On the CLT for spectral statistics of Wigner and sample covariance random matrices

Anna Lytova
Opole University, Poland

October 4, 2017

Why random matrices?

Mathematics:

- Statistics
- Combinatorics
- Topology
- Probability
- Functional Analysis
- Integrable systems

Physics:

- Nuclear Physics
- Quantum Chaology
- Quantum Field Theory
- Condensed Matter
- Statistical Physics
- Wave propagation
- Structural Mechanics
- Telecommunications
- Quantitative Finances
- Quantum Information Theory

Content

- Wigner and Sample Covariance random matrices.

Content

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.

Content

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.
- An analog of the Law of Large Numbers. The Wigner semicircle law.

Content

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.
- An analog of the Law of Large Numbers. The Wigner semicircle law.
- An analog of the Central Limit Theorem.

Content

- Wigner and Sample Covariance random matrices.
- Linear eigenvalue statistics.
- An analog of the Law of Large Numbers. The Wigner semicircle law.
- An analog of the Central Limit Theorem.
- An example contradicting universality.

Wigner real symmetric matrices

$$
M_{n}=n^{-1 / 2} W_{n}
$$

- $W_{n}=\left\{W_{j k}\right\}_{j, k=1}^{n}, W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, 1 \leq j \leq k \leq n$, are independent,
- $\mathbf{E} W_{j k}=0, \mathbf{E} W_{j k}^{2}=w^{2}\left(1+a^{2} \delta_{j k}\right)$.

Wigner real symmetric matrices

$$
M_{n}=n^{-1 / 2} W_{n}
$$

- $W_{n}=\left\{W_{j k}\right\}_{j, k=1}^{n}, W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, 1 \leq j \leq k \leq n$, are independent,
- $\mathbf{E} W_{j k}=0, \mathbf{E} W_{j k}^{2}=w^{2}\left(1+a^{2} \delta_{j k}\right)$.

Eugene Paul Wigner

In particular, if all entries of M_{n} are independent Gaussian random variables,

$$
W_{j k} \sim N\left(0,1+\delta_{j k}\right), \quad 1 \leq j \leq k \leq n,
$$

then we call M_{n} the Gaussian Orthogonal Ensemble (GOE).

Sample Covariance Matrices

Consider m independent samples of n observables

$$
X_{1}=\left(\begin{array}{l}
X_{11} \\
\vdots \\
X_{n 1}
\end{array}\right), \quad \ldots, X_{m}=\left(\begin{array}{l}
X_{1 m} \\
\vdots \\
X_{n m}
\end{array}\right)
$$

and construct an $n \times m$ matrix

$$
X=\left[\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{m}
\end{array}\right] .
$$

A Sample Covariance Matrix is an $n \times n$ matrix of the form

$$
M=M_{n, m}:=n^{-1} X X^{\top} .
$$

Sample Covariance Matrices

Consider m independent samples of n observables

$$
X_{1}=\left(\begin{array}{l}
X_{11} \\
\vdots \\
X_{n 1}
\end{array}\right), \quad \ldots, X_{m}=\left(\begin{array}{l}
X_{1 m} \\
\vdots \\
X_{n m}
\end{array}\right)
$$

and construct an $n \times m$ matrix

$$
X=\left[\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{m}
\end{array}\right] .
$$

A Sample Covariance Matrix is an $n \times n$ matrix of the form

$$
M=M_{n, m}:=n^{-1} X X^{\top} .
$$

We suppose that

- $\mathbf{E}\left\{X_{j \alpha}\right\}=0, \mathbf{E}\left\{X_{j \alpha}^{2}\right\}=1, j \leq n, \alpha \leq m$,
- $m=m_{n}: m_{n} / n \rightarrow c \in(0, \infty), \quad n \rightarrow \infty$.

Linear Eigenvalue Statistics

Counting Measure of eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{n}: \quad \mathcal{N}_{n}(\Delta)=\left|\left\{k: \lambda_{k} \in \Delta\right\}\right|$.

Linear Eigenvalue Statistics

Counting Measure of eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{n}: \quad \mathcal{N}_{n}(\Delta)=\left|\left\{k: \lambda_{k} \in \Delta\right\}\right|$.
Linear Eigenvalue Statistic (LES) for a given test-function $\varphi: \mathbb{R} \rightarrow \mathbb{C}$:

$$
\mathcal{N}_{n}[\varphi]:=\sum_{j=1}^{n} \varphi\left(\lambda_{j}\right)=\operatorname{Tr} \varphi\left(M_{n}\right) .
$$

Linear Eigenvalue Statistics

Counting Measure of eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{n}: \quad \mathcal{N}_{n}(\Delta)=\left|\left\{k: \lambda_{k} \in \Delta\right\}\right|$.
Linear Eigenvalue Statistic (LES) for a given test-function $\varphi: \mathbb{R} \rightarrow \mathbb{C}$:

$$
\mathcal{N}_{n}[\varphi]:=\sum_{j=1}^{n} \varphi\left(\lambda_{j}\right)=\operatorname{Tr} \varphi\left(M_{n}\right)
$$

Important examples of LES:

- Counting Measure of eigenvalues $\mathcal{N}_{n}(\Delta)$ corresponds to

$$
\varphi(\lambda)= \begin{cases}1 & \text { if } \lambda \in \Delta \\ 0 & \text { otherwise } .\end{cases}
$$

Note that $\mathcal{N}_{n}[\varphi]=\int_{\mathbb{R}} \varphi(\lambda) \mathcal{N}_{n}(d \lambda)$.

