Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations

Oleg Morozov
AGH University of Science and Technology, Cracow, Poland

Talk at the
Ostrava Seminar on Mathematical Physics, University of Ostrava,

2 November 2017

Integrable differential equations

Integrable nonlinear partial differential equations:
Lax representations (zero-curvature representations, Wahlquist-Estabrook prolongation structures, integrable extensions, IST, differential coverings...):

- soliton solutions
- Bäcklund transformations
- nonlocal symmetries and nonlocal conservation laws
- recursion operators
- Darboux transformations
- ...

UNSOLVED PROBLEM: to find conditions of existence of a Lax representation for a given PDE.

Lax representations

A Lax representation for a differential equation \mathcal{E}

$$
F\left(x^{i}, u, u_{x^{i}}, u_{x^{i} x^{j}}, \ldots\right)=0, \quad i, j, k \in\{1, \ldots, n\}
$$

is defined by the over-determined system

$$
w_{a, x^{k}}=T_{a k}\left(x^{i}, u, u_{x^{i}}, u_{x^{i} x^{j}}, \ldots, w_{b}\right), \quad a, b \in \mathbb{N},
$$

whose compatibility conditions coincide with \mathcal{E}.
Geometrically: a flat connection on $\mathcal{E} \times \mathcal{W} \rightarrow \mathcal{E}$,

$$
D_{x^{k}} \mapsto \widetilde{D}_{x^{k}}=D_{x^{k}}+\sum_{a} T_{a k}\left(x^{i}, u, u_{x^{i}}, u_{x^{i} x^{j}}, \ldots, w_{b}\right) \frac{\partial}{\partial w_{a}}
$$

such that $\left[\widetilde{D}_{x^{i}}, \widetilde{D}_{x^{j}}\right]=0 \quad \Leftrightarrow \quad F\left(x^{i}, u, u_{x^{i}}, u_{x^{i} x^{j}}, \ldots\right)=0$,
or by the ideal of the Wahlquist-Estabrook forms

$$
\tau_{a}=d w_{a}-\sum_{k} T_{a k}\left(x^{i}, u, u_{x^{i}}, u_{x^{i} x^{j}}, \ldots, w_{b}\right) d x^{k}
$$

such that

$$
d \tau_{a} \equiv \sum_{b} \eta_{a b} \wedge \tau_{b} \quad \bmod \langle\text { contact forms on } \mathcal{E}\rangle
$$

Lax representations

Definitions, details, examples:

- H.D. Wahlquist, F.B. Estabrook, J. Math. Phys., 1975, Vol. 16, 1-7.
- I.S. Krasil'shchik, A.M. Vinogradov, Acta Appl. Math., 1984, Vol. 2, 79-86, Acta Appl. Math., 1989, Vol. 15, 161-209.
- Krasil'shchik I.S., Lychagin V.V., Vinogradov A.M. Geometry of jet spaces and nonlinear partial differential equations. N.Y.: Gordon and Breach, 1986
- ...

Exotic cohomology

Exotic (deformed, twisted, covariant, ...) cohomology: geometry of Poisson manifolds, Morse theory of multi-valued functionals, symplectic geometry, algebraic topology, theory of Lie algebras.

- A. Lichnerowicz, 1977,
- E. Witten 1982,
- M. Atiyah, R. Bott, 1984
- S.P. Novikov, 1986, 2002, 2005
- ...

Exotic cohomology of Lie algebras

\mathfrak{g} - Lie algebra over $\mathbb{R}, \rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ - its representation,

$$
\begin{aligned}
& C^{k}(\mathfrak{g}, V)=\operatorname{Hom}\left(\Lambda^{k}(\mathfrak{g}), V\right), \quad k \geq 1 \\
& d \theta\left(X_{1}, \ldots, X_{k+1}\right)=\sum_{q=1}^{k+1}(-1)^{q+1} \rho\left(X_{q}\right)\left(\theta\left(X_{1}, \ldots, \hat{X}_{q}, \ldots, X_{k+1}\right)\right) \\
& \quad+\sum_{1 \leq p<q \leq k+1}(-1)^{p+q} \theta\left(\left[X_{p}, X_{q}\right], X_{1}, \ldots, \hat{X}_{p}, \ldots, \hat{X}_{q}, \ldots, X_{k+1}\right)
\end{aligned}
$$

the Chevalley-Eilenberg differential complex

$$
\cdots \xrightarrow{d} C^{k}(\mathfrak{g}, V) \xrightarrow{d} C^{k+1}(\mathfrak{g}, V) \xrightarrow{d} \ldots
$$

Its cohomology

$$
H^{k}(\mathfrak{g}, V)=\frac{\operatorname{ker} d: C^{k}(\mathfrak{g}, V) \longrightarrow C^{k+1}(\mathfrak{g}, V)}{\operatorname{im} d: C^{k-1}(\mathfrak{g}, V) \longrightarrow C^{k}(\mathfrak{g}, V)}
$$

$\rho_{0}: X \mapsto 0 \Rightarrow$ cohomology with trivial coefficients $H^{*}(\mathfrak{g})$.

