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Heaviside’s aphorism “Mathematics is an experimental science. . . ”

Mathematics is an experimental science, and definitions do not come first, but later on.

Oliver Heaviside
On operators in physical mathematics, part II,
Proceedings of the Royal Society of London 54 (1893), p. 121.

http://homepage.math.uiowa.edu/∼jorgen/heavisidequotesource.html

There is nothing by Heaviside in “Bartlett’s Familiar Quotations,” but the first phrase
of Heaviside’s aphorism, “Mathematics is an experimental science” is widely quoted. A
web search can find it in dozens of places, but only a few of the ones found by Google,
for example, continues the quotation to the end of the sentence!

In the preceding, I have purposely avoided giving any definition of ‘equiva-
lence.’ Believing in example rather than precept, I have preferred to let the
formulae, and the method of obtaining them, speak for themselves. Besides
that, I could not give a satisfactory definition which I could feel sure would
not require subsequent revision. Mathematics is an experimental science,
and definitions do not come first, but later on. They make themselves,
when the nature of the subject has developed itself. It would be absurd to lay
down the law beforehand. Perhaps, therefore, the best thing I can do is to de-
scribe briefly several successive stages of knowledge related to equivalent and
divergent series, being approximately representative of personal experience.
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Systems of differential equations

A system of differential equations L: L(x , u(p)) = 0

L = (L1, . . . , Lk)
x = (x1, . . . , xn) are the independent variables
u = (u1, . . . , um) are the dependent variables
u(p) is the set of all derivatives of u of order 6 p w.r.t. x

Within the local approach the system L is treated as a system of algebraic equations in
the jet space J(p) of the order p.

ua
α =

∂|α|ua

∂xα1
1 . . . ∂xαn

n
,

α = (α1, . . . , αn),

|α| = α1 + · · ·+ αn.

L = {(x , u(p)) ∈ J(p) | L(x , u(p)) = 0}

Example. L: ut = uxx

J(2) ∼ {(t, x , u, ut , ux , utt , utx , uxx)}
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Point transformations

A point transformation in a space is an invertible smooth mapping of an open domain
in this space into the same domain.

A point transformation in the space of (x , u):

g :
x̃ = X (x , u),

ũ = U(x , u),

∣∣∣∣∂(X ,U)

∂(x , u)

∣∣∣∣ 6= 0 −→ pr(r)g :
x̃ = X (x , u), ũ = U(x , u),

ũα = Uα(x , u(r′)), r ′ = |α| ≤ r .

Example. L: ut = uxx

t̃ = t + δ0, x̃ = x + δ1, ũ = u, δ0, δ1 = const ⇒ ũt̃ = ut , ũx̃ x̃ = uxx ,

⇒ ut = uxx → ũt̃ = ũx̃ x̃

t̃ = t, x̃ = x + δ1t, ũ = u, δ1 = const ⇒ ũt̃ = ut − δ1ux , ũx̃ x̃ = uxx ,

⇒ ut = uxx → ũt̃ = ũx̃ x̃ − δ1ũx̃

The most general solution obtainable from a given solution u = f (t, x) by group trans-
formations is of the form

ũ =
ε3√

1 + 4ε6t
e
−
ε5x+ε6x

2−ε2
5t

1+4ε6t f

(
ε2

4t

1 + 4ε6t
− ε2,

ε4(x − 2ε5t)

1 + 4ε6t
− ε1

)
+ v(t, x), (1)

where ε1, . . . , ε6 are arbitrary constants, ε6 6= 0 and v(t, x) is an arbitrary solution to
the linear heat equation.
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Classes of differential equations

The central notion underlying the theory of group classification is an appropriate defini-
tion of a class of (systems of) differential equations.

Ingredients:

a system of differential equations Lθ: L(x , u(p), θ(q)(x , u(p))) = 0
parameterized arbitrary elements θ(x , u(p)) = (θ1(x , u(p)), . . . , θ

k(x , u(p)))
x = (x1, . . . , xn) are the independent variables
u = (u1, . . . , um) are the dependent variables
u(p) is the set of all derivatives of u of order 6 p w.r.t. x
θ(q) is the set of derivatives of θ of order 6 q w.r.t. x and u(p)

S = {θ | S(x , u(p), θ(q′)(x , u(p))) = 0, Σ(x , u(p), θ(q′)(x , u(p))) 6= 0 (> 0, < 0, . . . )}
both x and u(p) play the role of independent variables

The inequalities might be essential to guarantee that each element of the class has some
common properties with all other elements of the same class.

