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Why random matrices?

Mathematics:

Statistics

Combinatorics

Topology

Probability

Functional Analysis

Integrable systems

Physics:

Nuclear Physics

Quantum Chaology

Quantum Field Theory

Condensed Matter

Statistical Physics

Wave propagation

Structural Mechanics

Telecommunications

Quantitative Finances

Quantum Information Theory
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Content

Wigner and Sample Covariance random matrices.

Linear eigenvalue statistics.

An analog of the Law of Large Numbers. The Wigner semicircle law.

An analog of the Central Limit Theorem.

An example contradicting universality.
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Wigner real symmetric matrices

Mn = n−1/2Wn

Wn = {Wjk}nj,k=1, Wjk = Wkj ∈ R,

Wjk , 1 ≤ j ≤ k ≤ n, are independent,

EWjk = 0, EW 2
jk = w2(1 + a2δjk).

Eugene Paul Wigner

In particular, if all entries of Mn are independent Gaussian random variables,

Wjk ∼ N(0, 1 + δjk), 1 ≤ j ≤ k ≤ n,

then we call Mn the Gaussian Orthogonal Ensemble (GOE).
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Sample Covariance Matrices

Consider m independent samples of n observables

X1 =

 X11

...
Xn1

 , . . . , Xm =

 X1m

...
Xnm


and construct an n ×m matrix

X =
[
X1 X2 ... Xm

]
.

A Sample Covariance Matrix is an n × n matrix of the form

M = Mn,m := n−1XXT .

We suppose that

E{Xjα} = 0, E{X 2
jα} = 1, j ≤ n, α ≤ m,

m = mn : mn/n→ c ∈ (0,∞), n→∞.
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Linear Eigenvalue Statistics

Counting Measure of eigenvalues {λk}nk=1: Nn(∆) = |{k : λk ∈ ∆}|.

Linear Eigenvalue Statistic (LES) for a given test-function ϕ : R→ C:

Nn[ϕ] :=
n∑

j=1

ϕ(λj) = Trϕ(Mn).

Important examples of LES:

Counting Measure of eigenvalues Nn(∆) corresponds to

ϕ(λ) =

{
1 if λ ∈ ∆,
0 otherwise.

Note that Nn[ϕ] =
∫
R ϕ(λ)Nn(dλ).

Stieltjes transform of Nn(∆) corresponds to ϕ(λ) = (λ− z)−1:

Tr(Mn − zI )−1 =

∫
R

Nn(dλ)

λ− z
, Im z 6= 0.
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Stieltjes transform of a non-negative finite measure m:

s(z) =

∫
R

m(dλ)

λ− z
, Im z 6= 0

the Stieltjes - Perron inversion formula:

m(∆) = lim
ε→0+

1

π

∫
∆

Im s(λ+ iε)dλ;

There is a one-to-one correspondence between finite non-negative measures
and their Stieltjes transforms. This correspondence is continuous if we use
the uniform convergence of analytic functions on compact subsets of C \ R
for Stieltjes transforms and the weak convergence of measures.

sn(z) :=

∫
R

Nn(dλ)

λ− z
= Tr(Mn − zI )−1, Im z 6= 0.
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Wigner’s Semicircle Law

For any bounded continuous function ϕ, with probability 1,

lim
n→∞

n−1
n∑
`=1

ϕ(λ`) = lim
n→∞

∫
R
ϕ(λ)dNn(λ) =

∫ 2w

−2w

ϕ(λ)ρscl(λ)dλ,

ρscl(λ) =
1

2πw2

√
(4w2 − λ2)+.
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Marchenko-Pastur distribution

Let Mn = n−1BnB
T
n , Bn = {Xjα}n,mj,α=1,

{Xjα}j,α are independent,

EXjα = 0, EX 2
jα = a2,

m, n→∞, m/n→ c ≥ 1.

Then Nn(dλ)→ ρMP(λ)dλ a.s.,

ρMP(λ) =

√
((λ− a−)(a+ − λ))+

2πa2λ
,

a± = a2(
√
c ± 1)2.

Vladimir
Marchenko

Leonid Pastur
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For any bounded continuous ϕ we have with probability 1:

lim
n→∞

n−1
n∑
`=1

ϕ(λ`) =

∫
ϕ(λ)ρ(λ)dλ,

This is an analog of the Law of Large Numbers.

What can be said about fluctuations?

? : νn(Nn[ϕ]− ENn[ϕ])−→
n→∞
N (0,V ) in distribution
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Variance of linear eigenvalue statistic Nn[ϕ] =
∑n

j=1 ϕ(λj)

Var{Nn[ϕ]} = E
{

(N ◦n [ϕ])2
}
, N ◦n [ϕ] = Nn[ϕ]− E{Nn[ϕ]},

For M ∈GOE / Wigner ensemble / Sample Covariance matrices

Var{Nn[ϕ]} = O(1), n→∞,

provided that ϕ is smooth enough.

The typical size of fluctuations depends on the smoothness of the test-function!