Exotic cohomology of Lie algebras

Suppose $H^{1}(\mathfrak{g}) \neq\{0\}$, take ω such that $[\omega] \in H^{1}(\mathfrak{g})$. For $\lambda \in \mathbb{R}$ define

$$
d_{\lambda \omega} \theta=d \theta+\lambda \omega \wedge \theta
$$

From $d \omega=0$ it follows that $d_{\lambda \omega}^{2}=0$, therefore the differential complex

$$
\ldots \xrightarrow{d_{\lambda \omega}} C^{k}(\mathfrak{g}, \mathbb{R}) \xrightarrow{d_{\lambda \omega}} C^{k+1}(\mathfrak{g}, \mathbb{R}) \xrightarrow{d_{\lambda \omega}} \ldots
$$

is defined. Its cohomology groups $H_{\lambda \omega}^{*}(\mathfrak{g})$ are referred to as exotic cohomology groups of \mathfrak{g}.

REMARK. $H_{\lambda \omega}^{*}(\mathfrak{g})$ coincide with the cohomology of \mathfrak{g} with coefficients in the one-dimensional representation $\rho_{\lambda \omega}: \mathfrak{g} \rightarrow \mathbb{R}$, $\rho_{\lambda \omega}: X \mapsto \lambda \omega(X)$.

Exotic cohomology of Lie algebras

EXAMPLE. Consider a Lie algebra \mathfrak{h} with generators X_{0}, \ldots, X_{3} and non-zero commutators

$$
\begin{aligned}
& {\left[X_{0}, X_{1}\right]=-X_{1},} \\
& {\left[X_{0}, X_{2}\right]=-2 X_{2},} \\
& {\left[X_{0}, X_{3}\right]=-3 X_{3},} \\
& {\left[X_{1}, X_{2}\right]=-X_{3} .}
\end{aligned}
$$

For the dual 1-forms (Maurer-Cartan forms) ω_{i} such that $\omega_{i}\left(X_{j}\right)=\delta_{i j}$ the structure equations hold:

$$
\begin{aligned}
& d \omega_{0}=0 \\
& d \omega_{1}=\omega_{0} \wedge \omega_{1}, \\
& d \omega_{2}=2 \omega_{0} \wedge \omega_{2}, \\
& d \omega_{3}=3 \omega_{0} \wedge \omega_{3}+\omega_{1} \wedge \omega_{2} .
\end{aligned}
$$

$H^{1}(\mathfrak{h})=\mathbb{R}\left[\omega_{0}\right]=\mathbb{R} \omega_{0}$.
$H^{2}(\mathfrak{h})=\{0\} \Rightarrow \mathfrak{h}$ has no central extensions.

Exotic cohomology of Lie algebras

We have

$$
H_{\lambda \omega_{0}}^{2}(\mathfrak{h})= \begin{cases}\mathbb{R}\left[\omega_{1} \wedge \omega_{3}\right], & \lambda=-4, \\ \mathbb{R}\left[\omega_{2} \wedge \omega_{3}\right], & \lambda=-5, \\ \{0\}, & \lambda \notin\{-5,-4\}\end{cases}
$$

From

$$
d_{-4 \omega_{0}}\left(\omega_{1} \wedge \omega_{3}\right)=0
$$

it follows that equation

$$
d_{-4 \omega_{0}} \omega_{4}=\omega_{1} \wedge \omega_{3}
$$

with unknown 1-form ω_{4} is compatible with the structure equations of $\mathfrak{h} \Rightarrow$ two additional structure equations

$$
\begin{aligned}
& d \omega_{4}=4 \omega_{0} \wedge \omega_{4}+\omega_{1} \wedge \omega_{3}, \\
& d \omega_{5}=5 \omega_{0} \wedge \omega_{5}+\omega_{2} \wedge \omega_{3}
\end{aligned}
$$

\Rightarrow two-dimensional extension $\tilde{\mathfrak{h}}=\mathfrak{h} \oplus\left\langle X_{4}, X_{5}\right\rangle$,

$$
\begin{array}{ll}
{\left[X_{0}, X_{4}\right]=-4 X_{4},} & {\left[X_{1}, X_{3}\right]=-X_{4}} \\
{\left[X_{0}, X_{5}\right]=-5 X_{5},} & {\left[X_{2}, X_{3}\right]=-X_{5}}
\end{array}
$$

Cartan's method of equivalence $\&$ symmetries of DEs

The main idea: to apply the above trick to the structure equations of the contact symmetry pseudo-group of the PDE under the study.
For a given PDE \mathcal{E} the Maurer-Cartan forms and the structure equations of the symmetry pseudo-gropu $\operatorname{Sym}(\mathcal{E})$ can be found algorithmically (using derivation and operations of linear algebra) by means of É. Cartan's method of equivalence.