Definition

The set {Lθ | θ ∈ S} denoted by L|S is called a class of differential equations defined
by the parameterized form of systems Lθ and the set S of the arbitrary elements θ.

Example. Lθ: ut = (D(u)ux)x , θ = D [Ovsiannikov, 1959]

S : Dt = Dx = Dut = Dux = Dutt = Dutx = Duxx = 0, D 6= 0
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The example: precise definition of the class

Parameterized representation of equations:

W : utt = f (x , ux)uxx + g(x , ux)

with

two independent variables t and x
one dependent variable u
the related jet space is of second order, (t, x , u, ut , ux , utt , utx , uxx)
two arbitrary elements θ = (f , g)

The auxiliary system for θ:

f = f (x , ux), g = g(x , ux) ∼ ft = fu = fut = futt = futx = fuxx = 0,
gt = gu = gut = gutt = gutx = guxx = 0

“wave equations” ∼ f 6= 0

The equations with f = 0 completely differs from the equations with f 6= 0!

“nonlinear equations” ∼ (fux , guxux ) 6= (0, 0)

Nonlinear and linear equations of this form are not mixed by point
transformations and have quite different Lie symmetry properties. Moreover,
linear wave equations of this form were already well investigated within the
framework of classical symmetry analysis.
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Classes considered by Lie

pth order ODEs in the canonical form
n = m = 1, u(p) = F (x , u, u′, . . . , u(p−1))
[Lie, the 1870s–1890s, especially p = 2; . . . ]

Linear second-order partial differential equations in two independent variables
n = 2, m = 1, p = 2,
A11(x , y)uxx + A12(x , y)uxy + A22(x , y)uyy + B1(t, x)ux + B2(t, x)uy + C(t, x)u = 0,
(A11,A12,A22) 6= (0, 0, 0)
[Lie, the 1881, over C; Ovsiannikov, the 1970s, over R; . . . ]

Linear second-order evolution equations
n = 2, m = 1, p = 2 ut = A(t, x)uxx + B(t, x)ux + C(t, x)u, A 6= 0
[Lie, the 1881, over C; Ovsiannikov, the 1970s, over R; . . . ]

(In general) nonlinear wave equations
n = 2, m = 1, p = 2 utx = F (u)
[Lie, 1881, contact symmetry transformations; . . . ]
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Gauge equivalence

Additional problem: the correspondence θ → Lθ may not be injective

The values θ and θ̃ of arbitrary elements are called gauge-equivalent if Lθ and Lθ̃ are
the same system of differential equations.

Example. (1 + 1)-dimensional nonlinear Schrödinger equations with potentials and
modular nonlinearities

iψt + ψxx + f (|ψ|)ψ + V (t, x)ψ = 0, f ′ 6= 0

f̃ = f + β, Ṽ = V − β → iψt + ψxx + f̃ (|ψ|)ψ + Ṽψ = 0

S = S(t, x , |ψ|) = f (|ψ|) + V (t, x) :

ψSψ − ψ∗Sψ∗ = 0, ψSψt + ψ∗Sψ∗t = ψSψx + ψ∗Sψ∗x = 0, ψSψ + ψ∗Sψ∗ 6= 0

Example. Variable coefficient nonlinear diffusion–convection equations

f (x)ut = (g(x)A(u)ux)x + h(x)B(u)ux , fghA 6= 0, (Au,Bu) 6= (0, 0)

(f , g , h,A,B) and (f̃ , g̃ , h̃, Ã, B̃) correspond to the same equation iff

f̃ = ε1ϕ f , g̃ = ε1ε
−1
2 ϕ g , h̃ = ε1ε

−1
3 ϕ h, Ã = ε2A, B̃ = ε3(B + ε4A),

where ϕ = e
−ε4

∫ h(x)
g(x)

dx
, εi (i = 1, . . . , 4) are arbitrary constants, ε1ε2ε3 6= 0
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Subclasses of differential equations

In the course of studying point transformations in a complicated class of differential
equations, it is often helpful to consider subclasses of this class.