Example. If

ϕ(λ) =

{
1 if λ ∈ ∆,
0 otherwise,

then

Var{Nn(∆)} =
1

π2
ln n + O(1), n→∞.

So, for smooth functions ϕ CLT, if any, is valid for the centered linear eigenvalue
statistic N ◦n [ϕ] itself without any normalization constant in front.
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The CLT for Linear Eigenvalue Statistics for GOE

Theorem.
Let M̂n = n−1/2Ŵn be the GOE,

Ŵjk ∼ N(0, 1 + δjk), j ≤ k , are independent.

Let Nn[ϕ] be the linear eigenvalue statistic corresponding to a bounded test
function ϕ with bounded derivative. Then N ◦n [ϕ] converges in distribution to the
Gaussian random variable with zero mean and the variance

VGOE [ϕ] =
1

2π2

∫ 2

−2

∫ 2

−2

(
ϕ(λ1)− ϕ(λ2

λ1 − λ2

)2
(4− λ1λ2)dλ1dλ2√

4− λ2
1

√
4− λ2

2

.

October 4, 2017 12 / 22



The CLT for Linear Eigenvalue Statistics
for Wigner Random Matrices

Theorem (AL, Pastur’09). Let Mn = n−1/2Wn be a Wigner matrix:
Wjk = Wkj ∈ R,

Wjk , j ≤ k , are independent,

E{Wjk} = 0, E{W 2
jk} = (1 + δjk),

the fifth absolute moments of matrix entries are uniformly bounded, the third
and the fourth moments, µ3,4 = E{W 3,4

jk }, do not depend on j , k, n when
j 6= k.

Suppose also that

ϕ : R→ R :

∫
(1 + |t|5)|F [ϕ](t)|dt <∞.

Then N ◦n [ϕ] converges in distribution to the Gaussian random variable with zero
mean and the variance

VWig [ϕ] = VGOE [ϕ] +
κ4

2π2

(∫ 2

−2

ϕ(µ)
2− µ2√

4− µ2
dµ

)2

,

where κ4 = µ4 − 3.
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Limiting probability law of fluctuations of
√
nϕjj(Mn)

E. Borel (1906): Let X1,n denote the first coordinate of Xn, an n-dimensional
random vector that is uniformly distributed on the unit sphere Sn−1; then, as
n→∞ the random variables

√
nX1,n converge in distribution to a standard

normal random variable.

We have

ϕjj(Mn) =
n∑
`=1

ϕ(λ`)|ψ` · ej |2,

where {ψ`}` are unit eigenvectors and {ej}j are unit coordinate vectors.

It is known that {ψ`}` of a Wigner matrix possess a delocalization property: with
high probability typical components {ψ` · ej}j of ψ` are of the order 1/

√
n. So

heuristically

ϕjj(Mn) ≈ n−1
n∑
`=1

ϕ(λ`) = n−1Nn[ϕ].

⇒ one could expect that the asymptotic behaviors of ϕjj(Mn) and n−1Nn[ϕ] are
the same.
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Limiting probability law of fluctuations of
√
nϕjj(Mn)

We have (AL, Pastur, 2009):

If M is a Wigner matrix, then, in probability,

lim
n→∞

ϕjj(M) = lim
n→∞

n−1
n∑

j=1

ϕjj(M) =

∫ 2

−2

ϕ(λ)ρscl(λ)dλ,

where ρscl(λ) = 1
2π

√
(4− λ2)+.

Var{ϕjj(M)} = O(n−1/2), n→∞.

If M̂n is the GOE matrix and ϕ is a bounded function with bounded

derivative, then
√
nϕ◦jj(M̂n) converges in distribution to the Gaussian random

variable with zero mean and the variance

V GOE
m.el. [ϕ] =

∫ 2

−2

∫ 2

−2

(ϕ(λ1)− ϕ(λ2))2ρscl(λ1)ρscl(λ2)dλ1dλ2.

But for Wigner matrices the limit is not necessarily Gaussian!
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Var{ϕjj(M)} = O(n−1/2), n→∞.

If M̂n is the GOE matrix and ϕ is a bounded function with bounded

derivative, then
√
nϕ◦jj(M̂n) converges in distribution to the Gaussian random

variable with zero mean and the variance

V GOE
m.el. [ϕ] =

∫ 2

−2

∫ 2

−2

(ϕ(λ1)− ϕ(λ2))2ρscl(λ1)ρscl(λ2)dλ1dλ2.

But for Wigner matrices the limit is not necessarily Gaussian!
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Theorem (AL, Pastur’11)

Assume

Mn = n−1/2{Wjk}nj,k=1, Wjk = Wkj ∈ R are i.i.d.,

E{W11} = 0, E{W 2
11} = 1,

f (x) := E{e ixW11}: ln f (z) is an entire function,∫
(1 + |t|3)|F [ϕ](t)|dt <∞.