- É. Cartan. (Euvres Complètes. Paris: Gauthier - Villars, 1953
- P.J. Olver. Equivalence, invariants, and symmetry. Cambridge: CUP, 1995
- M. Fels, P.J. Olver. Acta Appl. Math., 1998, Vol. 51, 161-213
- O.M. J. Phys. A: Math. Gen., 2002, Vol. 35, 2965-2977
- O.M. J. Math. Sci., 2006, Vol. 135, 2680-2694

Lax representations \& exotic cohomology

EXAMPLE. The potential Khokhlov-Zabolotskaya equation

$$
\begin{equation*}
u_{y y}=u_{t x}+u_{x} u_{x x} \tag{E}
\end{equation*}
$$

The structure equations of $\operatorname{Sym}(\mathcal{E})$:
$d \alpha=0$,
$d \Theta_{0}=\quad \nabla \Theta_{0} \wedge \Theta_{0}$,
$d \Theta_{1}=\alpha \wedge \Theta_{1}+\nabla \Theta_{1} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{0} \wedge \Theta_{1}$,
$d \Theta_{2}=2 \alpha \wedge \Theta_{2}+\nabla \Theta_{2} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{1} \wedge \Theta_{1}+\frac{1}{3} \nabla \Theta_{0} \wedge \Theta_{2}$,
$d \Theta_{3}=3 \alpha \wedge \Theta_{3}+\nabla \Theta_{3} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{2} \wedge \Theta_{1}+\frac{1}{3} \nabla \Theta_{1} \wedge \Theta_{2}$,
$d \Theta_{4}=4 \alpha \wedge \Theta_{4}+\nabla \Theta_{4} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{3} \wedge \Theta_{1}+\frac{1}{3} \nabla \Theta_{2} \wedge \Theta_{2}-\frac{1}{3} \nabla \Theta_{0} \wedge \Theta_{4}$,
where $\quad \Theta_{m}=\sum_{n=0}^{\infty} \frac{h^{n}}{n!} \theta_{m, n}, \quad 0 \leq m \leq 4$,

$$
\nabla \Theta_{m}=\frac{\partial}{\partial h} \Theta_{m}=\sum_{n=0}^{\infty} \frac{h^{n}}{n!} \theta_{m, n+1}, \quad d h=0, \quad \theta_{3,0}=0
$$

Lax representations \& exotic cohomology

The Maurer-Cartan forms:
$\alpha=p^{-1} d p$,
$\theta_{0,0}=q d t$,
$\theta_{1,0}=p q^{2 / 3}\left(d y+a_{1} d t\right)$,
$\theta_{2,0}=p^{2} q^{1 / 3}\left(d x+\frac{2}{3} a_{1} d y+a_{2} d t\right)$,
$\theta_{4,0}=p^{4} q^{-1 / 3}\left(d u-u_{t} d t-u_{x} d x-u_{y} d y\right)$.
REMARK: All the other Maurer-Cartan forms can be found inductively by integration:

$$
\begin{aligned}
& d \theta_{0,0}=\theta_{0,1} \wedge \theta_{0,0} \Rightarrow d q \wedge d t=\theta_{0,1} \wedge q d t \Rightarrow \theta_{0,1}=\frac{d q}{q}+b_{1} d t \\
& d \theta_{0,1}=\theta_{0,2} \wedge \theta_{0,0} \Rightarrow \theta_{0,2}=d b_{1}+b_{2} d t \\
& d \theta_{2,0}=\theta_{0,3} \wedge \theta_{0,0}-\theta_{0,1} \wedge \theta_{0,2} \Rightarrow \theta_{0,3}=\ldots
\end{aligned}
$$

Lax representations \& exotic cohomology

THEOREM.

$$
\begin{aligned}
& H^{1}(\operatorname{Sym}(\mathcal{E}))=\mathbb{R} \alpha, \\
& H_{\lambda \alpha}^{2}(\operatorname{Sym}(\mathcal{E}))= \begin{cases}\mathbb{R}[\Omega], & \lambda=-3, \\
\{0\}, & \lambda \neq-3,\end{cases}
\end{aligned}
$$

where

$$
\Omega=\theta_{3,1} \wedge \theta_{0,0}+\frac{2}{3} \theta_{2,1} \wedge \theta_{1,0}+\frac{1}{3} \theta_{1,1} \wedge \theta_{2,0}
$$

COROLLARY. Equation

$$
d \omega=3 \alpha \wedge \omega+\Omega
$$

is compatible with the structure equations of $\operatorname{Sym}(\mathcal{E})$.
REMARK. Denote $\omega=\theta_{3,0} \quad \Rightarrow \quad \Theta_{3}=\sum_{j=0}^{\infty} \frac{h^{j}}{j!} \theta_{3, j}$.