A subclass is singled out from the class L|S by attaching additional equations or in-
equalities to the auxiliary system S.

Properties:

The intersection of a finite number of subclasses of L|S is also a subclass in L|S , which is
defined by the union of the additional auxiliary systems associated with the intersecting
sets.

The complement of a subclass in the class L|S is also a subclass of L|S only in special
cases, e.g., if either the additional system of equations or the additional system of
inequalities is empty.

The union L|S′ ∪ L|S′′ = L|S′∪S′′ and the difference L|S′ \ L|S′′ = L|S′\S′′ of the
subclasses L|S′ and L|S′′ in the class L|S also are subclasses of L|S if the additional
systems of equations or the additional system of inequalities of these subclasses coincide.
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Examples of subclasses: generalized nonlinear Schrödinger equations

iψt + G(t, x , ψ, ψ∗, ψx , ψ
∗
x )ψxx + F (t, x , ψ, ψ∗, ψx , ψ

∗
x ) = 0

iψt + G(t, x , ψ, ψ∗)ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + G(t, x)ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + G(t, x)ψxx + F (t, x , ψ, ψ∗) = 0

iψt + ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + ψxx + F (t, x , ψ, ψ∗) = 0

iψt + ψxx + S(t, x , |ψ|)ψ = 0, (ψ∂ψ − ψ∗∂ψ∗)(F/ψ) = 0

iψt + ψxx + f (ρ)ψ + V (t, x)ψ = 0, Sρt = Sρx = 0, Sρ 6= 0, ρ = |ψ|

1 General case ρf ′′/f ′ 6= const ∈ R
2 f = σ ln ρ, σ ∈ C \ {0}
3 f = σργ , σ ∈ C \ {0}, γ ∈ R \ {0}
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Point transformations in classes of differential equations

Point transformations related to L|S form different structures.

T(θ, θ̃) = the set of point transformations in the space of (x , u) mapping Lθ to Lθ̃,
θ, θ̃ ∈ S

Symmetry groups

T (θ, θ) = the maximal point symmetry (pseudo)group Gθ of Lθ

G∩ = G∩(L|S) =
⋂
θ∈S Gθ is the kernel of the maximal point symmetry groups of

systems from L|S (resp. the kernel group of L|S).

T(θ, θ̃) 6= ∅ ∼ Lθ and Lθ̃ are similar w.r.t. point transformations
Then T(θ, θ̃) = ϕ0 ◦ Gθ = Gθ̃ ◦ ϕ

0, where ϕ0 is a fixed transformation from T(θ, θ̃).

Definition

The equivalence groupoid of the class L|S is

G∼ = G∼(L|S) = {(θ, θ̃, ϕ)| θ, θ̃ ∈ S, ϕ ∈ T(θ, θ̃)}.

Elements of G∼ are called admissible transformations of L|S . This formalizes the notions
of form-preserving [Kingsto&Sophocleous, 1991,1998] or allowed [Winternitz&Gazeau,
1992] transformations.
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Equivalence group

Definition

The (usual) equivalence group G∼ = G∼(L|S) of the class L|S is the (pseudo)group
of point transformations in the space of (x , u(p), θ) that

are projectable to the space of (x , u(p′)) for any 0 ≤ p′ ≤ p,

are consistent with the contact structure on the space of (x , u(p)) and

map every system from the class L|S to another system from the same class.

The equivalence group G∼ gives rise to a subgroupoid of the equivalence groupoid G∼,

G∼ 3 T → {(θ, T θ, π∗T ) | θ ∈ S} ⊂ G∼.

Roughly speaking, G∼ is the set of equivalence transformations
= the set admissible transformations that can be applied to any θ ∈ S.