Linear Eigenvalue Statistics

Counting Measure of eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{n}: \quad \mathcal{N}_{n}(\Delta)=\left|\left\{k: \lambda_{k} \in \Delta\right\}\right|$.
Linear Eigenvalue Statistic (LES) for a given test-function $\varphi: \mathbb{R} \rightarrow \mathbb{C}$:

$$
\mathcal{N}_{n}[\varphi]:=\sum_{j=1}^{n} \varphi\left(\lambda_{j}\right)=\operatorname{Tr} \varphi\left(M_{n}\right)
$$

Important examples of LES:

- Counting Measure of eigenvalues $\mathcal{N}_{n}(\Delta)$ corresponds to

$$
\varphi(\lambda)= \begin{cases}1 & \text { if } \lambda \in \Delta \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\mathcal{N}_{n}[\varphi]=\int_{\mathbb{R}} \varphi(\lambda) \mathcal{N}_{n}(d \lambda)$.

- Stieltjes transform of $\mathcal{N}_{n}(\Delta)$ corresponds to $\varphi(\lambda)=(\lambda-z)^{-1}$:

$$
\operatorname{Tr}\left(M_{n}-z l\right)^{-1}=\int_{\mathbb{R}} \frac{\mathcal{N}_{n}(d \lambda)}{\lambda-z}, \quad \operatorname{Im} z \neq 0
$$

Stieltjes transform of a non-negative finite measure m :

$$
s(z)=\int_{\mathbb{R}} \frac{m(d \lambda)}{\lambda-z}, \quad \operatorname{Im} z \neq 0
$$

Stieltjes transform of a non-negative finite measure m :

$$
s(z)=\int_{\mathbb{R}} \frac{m(d \lambda)}{\lambda-z}, \quad \operatorname{Im} z \neq 0
$$

Stieltjes transform of a non-negative finite measure m :

$$
s(z)=\int_{\mathbb{R}} \frac{m(d \lambda)}{\lambda-z}, \quad \operatorname{Im} z \neq 0
$$

- the Stieltjes - Perron inversion formula:

$$
m(\Delta)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} s(\lambda+i \varepsilon) d \lambda ;
$$

Stieltjes transform of a non-negative finite measure m :

$$
s(z)=\int_{\mathbb{R}} \frac{m(d \lambda)}{\lambda-z}, \quad \operatorname{Im} z \neq 0
$$

- the Stieltjes - Perron inversion formula:

$$
m(\Delta)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} s(\lambda+i \varepsilon) d \lambda ;
$$

- There is a one-to-one correspondence between finite non-negative measures and their Stieltjes transforms. This correspondence is continuous if we use the uniform convergence of analytic functions on compact subsets of $\mathbb{C} \backslash \mathbb{R}$ for Stieltjes transforms and the weak convergence of measures.

Stieltjes transform of a non-negative finite measure m :

$$
s(z)=\int_{\mathbb{R}} \frac{m(d \lambda)}{\lambda-z}, \quad \operatorname{Im} z \neq 0
$$

- the Stieltjes - Perron inversion formula:

$$
m(\Delta)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} s(\lambda+i \varepsilon) d \lambda
$$

- There is a one-to-one correspondence between finite non-negative measures and their Stieltjes transforms. This correspondence is continuous if we use the uniform convergence of analytic functions on compact subsets of $\mathbb{C} \backslash \mathbb{R}$ for Stieltjes transforms and the weak convergence of measures.

$$
s_{n}(z):=\int_{\mathbb{R}} \frac{\mathcal{N}_{n}(d \lambda)}{\lambda-z}=\operatorname{Tr}\left(M_{n}-z l\right)^{-1}, \quad \operatorname{Im} z \neq 0
$$

Wigner's Semicircle Law

For any bounded continuous function φ, with probability 1 ,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n^{-1} \sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \varphi(\lambda) d N_{n}(\lambda)=\int_{-2 w}^{2 w} \varphi(\lambda) \rho_{s c l}(\lambda) d \lambda \\
\rho_{s c l}(\lambda)=\frac{1}{2 \pi w^{2}} \sqrt{\left(4 w^{2}-\lambda^{2}\right)_{+}} .
\end{gathered}
$$