Lax representations \& exotic cohomology

Integrate

$$
d \theta_{3,0}=3 \alpha \wedge \theta_{3,0}+\theta_{3,1} \wedge \theta_{0,0}+\frac{2}{3} \theta_{2,1} \wedge \theta_{1,0}+\frac{1}{3} \theta_{1,1} \wedge \theta_{2,0}
$$

\Rightarrow
$\theta_{3,0}=p^{3}\left(d v-v_{x} d x-\left(\frac{1}{3} v_{x}^{3}-u_{x} v_{x}-u_{y}\right) d t-\left(\frac{1}{2} v_{x}^{2}-u_{x}\right) d y\right)$
the Wahlquist-Estabrook form of the Lax representation

$$
\left\{\begin{array}{l}
v_{t}=\frac{1}{3} v_{x}^{3}-u_{x} v_{x}-u_{y} \\
v_{y}=\frac{1}{2} v_{x}^{2}-u_{x}
\end{array}\right.
$$

for the potential KhZ equation (G.M. Kuz'mina, 1967; J. Gibbons, 1988; I.M. Krichever, 1988).

Lax representations \& exotic cohomology

REMARK. The structure equations for $\operatorname{Sym}(\mathcal{E})$:
$d \alpha=0$,
$d \Theta_{0}=\quad \nabla \Theta_{0} \wedge \Theta_{0}$,
$d \Theta_{1}=\alpha \wedge \Theta_{1}+\nabla \Theta_{1} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{0} \wedge \Theta_{1}$,
$d \Theta_{2}=2 \alpha \wedge \Theta_{2}+\nabla \Theta_{2} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{1} \wedge \Theta_{1}+\frac{1}{3} \nabla \Theta_{0} \wedge \Theta_{2}$,
$d \Theta_{3}=3 \alpha \wedge \Theta_{3}+\nabla \Theta_{3} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{2} \wedge \Theta_{1}+\frac{1}{3} \nabla \Theta_{1} \wedge \Theta_{2}$,
$d \Theta_{4}=4 \alpha \wedge \Theta_{4}+\nabla \Theta_{4} \wedge \Theta_{0}+\frac{2}{3} \nabla \Theta_{3} \wedge \Theta_{1}+\frac{1}{3} \nabla \Theta_{2} \wedge \Theta_{2}-\frac{1}{3} \nabla \Theta_{0} \wedge \Theta_{4}$,
can be written in the form
$d \alpha=0$,
$d \Theta_{k}=k \alpha \wedge \Theta_{k}+\sum_{m=0}^{k}\left(1-\frac{1}{3} m\right) \nabla \Theta_{k-m} \wedge \Theta_{m}, \quad 0 \leq k \leq 4$.

Lax representations \& exotic cohomology

DEFINITION. For $n \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$ denote by $\mathfrak{G}(n, \varepsilon)$ the Lie algebra with the structure equations
$d \alpha=0$,
$d \Theta_{k}=k \alpha \wedge \Theta_{k}+\sum_{m=0}^{k}(1+\varepsilon m) \nabla \Theta_{k-m} \wedge \Theta_{m}, \quad 0 \leq k \leq n$,
REMARK. $\mathfrak{G}(n, \varepsilon)=\left(\mathbb{R}_{n+1}[s] \otimes C^{\omega}(\mathbb{R})\right) \rtimes \mathbb{R} Y$, where

- $\mathbb{R}_{n+1}[s]=\mathbb{R}[s] /\left\langle s^{n+1}=0\right\rangle ;$
- $C^{\omega}(\mathbb{R})$ is the space of real -analytic functions of t;
- the Lie bracket on $\mathbb{R}_{n+1}[s] \otimes C^{\omega}(\mathbb{R})$ is

$$
[f, g]_{\varepsilon}=f g_{t}-g f_{t}+\varepsilon s\left(f_{s} g_{t}-g_{s} f_{t}\right)
$$

- $Y=s \partial_{s}$.

REMARK. $\mathfrak{G}(n, \varepsilon)$ is a deformation of $\mathfrak{G}(n, 0)$.