Folklore proposition

The kernel group G∩ of L|S is naturally embedded into the (usual) equivalence
group G∼ of L|S via trivial (identical) prolongation of the kernel transformations to
the arbitrary elements. The associated subgroup Ĝ∩ of G∼ is normal.
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Normalized classes of differential equations

It is convenient to characterize and estimate transformational properties of classes of
differential equations in terms of normalization.

Definition

A class L|S is normalized (in the usual sense) if its (usual) equivalence group G∼

induces its equivalence groupoid G∼.

∼ ∀(θ, θ̃, ϕ) ∈ G∼ ∃T ∈ G∼: θ̃ = T θ and ϕ = T |(x,u)

Definition

A class L|S is semi-normalized (in the usual sense) if its equivalence groupoid G∼ is
induced by transformations from G∼ and from the maximal point symmetry groups of
its equations.

∼ ∀(θ, θ̃, ϕ) ∈ G∼ ∃T ∈ G∼ and ∃ϕ̃ ∈ Gθ: θ̃ = T θ and ϕ = T |(x,u) ◦ ϕ̃
∼ arbitrary similar systems from L|S are related via transformations from G∼

If L|S is normalized in the usual sense, then

it is semi-normalized in the usual sense,

its kernel group G∩ is a normal subgroup of Gθ for each θ ∈ S,

Gθ 6 G∼|(x,u) for each θ ∈ S.
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Computation of equivalence groupoid

To establish the normalization properties of the class L|S one should compute its equiv-
alence groupoid G∼, which is realized using the direct method.

Here one fixes two arbitrary systems from the class,

Lθ : L(x , u(p), θ(x , u(p))) = 0 and Lθ̃ : L(x̃ , ũ(p), θ̃(x̃ , ũ(p))) = 0,

and aims to find the (nondegenerate) point transformations,

ϕ : x̃i = X i (x , u), ũa = Ua(x , u), i = 1, . . . , n, a = 1, . . . ,m,

connecting them.

For this, one changes the variables in the system Lθ̃ by expressing the derivatives
ũ(p) in terms of u(p) and derivatives of the functions X i and Ua as well as by
substituting X i and Ua for x̃i and ũa, respectively.

The requirement that the resulting transformed system has to be satisfied
identically for solutions of Lθ leads to the (nonlinear) system of determining
equations for the transformation components of ϕ.

One solves the system of determining equations.
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Contact and point transformations of evolution equations

E : ut = H(t, x , u0, u1, . . . , up), p > 2, Hup 6= 0,

where uj ≡ ∂ ju/∂x j , u0 ≡ u, and ux = u1.

The contact transformations mapping a (fixed) equation E : ut = H into another equa-
tion Ẽ : ũt̃ = H̃ are well known [Magadeev,1993] to have the form

t̃ = T (t), x̃ = X (t, x , u, ux), ũ = U(t, x , u, ux).

The nondegeneracy assumptions: Tt 6= 0, rank

(
Xx Xu Xux

Ux Uu Uux

)
= 2

The contact condition: (Ux + Uuux)Xux = (Xx + Xuux)Uux =⇒ ũx̃ = V (t, x , u, ux),

where V =
Ux + Uuux

Xx + Xuux
if Xx + Xuux 6= 0 or V =

Uux

Xux

if Xux 6= 0

=⇒ ũt̃ =
Uu − XuV

Tt
ut +

Ut − XtV

Tt
, ũk ≡

∂k ũ

∂x̃k
=

(
1

DxX
Dx

)k−1

V

=⇒ H̃ =
Uu − XuV

Tt
H +

Ut − XtV

Tt
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Contact and point transformations of evolution equations

The equiv. group G∼c generates the whole set of admissible contact transformations
in the class, i.e., the class is normalized [ROP & Kunzinger & Eshraghi,2010] w.r.t.
contact transformations.

Proposition

The class of evolution equations is contact-normalized.

The class of evolution equations is also point-normalized.

The point equivalence group G∼p :

t̃ = T (t), x̃ = X (t, x , u), ũ = U(t, x , u), H̃ =
∆

TtDxX
H+

UtDxX − XtDxU

TtDxX
,

where Tt 6= 0 and ∆ = XxUu − XuUx 6= 0.