Marchenko-Pastur distribution

Let $\quad M_{n}=n^{-1} B_{n} B_{n}^{T}, \quad B_{n}=\left\{X_{j \alpha}\right\}_{j, \alpha=1}^{n, m}$,

$$
\left\{X_{j \alpha}\right\}_{j, \alpha} \quad \text { are independent }
$$

$$
\begin{aligned}
& \mathbf{E} X_{j \alpha}=0, \quad \mathbf{E} X_{j \alpha}^{2}=a^{2} \\
& m, n \rightarrow \infty, m / n \rightarrow c \geq 1
\end{aligned}
$$

Then $N_{n}(d \lambda) \rightarrow \rho_{M P}(\lambda) d \lambda \quad$ a.s.,

$$
\begin{gathered}
\rho_{M P}(\lambda)=\frac{\sqrt{\left(\left(\lambda-a_{-}\right)\left(a_{+}-\lambda\right)\right)_{+}}}{2 \pi a^{2} \lambda} \\
a_{ \pm}=a^{2}(\sqrt{c} \pm 1)^{2}
\end{gathered}
$$

Vladimir
Marchenko

Leonid Pastur

For any bounded continuous φ we have with probability 1 :

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)=\int \varphi(\lambda) \rho(\lambda) d \lambda,
$$

For any bounded continuous φ we have with probability 1 :

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)=\int \varphi(\lambda) \rho(\lambda) d \lambda
$$

This is an analog of the Law of Large Numbers.

For any bounded continuous φ we have with probability 1 :

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)=\int \varphi(\lambda) \rho(\lambda) d \lambda,
$$

This is an analog of the Law of Large Numbers.

What can be said about fluctuations?

For any bounded continuous φ we have with probability 1 :

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)=\int \varphi(\lambda) \rho(\lambda) d \lambda
$$

This is an analog of the Law of Large Numbers.

What can be said about fluctuations?

$$
?: \nu_{n}\left(\mathcal{N}_{n}[\varphi]-\mathbb{E} \mathcal{N}_{n}[\varphi]\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{N}(0, V) \text { in distribution }
$$

Variance of linear eigenvalue statistic $\mathcal{N}_{n}[\varphi]=\sum_{j=1}^{n} \varphi\left(\lambda_{j}\right)$

$$
\operatorname{Var}\left\{\mathcal{N}_{n}[\varphi]\right\}=\mathbf{E}\left\{\left(\mathcal{N}_{n}^{\circ}[\varphi]\right)^{2}\right\}, \quad \mathcal{N}_{n}^{\circ}[\varphi]=\mathcal{N}_{n}[\varphi]-\mathbf{E}\left\{\mathcal{N}_{n}[\varphi]\right\},
$$

For $M \in G O E$ / Wigner ensemble / Sample Covariance matrices

$$
\operatorname{Var}\left\{\mathcal{N}_{n}[\varphi]\right\}=O(1), \quad n \rightarrow \infty,
$$

provided that φ is smooth enough.
The typical size of fluctuations depends on the smoothness of the test-function!

Variance of linear eigenvalue statistic $\mathcal{N}_{n}[\varphi]=\sum_{j=1}^{n} \varphi\left(\lambda_{j}\right)$

$$
\operatorname{Var}\left\{\mathcal{N}_{n}[\varphi]\right\}=\mathbf{E}\left\{\left(\mathcal{N}_{n}^{\circ}[\varphi]\right)^{2}\right\}, \quad \mathcal{N}_{n}^{\circ}[\varphi]=\mathcal{N}_{n}[\varphi]-\mathbf{E}\left\{\mathcal{N}_{n}[\varphi]\right\},
$$

For $M \in G O E$ / Wigner ensemble / Sample Covariance matrices

$$
\operatorname{Var}\left\{\mathcal{N}_{n}[\varphi]\right\}=O(1), \quad n \rightarrow \infty,
$$

provided that φ is smooth enough.
The typical size of fluctuations depends on the smoothness of the test-function! Example. If

$$
\varphi(\lambda)= \begin{cases}1 & \text { if } \lambda \in \Delta \\ 0 & \text { otherwise },\end{cases}
$$

then

$$
\operatorname{Var}\left\{\mathcal{N}_{n}(\Delta)\right\}=\frac{1}{\pi^{2}} \ln n+O(1), \quad n \rightarrow \infty
$$

Variance of linear eigenvalue statistic $\mathcal{N}_{n}[\varphi]=\sum_{j=1}^{n} \varphi\left(\lambda_{j}\right)$

$$
\operatorname{Var}\left\{\mathcal{N}_{n}[\varphi]\right\}=\mathbf{E}\left\{\left(\mathcal{N}_{n}^{\circ}[\varphi]\right)^{2}\right\}, \quad \mathcal{N}_{n}^{\circ}[\varphi]=\mathcal{N}_{n}[\varphi]-\mathbf{E}\left\{\mathcal{N}_{n}[\varphi]\right\},
$$

