}{2\pi^2} \int_{-2}^{2} \int_{-2}^{2} \left(\frac{\varphi(\lambda_1) - \varphi(\lambda_2)}{\lambda_1 - \lambda_2} \right)^2 \frac{(4 - \lambda_1 \lambda_2) d\lambda_1 d\lambda_2}{\sqrt{4 - \lambda_1^2} \sqrt{4 - \lambda_2^2}}.$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Ideas of the proof.

We show that if $Z_n(x) = \mathbf{E} \{ \exp\{i x \mathcal{N}_n^\circ[\varphi] \} \}$, then for any $x \in \mathbb{R}$

$$\lim_{n\to\infty} Z_n(x) = Z(x), \quad \lim_{n\to\infty} Z'_n(x) = -xV_{GOE}Z(x).$$

イロト イヨト イヨト イ

Ideas of the proof.

We show that if $Z_n(x) = \mathbf{E} \{ \exp\{i x \mathcal{N}_n^\circ[\varphi] \} \}$, then for any $x \in \mathbb{R}$

$$\lim_{n\to\infty} Z_n(x) = Z(x), \quad \lim_{n\to\infty} Z'_n(x) = -xV_{GOE}Z(x).$$

Proposition

Let $\xi = \{\xi_\ell\}_{\ell=1}^p$ be independent Gaussian random variables of zero mean, and $\Phi : \mathbb{R}^p \to \mathbb{C}$ be a differentiable function with polynomially bounded partial derivatives Φ'_ℓ , $\ell = 1, ..., p$. Then we have

$$\mathsf{E}\{\xi_{\ell} \Phi(\xi)\} = \mathsf{E}\{\xi_{\ell}^{2}\}\mathsf{E}\{\Phi_{\ell}'(\xi)\}, \ \ell = 1, ..., p,$$

and

$$\mathsf{Var}\{\Phi(\xi)\} \leq \sum_{\ell=1}^p \mathsf{E}\{\xi_\ell^2\}\mathsf{E}\left\{|\Phi_\ell'(\xi)|^2
ight\}.$$

The first formula is a version of the integration by parts. The second is a version of the Poincaré inequality.

October 4, 2017

19 / 22

Ideas of the proof. CLT for Wigner Matrices, $\mu_4 = 3$.

Theorem (AL, Pastur'09). Let $M_n = n^{-1/2} W_n$ be a Wigner matrix:

- $W_{jk} = W_{kj} \in \mathbb{R}$,
- W_{jk} , $j \leq k$, are independent,
- $\mathsf{E}\{W_{jk}\} = 0$, $\mathsf{E}\{W_{jk}^2\} = (1 + \delta_{jk})$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4} = \mathbf{E}\{W_{jk}^{3,4}\}$, do not depend on *j*, *k*, *n* when $j \neq k$.
- $\mathbf{E}\{W_{jk}^4\} = 3, j \neq k.$

Suppose also that

Then $\mathcal{N}_n^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and variance $V_{GOE}[\varphi]$.

イロン イ団 とく ヨン イヨン

Ideas of the proof. An interpolation trick.

Proposition.(Khoruzhenko, Khorunzhy, Pastur, 1995) If $\mathbf{E}\{|\xi|^{p+2}\} < \infty$ and $\Phi \in C^{p+1}$ with bounded partial derivatives, then

$$\mathsf{E}\{\xi \Phi(\xi)\} = \sum_{\ell=0}^{p} \frac{\kappa_{\ell+1}}{\ell!} \mathsf{E}\{\Phi^{(\ell)}(\xi)\} + \varepsilon_{p},$$

$$|\varepsilon_{\rho}| \leq C_{
ho} \mathsf{E}\{|\xi|^{
ho+2}\} \sup_{t\in\mathbb{R}} |\Phi^{(
ho+1)}(t)|.$$

An interpolation matrix: $M(s) = s^{1/2}M + (1-s)^{1/2}\widehat{M}$, $0 \le s \le 1$. Here M and \widehat{M} are independent Wigner and GOE matrices with equal moments up to the fourth order.

イロト イヨト イヨト イヨ

メロト メロト メヨト メ

Thank you!

イロト イヨト イヨト イ