The point equivalence group of the subclass of quasilinear evolution equations (i.e.,
Hupup 6= 0) is the same, and this subclass is normalized.
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Examples of normalized classes

pth order ODEs in the canonical form [Lie, the 1880s, especially p = 2; . . . ]
n = m = 1, u(p) = F (x , u, u′, . . . , u(p−1))
Arbitrary local diffeomorphisms in the space of (x , u)
Arbitrary contact transformations

Systems of pth order ODEs in the canonical form
n = 1, arbitrary m, u(p) = F (x , u, u′, . . . , u(p−1)), u = (u1, . . . , um), F = (F 1, . . . ,Fm)
Arbitrary local diffeomorphisms in the space of (x , u)

Linear (in general, inhomogeneous) second-order PDEs in two independent variables,
n = 2, m = 1, p = 2,
A11(x , y)uxx +A12(x , y)uxy +A22(x , y)uyy +B1(t, x)ux +B2(t, x)uy +C(t, x)u = D(t, x),
(A11,A12,A22) 6= (0, 0, 0)
[Lie, the 1881, over C; Ovsiannikov, the 1970s, over R; . . . ]

Linear (in general, inhomogeneous) second-order evolution equations
n = 2, m = 1, p = 2 ut = A(t, x)uxx + B(t, x)ux + C(t, x)u + D(t, x), A 6= 0
[Lie, the 1880s, over C; Ovsiannikov, the 1970s, over R; . . . ]
t̃ = T (t), x̃ = X (t, x), ũ = U1(t, x)u + U0(t, x), TtXxU1 6= 0
→ Linear (in general, inhomogeneous) pth order evolution equations
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Generalized Burgers equations

ut + uux + f (t, x)uxx = 0, f 6= 0 This class is normalized!

[Kingston&Sophocleous, 1991]

G∼ : t̃ =
αt + β

γt + δ
, x̃ =

κx + µ1t + µ0

γt + δ
, ũ =

κ(γt + δ)u − κγx + µ1δ − µ0γ

αδ − βγ ,

f̃ =
κ2

αδ − βγ f ,

where α, β, γ, δ, µ0, µ1 and κ are constants; α, β, γ, δ are defined up to a nonzero
multiplier, αδ − βγ 6= 0 and κ 6= 0.

g∼ = 〈P̃ t , P̃x , D̃t , D̃x , G̃ , Π̃〉,

where

P̃ t = ∂t , P̃x = ∂x , D̃t = t∂t − u∂u − f ∂f , D̃x = x∂x + u∂u + 2f ∂f ,

G̃ = t∂x + ∂u, Π̃ = t2∂t + tx∂x + (x − tu)∂u,

ut + uux + f (t)uxx = 0, f 6= 0 This class is also normalized!
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Generalized nonlinear Schrödinger equations

Normalized classes:

iψt + G(t, x , ψ, ψ∗, ψx , ψ
∗
x )ψxx + F (t, x , ψ, ψ∗, ψx , ψ

∗
x ) = 0

iψt + G(t, x , ψ, ψ∗)ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + G(t, x)ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + G(t, x)ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + ψxx + F (t, x , ψ, ψ∗, ψx , ψ
∗
x ) = 0

iψt + ψxx + F (t, x , ψ, ψ∗) = 0

iψt + ψxx + S(t, x , ρ)ψ = 0, Sρ 6= 0, ρ = |ψ|

× iψt + ψxx + f (|ψ|)ψ + Vψ = 0 This class is not normalized!

What we can do no. 1: partition into normalized subclasses.

1 General case ρfρρ/fρ 6= const ∈ R
2 f = σ ln |ψ|, σ ∈ C \ {0}
3 f = σ|ψ|γ , σ ∈ C \ {0}, γ ∈ R \ {0}
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Generalization of equivalence groups

A class is not normalized.
What we can do no. 2: generalize of the notion of equivalence group.

Recall

The (usual) equivalence group G∼ = G∼(L|S) of the class L|S is the (pseudo)group
of point transformations in the space of (x , u(p), θ) that

are projectable to the space of (x , u(p′)) for any 0 ≤ p′ ≤ p,

are consistent with the contact structure on the space of (x , u(p)) and

map every system from the class L|S to another system from the same class.