For $M \in G O E$ / Wigner ensemble / Sample Covariance matrices

$$
\operatorname{Var}\left\{\mathcal{N}_{n}[\varphi]\right\}=O(1), \quad n \rightarrow \infty,
$$

provided that φ is smooth enough.
The typical size of fluctuations depends on the smoothness of the test-function! Example. If

$$
\varphi(\lambda)= \begin{cases}1 & \text { if } \lambda \in \Delta \\ 0 & \text { otherwise },\end{cases}
$$

then

$$
\operatorname{Var}\left\{\mathcal{N}_{n}(\Delta)\right\}=\frac{1}{\pi^{2}} \ln n+O(1), \quad n \rightarrow \infty
$$

So, for smooth functions φ CLT, if any, is valid for the centered linear eigenvalue statistic $\mathcal{N}_{n}^{\circ}[\varphi]$ itself without any normalization constant in front.

The CLT for Linear Eigenvalue Statistics for GOE

Theorem.
Let $\widehat{M}_{n}=n^{-1 / 2} \widehat{W}_{n}$ be the GOE,

$$
\widehat{W}_{j k} \sim N\left(0,1+\delta_{j k}\right), \quad j \leq k, \quad \text { are independent. }
$$

Let $\mathcal{N}_{n}[\varphi]$ be the linear eigenvalue statistic corresponding to a bounded test function φ with bounded derivative. Then $\mathcal{N}_{n}^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$
V_{G O E}[\varphi]=\frac{1}{2 \pi^{2}} \int_{-2}^{2} \int_{-2}^{2}\left(\frac{\varphi\left(\lambda_{1}\right)-\varphi\left(\lambda_{2}\right.}{\lambda_{1}-\lambda_{2}}\right)^{2} \frac{\left(4-\lambda_{1} \lambda_{2}\right) d \lambda_{1} d \lambda_{2}}{\sqrt{4-\lambda_{1}^{2}} \sqrt{4-\lambda_{2}^{2}}}
$$

The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices

Theorem (AL, Pastur'09). Let $M_{n}=n^{-1 / 2} W_{n}$ be a Wigner matrix:

- $W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, j \leq k$, are independent,
- $\mathbf{E}\left\{W_{j k}\right\}=0, \quad \mathbf{E}\left\{W_{j k}^{2}\right\}=\left(1+\delta_{j k}\right)$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4}=\mathbf{E}\left\{W_{j k}^{3,4}\right\}$, do not depend on j, k, n when $j \neq k$.

The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices

Theorem (AL, Pastur'09). Let $M_{n}=n^{-1 / 2} W_{n}$ be a Wigner matrix:

- $W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, j \leq k$, are independent,
- $\mathbf{E}\left\{W_{j k}\right\}=0, \quad \mathbf{E}\left\{W_{j k}^{2}\right\}=\left(1+\delta_{j k}\right)$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4}=\mathbf{E}\left\{W_{j k}^{3,4}\right\}$, do not depend on j, k, n when $j \neq k$.
Suppose also that

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}: \quad \int\left(1+|t|^{5}\right)|\mathcal{F}[\varphi](t)| d t<\infty
$$

The CLT for Linear Eigenvalue Statistics for Wigner Random Matrices

Theorem (AL, Pastur'09). Let $M_{n}=n^{-1 / 2} W_{n}$ be a Wigner matrix:

- $W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, j \leq k$, are independent,
- $\mathbf{E}\left\{W_{j k}\right\}=0, \quad \mathbf{E}\left\{W_{j k}^{2}\right\}=\left(1+\delta_{j k}\right)$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4}=\mathbf{E}\left\{W_{j k}^{3,4}\right\}$, do not depend on j, k, n when $j \neq k$.
Suppose also that

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}: \quad \int\left(1+|t|^{5}\right)|\mathcal{F}[\varphi](t)| d t<\infty
$$

Then $\mathcal{N}_{n}^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$
V_{W i g}[\varphi]=V_{G O E}[\varphi]+\frac{\kappa_{4}}{2 \pi^{2}}\left(\int_{-2}^{2} \varphi(\mu) \frac{2-\mu^{2}}{\sqrt{4-\mu^{2}}} d \mu\right)^{2}
$$

where $\kappa_{4}=\mu_{4}-3$.

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

E. Borel (1906): Let $X_{1, n}$ denote the first coordinate of X_{n}, an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1}; then, as $n \rightarrow \infty$ the random variables $\sqrt{n} X_{1, n}$ converge in distribution to a standard normal random variable.

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

E. Borel (1906): Let $X_{1, n}$ denote the first coordinate of X_{n}, an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1}; then, as $n \rightarrow \infty$ the random variables $\sqrt{n} X_{1, n}$ converge in distribution to a standard normal random variable.

We have

$$
\varphi_{j j}\left(M_{n}\right)=\sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)\left|\psi_{\ell} \cdot e_{j}\right|^{2},
$$

where $\left\{\psi_{\ell}\right\}_{\ell}$ are unit eigenvectors and $\left\{e_{j}\right\}_{j}$ are unit coordinate vectors.