Lax representations \& exotic cohomology

OBSERVATION. Suppose $\varepsilon=-\frac{1}{r}$ with $r \in \mathbb{N}$ and $n>r$. Then the 1 -form $\theta_{r, 0}$ has only two entries in the structure equations

$$
\begin{align*}
& d \alpha=0, \\
& d \Theta_{k}=k \alpha \wedge \Theta_{k}+\sum_{m=0}^{k}\left(1-\frac{m}{r}\right) \nabla \Theta_{k-m} \wedge \Theta_{m} \tag{*}
\end{align*}
$$

of $\mathfrak{G}\left(n,-\frac{1}{r}\right)$, namely, the first equation from the series of equations for Θ_{r} is of the form

$$
\begin{equation*}
d \theta_{r, 0}=r \alpha \wedge \theta_{r, 0}+\Psi_{r}, \tag{**}
\end{equation*}
$$

where neither Ψ_{r} nor the other equations in ($*$) contain $\theta_{r, 0}$. CONCLUSION. Remove (**) from (*). Denote by $\tilde{\mathfrak{G}}\left(n,-\frac{1}{r}\right)$ the Lie algebra with the obtained structure equations. Then

$$
H_{-r \alpha}^{2}\left(\tilde{\mathfrak{G}}\left(n,-\frac{1}{r}\right)\right)=\mathbb{R}\left[\Psi_{r}\right],
$$

and $\mathfrak{G}\left(n,-\frac{1}{r}\right)$ is an extension of $\tilde{\mathfrak{G}}\left(n,-\frac{1}{r}\right)$ associated to $(* *)$.

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{G}\left(5,-\frac{1}{4}\right)$ - integrate the structure equations:
$\theta_{0,0}=\frac{1}{4} q^{4} d t, \quad \theta_{1,0}=\frac{1}{3} p q^{3}(d y+a d t)$,
$\theta_{2,0}=\frac{1}{2} p^{2} q^{2}\left(d x+2 a d y+\left(3 a^{2}-2 u_{z}\right) d t\right)$,
$\theta_{3,0}=p^{3} q\left(d z+a d x+\left(a^{2}-u_{z}\right) d y+\left(a^{3}-2 a u_{z}-u_{x}\right) d t\right)$,
$\theta_{5,0}=p^{5} q^{-1}\left(d u-u_{t} d t-u_{x} d x-u_{y} d y-u_{z} d z\right)$.
Then integrate the equation for $\theta_{4,0}$ and rename $a=v_{z}$:

$$
\begin{aligned}
\theta_{4,0}=-p^{4} & \left(d v-\left(\frac{1}{4} v_{z}^{4}-u_{z} v_{z}^{2}-u_{x} v_{z}-u_{y}+\frac{1}{2} u_{z}^{2}\right) d t\right. \\
& \left.-\left(\frac{1}{2} v_{z}^{2}-u_{z}\right) d x-\left(\frac{1}{3} v_{z}^{3}-u_{z} v_{z}-u_{x}\right) d y-v_{z} d z\right)
\end{aligned}
$$

Lax representations \& exotic cohomology

$\theta_{4,0}=0 \quad \Rightarrow$

$$
\left\{\begin{aligned}
v_{t} & =\frac{1}{4} v_{z}^{4}-u_{z} v_{z}^{2}-u_{x} v_{z}-u_{y}+\frac{1}{2} u_{z}^{2} \\
v_{y} & =\frac{1}{3} v_{z}^{3}-u_{z} v_{z}-u_{x} \\
v_{x} & =\frac{1}{2} v_{z}^{2}-u_{z}
\end{aligned}\right.
$$

This is the Lax representation for the second system from the dKP hierarchy

$$
\left\{\begin{array}{l}
u_{x x}=u_{y z}+u_{z} u_{z z} \\
u_{x y}=u_{t z}+u_{z} u_{x z}+u_{x} u_{z z} \\
u_{y y}=u_{t x}+u_{x} u_{x z}+u_{z}^{2} u_{z z}
\end{array}\right.
$$

- V.E. Zakharov, 1980
- P.D. Lax, C.D. Levermore, 1983
- Y. Kodama, 1988
- B.A. Kupershmidt, 1990
- . . .