There exist several generalizations of the notion of equivalence group, in which restric-
tions for equivalence transformations (projectability or locality with respect to arbitrary
elements) are weakened within the point-transformation framework.

generalized equivalence group G∼gen = G∼gen(L|S) [Meleshko, 1994]:
transformation components for x and u may depends on arbitrary elements

→ normalization in the generalized sense

→ semi-normalization in the generalized sense
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General Burgers–Korteweg–de Vries equations

n = 2, m = 1, p > 2, ut = ∂u/∂t, uk = ∂ku/∂xk , θ = (A0, . . . ,Ap,B,C),

ut + C(t, x)uux =

p∑
k=0

Ak(t, x)uk + B(t, x). (2)

S : Ak
uα = 0, k = 0, . . . , p, Buα = 0, Cuα = 0, |α| 6 p, ApC 6= 0,

where α = (α1, α2), α1, α2 ∈ N ∪ {0}, |α| = α1 + α2, and uα = ∂|α|u/∂tα1∂xα2 .

Proposition

The class (2) is normalized. Its equivalence group G∼(2) consists of the transformations
in the joint space of (t, x , u, θ) whose (t, x , u)-components are of the form

t̃ = T (t), x̃ = X (t, x), ũ = U1(t)u + U0(t, x),

where T = T (t), X = X (t, x), U1 = U1(t) and U0 = U0(t, x) are arbitrary smooth
functions of their arguments such that TtXxU1 6= 0.

C̃ =
Xx

TtU1
C . Gauge: C = 1. X = X 1(t)x + X 0(t), U1 =

X 1

Tt
.

Then Ã1 =
X 1

Tt
A1 + U0 − X 1

t x + X 0
t

Tt
. Further gauge: A1 = 0. U0 =

X 1
t x + X 0

t

Tt
.

Both the subclasses with C = 1 and (C ,A1) = (1, 0) are normalized in the usual sense.
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General Burgers–Korteweg–de Vries equations

ut + C(t, x)uux =

p∑
k=0

Ak(t, x)uk + B(t, x), CAp 6= 0.

t̃ = T (t), x̃ = X (t, x), ũ = U1(t)u + U0(t, x)

Alternative gauge: Ap = 1. X = X 1(t)x + X 0(t), where (X 1)p = Tt .
The subclass is normalized in the usual sense.

Further gauge: A1 = 0. U0 =
X 1

t x + X 0
t

X 1C
U1.

The subclass with (Ap,A1) = (1, 0) is not normalized in the usual sense.

It becomes normalized in the generalized sense if formally extend the arbitrary-element
tuple θ′ with the derivatives of C as new arbitrary elements, Z 0 := Ct and Z k := Ck ,
k = 1, . . . , p, and prolong equivalence transformations to them.
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General Burgers–Korteweg–de Vries equations

The subclass with Ak
x = 0, k = 0, . . . , p, Cx = 0 and Bx = 0 needs the extension of θ

with Y 1
t = A0, Y 2

t = CeY 1

.
Its equivalence groupoid:

t̃ = T (t), x̃ = X 1(t)x + X 0(t), ũ = U1(t)u +
X 1

t U1

X 1C
x + U00(t), with(

X 1
t

C(X 1)2

)
t

= A0 X 1
t

C(X 1)2
∼ X 1 =

1

ε1Y 2 + ε0
,

where ε1 and ε0 are arbitrary constants with (ε1, ε0) 6= (0, 0).
Its generalized equivalence group:

t̃ = T̄ (t,Y 1,Y 2), x̃ = X̄ 1x + X̄ 0(t,Y 1,Y 2), X̄ 1 :=
1

ε1Y 2 + ε0
,

ũ = Ū1(t,Y 1,Y 2)
(
u − ε1X̄ 1eY 1

x
)

+ Ū00(t,Y 1,Y 2), . . .