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

E. Borel (1906): Let $X_{1, n}$ denote the first coordinate of X_{n}, an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1}; then, as $n \rightarrow \infty$ the random variables $\sqrt{n} X_{1, n}$ converge in distribution to a standard normal random variable.

We have

$$
\varphi_{j j}\left(M_{n}\right)=\sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)\left|\psi_{\ell} \cdot e_{j}\right|^{2},
$$

where $\left\{\psi_{\ell}\right\}_{\ell}$ are unit eigenvectors and $\left\{e_{j}\right\}_{j}$ are unit coordinate vectors.
It is known that $\left\{\psi_{\ell}\right\}_{\ell}$ of a Wigner matrix possess a delocalization property: with high probability typical components $\left\{\psi_{\ell} \cdot e_{j}\right\}_{j}$ of ψ_{ℓ} are of the order $1 / \sqrt{n}$.

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

E. Borel (1906): Let $X_{1, n}$ denote the first coordinate of X_{n}, an n-dimensional random vector that is uniformly distributed on the unit sphere S^{n-1}; then, as $n \rightarrow \infty$ the random variables $\sqrt{n} X_{1, n}$ converge in distribution to a standard normal random variable.

We have

$$
\varphi_{j j}\left(M_{n}\right)=\sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)\left|\psi_{\ell} \cdot e_{j}\right|^{2},
$$

where $\left\{\psi_{\ell}\right\}_{\ell}$ are unit eigenvectors and $\left\{e_{j}\right\}_{j}$ are unit coordinate vectors.
It is known that $\left\{\psi_{\ell}\right\}_{\ell}$ of a Wigner matrix possess a delocalization property: with high probability typical components $\left\{\psi_{\ell} \cdot e_{j}\right\}_{j}$ of ψ_{ℓ} are of the order $1 / \sqrt{n}$. So heuristically

$$
\varphi_{j j}\left(M_{n}\right) \approx n^{-1} \sum_{\ell=1}^{n} \varphi\left(\lambda_{\ell}\right)=n^{-1} \mathcal{N}_{n}[\varphi] .
$$

\Rightarrow one could expect that the asymptotic behaviors of $\varphi_{\mathrm{jj}}\left(M_{n}\right)$ and $n^{-1} \mathcal{N}_{n}[\varphi]$ are the same.

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

We have (AL, Pastur, 2009):

- If M is a Wigner matrix, then, in probability,

$$
\lim _{n \rightarrow \infty} \varphi_{j j}(M)=\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \varphi_{j j}(M)=\int_{-2}^{2} \varphi(\lambda) \rho_{s c l}(\lambda) d \lambda
$$

where $\rho_{\text {scl }}(\lambda)=\frac{1}{2 \pi} \sqrt{\left(4-\lambda^{2}\right)_{+}}$.

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

We have (AL, Pastur, 2009):

- If M is a Wigner matrix, then, in probability,

$$
\lim _{n \rightarrow \infty} \varphi_{j j}(M)=\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \varphi_{j j}(M)=\int_{-2}^{2} \varphi(\lambda) \rho_{s c l}(\lambda) d \lambda
$$

where $\rho_{\text {scl }}(\lambda)=\frac{1}{2 \pi} \sqrt{\left(4-\lambda^{2}\right)_{+}}$.

$$
\operatorname{Var}\left\{\varphi_{j j}(M)\right\}=O\left(n^{-1 / 2}\right), \quad n \rightarrow \infty
$$

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

We have (AL, Pastur, 2009):

- If M is a Wigner matrix, then, in probability,

$$
\lim _{n \rightarrow \infty} \varphi_{j j}(M)=\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \varphi_{j j}(M)=\int_{-2}^{2} \varphi(\lambda) \rho_{s c l}(\lambda) d \lambda
$$

where $\rho_{\text {scl }}(\lambda)=\frac{1}{2 \pi} \sqrt{\left(4-\lambda^{2}\right)_{+}}$.

$$
\operatorname{Var}\left\{\varphi_{j j}(M)\right\}=O\left(n^{-1 / 2}\right), \quad n \rightarrow \infty
$$

- If \widehat{M}_{n} is the GOE matrix and φ is a bounded function with bounded derivative, then $\sqrt{n} \varphi_{j j}^{\circ}\left(\widehat{M}_{n}\right)$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$
V_{m . e l .}^{G O E}[\varphi]=\int_{-2}^{2} \int_{-2}^{2}\left(\varphi\left(\lambda_{1}\right)-\varphi\left(\lambda_{2}\right)\right)^{2} \rho_{s c l}\left(\lambda_{1}\right) \rho_{s c l}\left(\lambda_{2}\right) d \lambda_{1} d \lambda_{2} .
$$

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

We have (AL, Pastur, 2009):