Then
√
nϕ◦jj(Mn) converges in distribution to a random variable ξ such that

∀x ∈ R
E{e ixξ} = exp{−x2VW

m.el.[ϕ]/2 + x∗2} · f (x∗),

where x∗ = x
∫ 2

−2
ϕ(µ)µρscl(µ)dµ, and

VW
m.el.[ϕ] = V GOE

m.el. [ϕ] + κ4

∣∣∣ ∫ 2

−2

ϕ(µ)(1− µ2)ρscl(µ)dµ
∣∣∣2.

Pizzo, A., Renfrew, D., Soshnikov, A. (2011). Fluctuations of matrix entries of
regular functions of Wigner matrices. Journal of Statistical Physics, 146(3),
550-591.
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Sample Covariance Matrices

All results concerning the CLT for linear eigenvalue statistics and limiting
probability law for the fluctuations of

√
nϕjj(Mn) remain valid (with corresponding

modifications) for the Sample Covariance Matrix

M = n−1XXT , X =
[
X1 X2 ... Xm

]
,

where m/n→ c ∈ (0,∞), n→∞.

We can also treat Sample Covariance matrices of the form M = n−1XDXT , where
D is an m ×m diagonal matrix and {Xα}α are independent samples with
dependent components:

O. Guedon, A. Lytova, A. Pajor, and L. Pastur, The Central Limit Theorem for
linear eigenvalue statistics of the sum of rank one projections on independent
vectors. Spectral Theory and Differential Equations. V. A. Marchenko 90th
Anniversary Collection
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Ideas of the proof. CLT for GOE.

Theorem.
Let M̂n = n−1/2Ŵn be the GOE,

Ŵjk ∼ N(0, 1 + δjk), j ≤ k , are independent.

Let Nn[ϕ] be the linear eigenvalue statistic corresponding to a bounded test
function ϕ with bounded derivative. Then N ◦n [ϕ] converges in distribution to the
Gaussian random variable with zero mean and variance

VGOE [ϕ] =
1

2π2

∫ 2

−2

∫ 2

−2

(
ϕ(λ1)− ϕ(λ2

λ1 − λ2

)2
(4− λ1λ2)dλ1dλ2√

4− λ2
1

√
4− λ2

2

.
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Ideas of the proof.

We show that if Zn(x) = E
{

exp{ixN ◦n [ϕ]}
}

, then for any x ∈ R

lim
n→∞

Zn(x) = Z (x), lim
n→∞

Z ′n(x) = −xVGOEZ (x).

Proposition

Let ξ = {ξ`}p`=1 be independent Gaussian random variables of zero mean, and
Φ : Rp → C be a differentiable function with polynomially bounded partial
derivatives Φ′`, ` = 1, ..., p. Then we have

E{ξ`Φ(ξ)} = E{ξ2
`}E{Φ

′
`(ξ)}, ` = 1, ..., p,

and

Var{Φ(ξ)} ≤
p∑
`=1

E{ξ2
`}E

{
|Φ′`(ξ)|2

}
.

The first formula is a version of the integration by parts. The second is a version
of the Poincaré inequality.
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Ideas of the proof. CLT for Wigner Matrices, µ4 = 3.

Theorem (AL, Pastur’09). Let Mn = n−1/2Wn be a Wigner matrix:

Wjk = Wkj ∈ R,

Wjk , j ≤ k , are independent,

E{Wjk} = 0, E{W 2
jk} = (1 + δjk),

the fifth absolute moments of matrix entries are uniformly bounded, the third
and the fourth moments, µ3,4 = E{W 3,4

jk }, do not depend on j , k, n when
j 6= k.

E{W 4
jk} = 3, j 6= k .

Suppose also that

ϕ : R→ R :

∫
(1 + |t|5)|F [ϕ](t)|dt <∞.

Then N ◦n [ϕ] converges in distribution to the Gaussian random variable with zero
mean and variance VGOE [ϕ].
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Ideas of the proof. An interpolation trick.

Proposition.(Khoruzhenko, Khorunzhy, Pastur, 1995)
If E{|ξ|p+2} <∞ and Φ ∈ C p+1 with bounded partial derivatives, then

E{ξΦ(ξ)} =

p∑
`=0

κ`+1

`!
E{Φ(`)(ξ)}+ εp,

|εp| ≤ CpE{|ξ|p+2} sup
t∈R
|Φ(p+1)(t)|.

An interpolation matrix: M(s) = s1/2M + (1− s)1/2M̂, 0 ≤ s ≤ 1.

Here M and M̂ are independent Wigner and GOE matrices with equal moments
up to the fourth order.

E
{
e ix Tr ϕ(M)◦

}
− E

{
e ix Tr ϕ(M̂)◦

}
=

∫ 1

0

∂

∂s
E
{
e ix Tr ϕ(M(s))◦

}
ds

=
ix

2

∫ 1

0

{ 1√
ns

n∑
j,k=1

E{Φ(M(s))Wjk} −
1√

n(1− s)

n∑
j,k=1

E{Φ(M(s))Ŵjk}
}
ds

= O(n−1/2).
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Opole, Poland
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Thank you!
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