Its effective generalized equivalence group:

t̃ = T (t), x̃ = X 1(x + X 01(t)Y 2 + X 00(t)
)
, X 1 :=

1

ε1Y 2 + ε0
,

ũ = V (t)

(
u

X 1
− eY 1

(ε1x − ε0X 01 + ε1X 00)

)
, . . .
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Example of generalization of equivalence groups

Example. Variable coefficient nonlinear diffusion–convection equations

f (x)ut = (g(x)A(u)ux)x + h(x)B(u)ux , fghA 6= 0, (Au,Bu) 6= (0, 0)

The usual equivalence group G∼ consists of the transformations

t̃ = δ1t + δ2, x̃ = X (x), ũ = δ3u + δ4,

f̃ =
ε1δ1

Xx
f , g̃ = ε1ε

−1
2 Xx g , h̃ = ε1ε

−1
3 h, Ã = ε2A, B̃ = ε3B,

where δj (j = 1, . . . , 4) and εi (i = 1, . . . , 3) are arbitrary constants, δ1δ3ε1ε2ε3 6= 0, X
is an arbitrary smooth function of x , Xx 6= 0.

The generalized extended equivalence group Ĝ∼ is formed by the transformations

t̃ = δ1t + δ2, x̃ = X (x), ũ = δ3u + δ4,

f̃ =
ε1δ1ϕ

Xx
f , g̃ = ε1ε

−1
2 Xxϕ g , h̃ = ε1ε

−1
3 ϕ h, Ã = ε2A, B̃ = ε3(B + ε4A),

where δj (j = 1, . . . , 4) and εi (i = 1, . . . , 4) are arbitrary constants, δ1δ3ε1ε2ε3 6= 0, X

is an arbitrary smooth function of x , Xx 6= 0, ϕ = e
−ε4

∫ h(x)
g(x)

dx
.
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Gauge equivalence group

The equivalence group G∼ of the class L|S may contain transformations which act
only on arbitrary elements and do not really change systems, i.e., which generate gauge
admissible transformations.

In general, transformations of this type can be considered as trivial (gauge) equivalence
transformations and form the gauge subgroup

Gg∼ = {Φ ∈ G∼ | Φx = x , Φu = u, Φθ
g∼ θ}

of the equivalence group G∼.

Moreover, Gg∼ is a normal subgroup of G∼.

Example. Variable coefficient nonlinear diffusion–convection equations

f (x)ut = (g(x)A(u)ux)x + h(x)B(u)ux , fghA 6= 0, (Au,Bu) 6= (0, 0)

The gauge equivalence group Gg∼ consists of the transformations

f̃ = ε1ϕ f , g̃ = ε1ε
−1
2 ϕ g , h̃ = ε1ε

−1
3 ϕ h, Ã = ε2A, B̃ = ε3(B + ε4A),

where ϕ = e
−ε4

∫ h(x)
g(x)

dx
, εi (i = 1, . . . , 4) are arbitrary constants, ε1ε2ε3 6= 0
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Uniformly semi-normalized classes

Definition

Given a class of differential equations L|S with equivalence groupoid G∼ and (usual)
equivalence group G∼, suppose that there exists a normal subgroup H of G∼, and for
each θ ∈ S the point symmetry group Gθ of the system Lθ ∈ L|S contains a
subgroup Nθ such that the family NS = {Nθ | θ ∈ S} of all these subgroups satisfies
the following properties:

1 H|(x,u) ∩ Nθ = {id} for any θ ∈ S.

2 NT θ = T |(x,u)Nθ(T |(x,u))
−1 for any θ ∈ S and any T ∈ H.

3 For any (θ1, θ2, ϕ) ∈ G∼ there exist ϕ1 ∈ Nθ1 , ϕ2 ∈ Nθ2 and T ∈ H such that
θ2 = T θ1 and ϕ = ϕ2(T |(x,u))ϕ

1.

We then say that the class of differential equations L|S is uniformly semi-normalized
with respect to the subgroup H of G∼ and the symmetry-subgroup family NS .

Here T |(x,u) and H|(x,u) respectively denote the restrictions of T and H to the space
with local coordinates (x , u), H|(x,u) = {T |(x,u) | T ∈ H}, and id is the identity
transformation in this space.
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Splitting symmetry groups in uniformly semi-normalized classes

Each normalized class of differential equations is uniformly semi-normalized with respect
to the improper subgroup H = G∼ and the trivial family NS , where for each θ the
group Nθ consists of just the identity transformation, NS = {{id} | θ ∈ S}.