- If M is a Wigner matrix, then, in probability,

$$
\lim _{n \rightarrow \infty} \varphi_{j j}(M)=\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \varphi_{j j}(M)=\int_{-2}^{2} \varphi(\lambda) \rho_{s c l}(\lambda) d \lambda
$$

where $\rho_{\text {scl }}(\lambda)=\frac{1}{2 \pi} \sqrt{\left(4-\lambda^{2}\right)_{+}}$.

$$
\operatorname{Var}\left\{\varphi_{j j}(M)\right\}=O\left(n^{-1 / 2}\right), \quad n \rightarrow \infty
$$

- If \widehat{M}_{n} is the GOE matrix and φ is a bounded function with bounded derivative, then $\sqrt{n} \varphi_{j j}^{\circ}\left(\widehat{M}_{n}\right)$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$
V_{m . e l .}^{G O E}[\varphi]=\int_{-2}^{2} \int_{-2}^{2}\left(\varphi\left(\lambda_{1}\right)-\varphi\left(\lambda_{2}\right)\right)^{2} \rho_{\text {scl }}\left(\lambda_{1}\right) \rho_{\text {scl }}\left(\lambda_{2}\right) d \lambda_{1} d \lambda_{2}
$$

But for Wigner matrices the limit is not necessarily Gaussian!

Limiting probability law of fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$

We have (AL, Pastur, 2009):

- If M is a Wigner matrix, then, in probability,

$$
\lim _{n \rightarrow \infty} \varphi_{j j}(M)=\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{n} \varphi_{j j}(M)=\int_{-2}^{2} \varphi(\lambda) \rho_{s c l}(\lambda) d \lambda
$$

where $\rho_{\text {scl }}(\lambda)=\frac{1}{2 \pi} \sqrt{\left(4-\lambda^{2}\right)_{+}}$.

$$
\operatorname{Var}\left\{\varphi_{j j}(M)\right\}=O\left(n^{-1 / 2}\right), \quad n \rightarrow \infty
$$

- If \widehat{M}_{n} is the GOE matrix and φ is a bounded function with bounded derivative, then $\sqrt{n} \varphi_{j j}^{\circ}\left(\widehat{M}_{n}\right)$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$
V_{m . e l .}^{G O E}[\varphi]=\int_{-2}^{2} \int_{-2}^{2}\left(\varphi\left(\lambda_{1}\right)-\varphi\left(\lambda_{2}\right)\right)^{2} \rho_{\text {scl }}\left(\lambda_{1}\right) \rho_{\text {scl }}\left(\lambda_{2}\right) d \lambda_{1} d \lambda_{2}
$$

But for Wigner matrices the limit is not necessarily Gaussian!

Theorem (AL, Pastur'11)

Assume

- $M_{n}=n^{-1 / 2}\left\{W_{j k}\right\}_{j, k=1}^{n}, W_{j k}=W_{k j} \in \mathbb{R}$ are i.i.d.,
- $\mathbf{E}\left\{W_{11}\right\}=0, \quad \mathbf{E}\left\{W_{11}^{2}\right\}=1$,
- $f(x):=\mathbf{E}\left\{e^{i x W_{11}}\right\}: \ln f(z)$ is an entire function,
- $\int\left(1+|t|^{3}\right)|\mathcal{F}[\varphi](t)| d t<\infty$.

Theorem (AL, Pastur'11)

Assume

- $M_{n}=n^{-1 / 2}\left\{W_{j k}\right\}_{j, k=1}^{n}, W_{j k}=W_{k j} \in \mathbb{R}$ are i.i.d.,
- $\mathbf{E}\left\{W_{11}\right\}=0, \quad \mathbf{E}\left\{W_{11}^{2}\right\}=1$,
- $f(x):=\mathbf{E}\left\{e^{i x W_{11}}\right\}: \ln f(z)$ is an entire function,
- $\int\left(1+|t|^{3}\right)|\mathcal{F}[\varphi](t)| d t<\infty$.

Then $\sqrt{n} \varphi_{j j}^{\circ}\left(M_{n}\right)$ converges in distribution to a random variable ξ such that $\forall x \in \mathbb{R}$

$$
\mathbf{E}\left\{e^{i x \xi}\right\}=\exp \left\{-x^{2} V_{m . e l}^{W}[\varphi] / 2+x^{* 2}\right\} \cdot f\left(x^{*}\right)
$$

where $x^{*}=x \int_{-2}^{2} \varphi(\mu) \mu \rho_{s c l}(\mu) d \mu$, and

$$
V_{m . e l .}^{W}[\varphi]=V_{m . e l .}^{G O E}[\varphi]+\kappa_{4}\left|\int_{-2}^{2} \varphi(\mu)\left(1-\mu^{2}\right) \rho_{s c l}(\mu) d \mu\right|^{2}
$$

Theorem (AL, Pastur'11)

Assume

- $M_{n}=n^{-1 / 2}\left\{W_{j k}\right\}_{j, k=1}^{n}, W_{j k}=W_{k j} \in \mathbb{R}$ are i.i.d.,
- $\mathbf{E}\left\{W_{11}\right\}=0, \quad \mathbf{E}\left\{W_{11}^{2}\right\}=1$,
- $f(x):=\mathbf{E}\left\{e^{i x W_{11}}\right\}: \ln f(z)$ is an entire function,
- $\int\left(1+|t|^{3}\right)|\mathcal{F}[\varphi](t)| d t<\infty$.