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{G}\left(6,-\frac{1}{5}\right)$

$$
\begin{aligned}
& \left\{\begin{aligned}
v_{t} & =\frac{1}{5} v_{s}^{5}-u_{s} v_{s}^{3}-u_{z} v_{s}^{2}+\left(u_{s}^{2}-u_{x}\right) v_{s}+u_{z} u_{s}-u_{y}, \\
v_{y} & =\frac{1}{4} v_{s}^{4}-u_{s} v_{s}^{2}-u_{z} v_{s}-u_{x}+\frac{1}{2} u_{s}^{2}, \\
v_{x} & =\frac{1}{3} v_{s}^{3}-u_{s} v_{s}-u_{z}, \\
v_{z} & =\frac{1}{2} v_{s}^{2}-u_{s}
\end{aligned}\right. \\
& \Rightarrow \\
& \left\{\begin{aligned}
u_{z z} & =u_{x s}+u_{s} u_{s s}, \\
u_{x z} & =u_{y s}+u_{s} u_{z s}+u_{z} u_{s s}, \\
u_{y z} & =u_{t s}+u_{s} u_{x s}+u_{z} u_{z s}+u_{x} u_{s s}, \\
u_{x x} & =u_{y z}+u_{z} u_{z s}+u_{s}^{2} u_{s s}, \\
u_{x y} & =u_{t z}+u_{z} u_{x s}+\left(u_{x}+u_{s}^{2}\right) u_{z s}+2 u_{z} u_{s} u_{s s}, \\
u_{y y} & =u_{t x}+u_{x} u_{x s}+2 u_{z} u_{s} u_{z s}+\left(u_{z}^{2}+u_{s}^{3}\right) u_{s s} .
\end{aligned}\right.
\end{aligned}
$$

Lax representations \& exotic cohomology

$\mathfrak{G}\left(3,-\frac{1}{2}\right)$??
For $n>r$ consider the Lie algebra $\mathfrak{H}(n, r)$ with the structure equations
$d \alpha=0$,
$d \beta=r \alpha \wedge \beta$,
$d \Theta_{k^{\prime}}=k^{\prime} \alpha \wedge \Theta_{k^{\prime}}+\sum_{m=0}^{k^{\prime}}\left(1-\frac{m}{r}\right) \nabla \Theta_{k^{\prime}-m} \wedge \Theta_{m}$,
$d \Theta_{k^{\prime \prime}}=k^{\prime \prime} \alpha \wedge \Theta_{k^{\prime \prime}}+\sum_{m=0}^{k^{\prime \prime}}\left(1-\frac{m}{r}\right) \nabla \Theta_{k^{\prime \prime}-m} \wedge \Theta_{m}+\beta \wedge \nabla \Theta_{k^{\prime \prime}-r}$,
$k^{\prime} \in\{0, \ldots, r-1\}, k^{\prime \prime} \in\{r, \ldots, n\}$.
REMARK: $\mathfrak{H}(n, r)$ is the right extension of $\mathfrak{G}(n,-1 / r)$ by the outer derivative Z such that $Z: s^{k} t^{j} \mapsto j s^{k+r} t^{j-1}$ for $k+r \leq n$, $Z: s^{k} t^{j} \mapsto 0$ for $k+r>n$, and $Z \circ Y-Y \circ Z=-r Y$.

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{H}(3,2)$:

$$
H_{\lambda \alpha}^{2}(\mathfrak{H}(3,2))= \begin{cases}\mathbb{R}[\alpha \wedge \beta], & \lambda=-2 \\ \{0\}, & \lambda \neq-2 .\end{cases}
$$

$d \tilde{\theta}_{2,0}=2 \alpha \wedge \tilde{\theta}_{2,0}+\theta_{2,1} \wedge \theta_{0,0}+\frac{1}{2} \theta_{1,1} \wedge \theta_{1,0}+\beta \wedge \theta_{0,1}+2 \alpha \wedge \beta$
Integrate \Rightarrow the Lax representation

$$
\left\{\begin{array}{l}
v_{t}=\frac{1}{2}\left(\mathrm{e}^{v_{x}}-u_{x}\right)^{2}-u_{y} \\
v_{y}=\mathrm{e}^{v_{x}}-u_{x}
\end{array}\right.
$$

for the equation

$$
u_{y y}=u_{t x}+u_{x} u_{x y}
$$

- V.S. Gerdjikov, 1988,
- M. Błaszak, 2002,
- M.V. Pavlov, 2003,
- E.V. Ferapontov, A. Moro, V.V. Sokolov, 2008.

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{H}(4,3)$:

$$
\begin{gathered}
H_{\lambda \alpha}^{2}(\mathfrak{H}(4,3))= \begin{cases}\mathbb{R}[\alpha \wedge \beta], & \lambda=-3, \\
\{0\}, & \lambda \neq-3 .\end{cases} \\
d \tilde{\theta}_{3,0}=3 \alpha \wedge \tilde{\theta}_{3,0}+\theta_{3,1} \wedge \theta_{0,0}+\frac{2}{3} \theta_{2,1} \wedge \theta_{1,0}+\frac{1}{3} \theta_{1,1} \wedge \theta_{2,0} \\
+\beta \wedge \theta_{0,1}+3 \alpha \wedge \beta
\end{gathered}
$$