Then $\sqrt{n} \varphi_{j j}^{\circ}\left(M_{n}\right)$ converges in distribution to a random variable ξ such that $\forall x \in \mathbb{R}$

$$
\mathbf{E}\left\{e^{i x \xi}\right\}=\exp \left\{-x^{2} V_{m . e l}^{W}[\varphi] / 2+x^{* 2}\right\} \cdot f\left(x^{*}\right)
$$

where $x^{*}=x \int_{-2}^{2} \varphi(\mu) \mu \rho_{\text {scl }}(\mu) d \mu$, and

$$
V_{m . e l .}^{W}[\varphi]=V_{m . e l .}^{G O E}[\varphi]+\kappa_{4}\left|\int_{-2}^{2} \varphi(\mu)\left(1-\mu^{2}\right) \rho_{s c l}(\mu) d \mu\right|^{2}
$$

Pizzo, A., Renfrew, D., Soshnikov, A. (2011). Fluctuations of matrix entries of regular functions of Wigner matrices. Journal of Statistical Physics, 146(3), 550-591.

Sample Covariance Matrices

All results concerning the CLT for linear eigenvalue statistics and limiting probability law for the fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$ remain valid (with corresponding modifications) for the Sample Covariance Matrix

$$
M=n^{-1} X X^{\top}, \quad X=\left[\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{m}
\end{array}\right],
$$

where $m / n \rightarrow c \in(0, \infty), \quad n \rightarrow \infty$.

Sample Covariance Matrices

All results concerning the CLT for linear eigenvalue statistics and limiting probability law for the fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$ remain valid (with corresponding modifications) for the Sample Covariance Matrix

$$
M=n^{-1} X X^{\top}, \quad X=\left[\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{m}
\end{array}\right],
$$

where $m / n \rightarrow c \in(0, \infty), \quad n \rightarrow \infty$.
We can also treat Sample Covariance matrices of the form $M=n^{-1} X D X^{\top}$, where D is an $m \times m$ diagonal matrix and $\left\{X_{\alpha}\right\}_{\alpha}$ are independent samples with dependent components:

Sample Covariance Matrices

All results concerning the CLT for linear eigenvalue statistics and limiting probability law for the fluctuations of $\sqrt{n} \varphi_{j j}\left(M_{n}\right)$ remain valid (with corresponding modifications) for the Sample Covariance Matrix

$$
M=n^{-1} X X^{\top}, \quad X=\left[\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{m}
\end{array}\right],
$$

where $m / n \rightarrow c \in(0, \infty), \quad n \rightarrow \infty$.
We can also treat Sample Covariance matrices of the form $M=n^{-1} X D X^{\top}$, where D is an $m \times m$ diagonal matrix and $\left\{X_{\alpha}\right\}_{\alpha}$ are independent samples with dependent components:
O. Guedon, A. Lytova, A. Pajor, and L. Pastur, The Central Limit Theorem for linear eigenvalue statistics of the sum of rank one projections on independent vectors. Spectral Theory and Differential Equations. V. A. Marchenko 90th Anniversary Collection

Ideas of the proof. CLT for GOE.

Theorem.
Let $\widehat{M}_{n}=n^{-1 / 2} \widehat{W}_{n}$ be the GOE,

$$
\widehat{W}_{j k} \sim N\left(0,1+\delta_{j k}\right), \quad j \leq k, \quad \text { are independent. }
$$

Let $\mathcal{N}_{n}[\varphi]$ be the linear eigenvalue statistic corresponding to a bounded test function φ with bounded derivative. Then $\mathcal{N}_{n}^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and variance

$$
V_{G O E}[\varphi]=\frac{1}{2 \pi^{2}} \int_{-2}^{2} \int_{-2}^{2}\left(\frac{\varphi\left(\lambda_{1}\right)-\varphi\left(\lambda_{2}\right.}{\lambda_{1}-\lambda_{2}}\right)^{2} \frac{\left(4-\lambda_{1} \lambda_{2}\right) d \lambda_{1} d \lambda_{2}}{\sqrt{4-\lambda_{1}^{2}} \sqrt{4-\lambda_{2}^{2}}} .
$$

Ideas of the proof.