Integrate \Rightarrow the Lax representation

$$
\left\{\begin{aligned}
v_{t} & =\frac{1}{3}\left(\mathrm{e}^{v_{x}}-u_{x}\right)^{3}-u_{z}\left(\mathrm{e}^{v_{x}}-u_{x}\right)-u_{y} \\
v_{y} & =\frac{1}{2}\left(\mathrm{e}^{v_{x}}-u_{x}\right)^{2}-u_{z} \\
v_{z} & =\mathrm{e}^{v_{x}}-u_{x}
\end{aligned}\right.
$$

for the system

$$
\left\{\begin{array}{l}
u_{y y}=u_{t z}+u_{z} u_{z z} \\
u_{z z}=u_{x y}+u_{x} u_{x z} \\
u_{y z}=u_{t x}+u_{x} u_{x y}+u_{z} u_{x z}
\end{array}\right.
$$

Lax representations \& exotic cohomology

THEOREM: Let $n \geq 2$, then $H_{\lambda \alpha}^{2}(\mathfrak{G}(n, \varepsilon)) \neq\{0\}$ \qquad
$\varepsilon=-\frac{2}{r}$ and $\lambda=-r$, where $r \in\{2, \ldots, n\}$. In this case

$$
H_{-r \alpha}^{2}\left(\mathfrak{G}\left(n,-\frac{2}{r}\right)\right)=\mathbb{R}\left[\Phi_{r}\right],
$$

where

$$
\Phi_{r}=\sum_{m=0}^{[r / 2]}(r-2 m) \theta_{r-m, 0} \wedge \theta_{m, 0}
$$

COROLLARY. Equation

$$
d \omega=r \alpha \wedge \omega+\Phi_{r} .
$$

is compatible with the structure equations of $\mathfrak{G}\left(n,-\frac{2}{r}\right)$.

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{G}\left(3,-\frac{2}{3}\right)$:
the additional equation

$$
d \omega=3 \alpha \wedge \omega+3 \theta_{0,0} \wedge \theta_{3,0}+\theta_{1,0} \wedge \theta_{2,0}
$$

integrate \Rightarrow the Lax representation

$$
\left\{\begin{array}{l}
v_{t}=u-\left(u_{x}^{2}+u_{y}\right) v_{x} \\
v_{y}=x-u_{x} v_{x}
\end{array}\right.
$$

for

$$
u_{y y}=u_{t x}+\left(u_{y}-u_{x}^{2}\right) u_{x x}-3 u_{x} u_{x y}
$$

- O.M., J. Geom. Phys. 59 (2009), 1461-1475

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{G}\left(4,-\frac{1}{2}\right)$?? $\quad \mathfrak{H}(4,2)$:
the additional equation

$$
\begin{gathered}
\Rightarrow \quad d \omega=4 \alpha \wedge \omega+\theta_{1,0} \wedge \theta_{3,0}+2 \theta_{0,0} \wedge \theta_{4,0}+\beta \wedge \theta_{2,0} \\
\Rightarrow \\
\Rightarrow \quad\left\{\begin{array}{l}
v_{t}=\left(u_{y}-u_{x} u_{z}-\frac{1}{2} u_{z}^{3}\right) v_{z}-u, \\
v_{y}=\left(u_{x}+\frac{1}{2} u_{z}\right) v_{z}+z
\end{array}\right. \\
\quad \begin{aligned}
u_{y y}= & u_{t x}+u_{z} u_{x y}-u_{y} u_{x z}+u_{z} u_{t z}+2\left(u_{x}+u_{z}^{2}\right) u_{y z} \\
& -\left(u_{x}^{2}+u_{x} u_{z}^{2}+u_{y} u_{z}+\frac{1}{4} u_{z}^{4}\right) u_{z z}
\end{aligned}
\end{gathered}
$$

Lax representations \& exotic cohomology

EXAMPLE. $\mathfrak{G}\left(5,-\frac{2}{5}\right)$:
Integrate \Rightarrow the Lax representation

$$
\left\{\begin{aligned}
v_{t}= & 5\left(2 u-\left(u_{x}-\frac{4}{3} u_{z} u_{s}-\frac{2}{9} u_{s}^{3}\right) v_{z}\right. \\
& \left.-\left(\frac{1}{3} u_{y}-\frac{11}{9} u_{z} u_{s}^{2}+u_{x} u_{s}-u_{z}^{2}-\frac{13}{81} u_{s}^{4}\right) v_{s}\right) \\
v_{x}= & 2 z+\frac{1}{3} u_{s} v_{z}+\left(\frac{2}{9} u_{s}^{2}+u_{z}\right) v_{s} \\
v_{y}= & 6 s+\left(3 u_{z}+\frac{2}{3} u_{s}^{2}\right) v_{z}+\left(3\left(u_{z} u_{s}-u_{x}\right)+\frac{13}{27} u_{s}^{3}\right) v_{s}
\end{aligned}\right.
$$

for ...