We show that if $Z_{n}(x)=\mathbf{E}\left\{\exp \left\{i x \mathcal{N}_{n}^{\circ}[\varphi]\right\}\right\}$, then for any $x \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} Z_{n}(x)=Z(x), \quad \lim _{n \rightarrow \infty} Z_{n}^{\prime}(x)=-x V_{G O E} Z(x)
$$

Ideas of the proof.

We show that if $Z_{n}(x)=\mathbf{E}\left\{\exp \left\{i x \mathcal{N}_{n}^{\circ}[\varphi]\right\}\right\}$, then for any $x \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} Z_{n}(x)=Z(x), \quad \lim _{n \rightarrow \infty} Z_{n}^{\prime}(x)=-x V_{G O E} Z(x)
$$

Proposition

Let $\xi=\left\{\xi_{\ell}\right\}_{\ell=1}^{p}$ be independent Gaussian random variables of zero mean, and $\Phi: \mathbb{R}^{p} \rightarrow \mathbb{C}$ be a differentiable function with polynomially bounded partial derivatives $\Phi_{\ell}^{\prime}, \ell=1, \ldots, p$. Then we have

$$
\mathbf{E}\left\{\xi_{\ell} \Phi(\xi)\right\}=\mathbf{E}\left\{\xi_{\ell}^{2}\right\} \mathbf{E}\left\{\Phi_{\ell}^{\prime}(\xi)\right\}, \ell=1, \ldots, p
$$

and

$$
\operatorname{Var}\{\Phi(\xi)\} \leq \sum_{\ell=1}^{p} \mathbf{E}\left\{\xi_{\ell}^{2}\right\} \mathbf{E}\left\{\left|\Phi_{\ell}^{\prime}(\xi)\right|^{2}\right\} .
$$

The first formula is a version of the integration by parts. The second is a version of the Poincaré inequality.

Ideas of the proof. CLT for Wigner Matrices, $\mu_{4}=3$.

Theorem (AL, Pastur'09). Let $M_{n}=n^{-1 / 2} W_{n}$ be a Wigner matrix:

- $W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, j \leq k$, are independent,
- $\mathbf{E}\left\{W_{j k}\right\}=0, \quad \mathbf{E}\left\{W_{j k}^{2}\right\}=\left(1+\delta_{j k}\right)$,
- the fifth absolute moments of matrix entries are uniformly bounded, the third and the fourth moments, $\mu_{3,4}=\mathbf{E}\left\{W_{j k}^{3,4}\right\}$, do not depend on j, k, n when $j \neq k$.
- $\mathbf{E}\left\{W_{j k}^{4}\right\}=3, j \neq k$.

Suppose also that

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}: \quad \int\left(1+|t|^{5}\right)|F[\varphi](t)| d t<\infty
$$

Then $\mathcal{N}_{n}^{\circ}[\varphi]$ converges in distribution to the Gaussian random variable with zero mean and variance $V_{G O E}[\varphi]$.

Ideas of the proof. An interpolation trick.

Proposition.(Khoruzhenko, Khorunzhy, Pastur, 1995)
If $\mathbf{E}\left\{|\xi|^{p+2}\right\}<\infty$ and $\Phi \in C^{p+1}$ with bounded partial derivatives, then

$$
\begin{gathered}
\mathbf{E}\{\xi \Phi(\xi)\}=\sum_{\ell=0}^{p} \frac{\kappa_{\ell+1}}{\ell!} \mathbf{E}\left\{\Phi^{(\ell)}(\xi)\right\}+\varepsilon_{p}, \\
\left|\varepsilon_{p}\right| \leq C_{p} \mathbf{E}\left\{|\xi|^{p+2}\right\} \sup _{t \in \mathbb{R}}\left|\Phi^{(p+1)}(t)\right| .
\end{gathered}
$$

An interpolation matrix: $M(s)=s^{1 / 2} M+(1-s)^{1 / 2} \widehat{M}, \quad 0 \leq s \leq 1$. Here M and \widehat{M} are independent Wigner and GOE matrices with equal moments up to the fourth order.

$$
\begin{aligned}
& \mathbf{E}\left\{e^{i \times \operatorname{Tr} \varphi(M)^{\circ}}\right\}-\mathbf{E}\left\{e^{i \times \operatorname{Tr} \varphi(\hat{M})^{\circ}}\right\}=\int_{0}^{1} \frac{\partial}{\partial s} \mathbf{E}\left\{e^{i x \operatorname{Tr} \varphi(M(s))^{\circ}}\right\} d s \\
& =\frac{i x}{2} \int_{0}^{1}\left\{\frac{1}{\sqrt{n s}} \sum_{j, k=1}^{n} \mathbf{E}\left\{\Phi(M(s)) W_{j k}\right\}-\frac{1}{\sqrt{n(1-s)}} \sum_{j, k=1}^{n} \mathbf{E}\left\{\Phi(M(s)) \widehat{W}_{j k}\right\}\right\} d s \\
& =O\left(n^{-1 / 2}\right) \text {. }
\end{aligned}
$$

Opole, Poland

Thank you!