Lax representations \& exotic cohomology

... the system

$$
\left\{\begin{aligned}
& u_{x z}= u_{y s}-u_{s} u_{x s}+u_{s} u_{z z}+\frac{1}{16}\left(12 u_{x}+11 u_{s}^{3}+12 u_{z} u_{s}\right) u_{s s} \\
&+2\left(u_{s}^{2}+u_{z}\right) u_{z s}, \\
& u_{x x}= \frac{3}{4}\left(u_{s}^{2}+8 u_{z}\right) u_{x s}+\frac{1}{2}\left(11 u_{s}^{3}+18 u_{z} u_{s}-6 u_{x}\right) u_{z s} \\
&-4 u_{y z}+\left(4 u_{z}+3 u_{s}^{2}\right) u_{z z}+\frac{9}{8}\left(2 u_{z}+u_{s}^{2}\right)\left(u_{s}^{2}-4 u_{z}\right) u_{s s}, \\
& u_{t z}= 10 u_{z} u_{y s}-2 u_{x y}+\frac{1}{8}\left(u_{s}^{3}-12 u_{x}+4 u_{z} u_{s}\right) u_{x s} \\
&+\frac{1}{8}\left(63 u_{s}^{4}+16 u_{z}^{2}-48 u_{y}+172 u_{z} u_{s}^{2}-36 u_{x} u_{s}\right) u_{z s} \\
&+\frac{1}{8}\left(18 u_{s}^{5}-84 u_{z}^{2} u_{s}+60 u_{x} u_{z}+19 u_{z} u_{s}^{3}\right) u_{s s} \\
&+2\left(2 u_{s}^{3}-u_{x}+5 u_{z} u_{s}\right) u_{z z}, \\
&= 8 u_{y y}+\frac{1}{2}\left(21 u_{z} u_{s}^{2}+24 u_{z}^{2}-5 u_{x} u_{s}+4 u_{s}^{4}-12 u_{y}\right) u_{x s} \\
&+\frac{1}{8}\left(7 u_{s}^{5}-144 u_{z}^{2} u_{s}-32 u_{x} u_{z}-32 u_{z} u_{s}^{3}-32 u_{x} u_{s}^{2}\right) u_{z s} \\
&-\frac{1}{32}\left(372 u_{z} u_{s}^{4}+48 u_{x} u_{s} u_{z}+44 u_{x} u_{s}^{3}+576 u_{z}^{3}+1008 u_{z}^{2} u_{s}^{2}\right. \\
&\left.-96 u_{x}^{2}+31 u_{s}^{6}\right) u_{s s}+\left(u_{s}^{4}-2 u_{x} u_{s}-8 u_{z}^{2}\right) u_{z z}+10 u_{x} u_{y s} \\
& u_{t x} \\
&= 8 u_{y z}+\frac{1}{2}\left(u_{s}^{2}+4 u_{z}\right) u_{x s}+10 u_{s} u_{y s}-\left(22 u_{z} u_{s}+9 u_{s}^{3}-4 u_{x}\right) u_{z s} \\
&-4\left(2 u_{z}+u_{s}^{2}\right) u_{z z}-\frac{1}{2}\left(21 u_{z} u_{s}^{2}-6 u_{x} u_{s}+8 u_{s}^{4}+12 u_{y}\right) u_{s s}
\end{aligned}\right.
$$

Conclusion \& outlook

- The approach based on the exotic cohomology of symmetry pseudo-groups is successful in both describing known Lax representations and deriving new ones.
- It gives the solution to the problem of existence of a Lax representation in internal terms of the PDE and allows one to eliminate apriori assumptions about the possible form of the Lax representation.
- The approach is universal and can be used to analyze a lot of equations or Lie algebras with nontrivial second exotic cohomology.

Conclusion \& outlook

Generalizations:

- to describe right extensions of $\mathfrak{G}(n, \varepsilon)$ (to compute $\left.H^{1}(\mathfrak{G}(n, \varepsilon), \mathfrak{G}(n, \varepsilon))\right)$;
- to replace vector fields on \mathbb{R} by vector fields on \mathbb{R}^{n} in the constructions above. For example, Hamiltonian vector fields on $\mathbb{R}^{2} \Rightarrow$ the heavenly equations and related equations (B. Kruglikov, O.M., 2012, 2015);
- $\alpha^{1}, \ldots, \alpha^{m}$ instead of α, $d \alpha^{i}=\frac{1}{2} c_{j k}^{i} \alpha^{j} \wedge \alpha^{k}$ instead of $d \alpha=0$.
- ...