Each uniformly semi-normalized class is semi-normalized.

At the same time, there are semi-normalized classes that are not uniformly semi-
normalized,

Theorem

Suppose that the class of differential equations L|S is uniformly semi-normalized with
respect to a subgroup H of G∼ and a symmetry-subgroup family NS = {Nθ | θ ∈ S}.
Then for each θ ∈ S the point symmetry group Gθ of the system Lθ ∈ L|S splits
over Nθ. More specifically,

Nθ is a normal subgroup of Gθ,

G ess
θ = H|(x,u) ∩ Gθ is a subgroup of Gθ, and

the group Gθ is a semidirect product of G ess
θ acting on Nθ, Gθ = G ess

θ n Nθ.
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Infinitesimal transformations

As the study of point transformations of differential equations usually involves cum-
bersome and sophisticated calculations, instead of finite point transformations one may
consider their infinitesimal counterparts.

This leads to a certain linearization of the related problem which essentially simplifies
the whole consideration.

In the framework of the infinitesimal approach, a (pseudo)group G of point transfor-
mations is replaced by the Lie algebra g of vector fields on the same space, which are
generators of one-parametric local subgroups of G .

the point symmetry (pseudo)group Gθ −→ the maximal Lie invariance algebra gθ of Lθ
= the set of vector fields in the space of (x , u) generating one-parametric subgroups of Gθ

the kernel group G∩ −→ g∩ = g∩(L|S) =
⋂
θ∈S gθ, the kernel algebra of L|S

the equivalence group G∼ −→ the equivalence algebra g∼ of Lθ = the set of generators of
one-parametric groups of equivalence transformations for the class L|S .

These generators are vector fields in the space of (x , u(p), θ) which are projectable to the space

of (x , u(p′)) for any 0 ≤ p′ ≤ p and whose projections to the space of (x , u(p)) are the p-th

order prolongations of the corresponding projections to the space of (x , u).

Corollary

The trivial prolongation ĝ∩ of g∩ to the arbitrary elements is an ideal in g∼.
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Problem of group classification

The solution of the group classification problem by Lie–Ovsiannikov for a class L|S
includes the construction of the following elements:

the equivalence group G∼ of L|S ,
the kernel algebra g∩ =

⋂
θ∈S gθ of L|S ,

an exhaustive list of G∼-equivalent extensions of g∩ in L|S , i.e., an exhaustive list
of G∼-equivalent values of θ with the corresponding maximal Lie invariance
algebras gθ for which gθ 6= g∩.

More precisely, the classification list consists of pairs (Sγ , {gθ, θ ∈ Sγ}), γ ∈ Γ:

For each γ ∈ Γ L|Sγ is a subclass of L|S ,
gθ 6= g∩ for any θ ∈ Sγ and the structures of the algebras gθ are similar for all
θ ∈ Sγ ; in particular, the algebras gθ, θ ∈ Sγ , have the same dimension or display
the same arbitrariness of algebra parameters in the infinite-dimensional case.
for any θ ∈ S with gθ 6= g∩ there exists γ ∈ Γ such that θ ∈ Sγ mod G∼,
all elements from

⋃
γ∈Γ Sγ are G∼-inequivalent.

In all examples of group classification presented in the literature the set Γ was finite.

If the class L|S is not semi-normalized, the classification list may include equations
similar with respect to point transformations which do not belong to G∼.

The construction of such additional equivalences can be considered as one further step
of the algorithm of group classification.
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Algebraic method of group classification

Underlying facts:

For each fixed value of the arbitrary elements the solution space of the
determining equations is associated with a Lie algebra of vector fields.

If systems of differential equations are similar with respect to a point
transformation then its push-forward relates the corresponding maximal Lie
invariance algebras.

This is why any version of the algebraic method involves, in some way, the classification
of algebras of vector fields up to certain equivalence induced by point transformations.

The key questions:

What set of vector fields should be classified?

What kind of equivalence should be used?
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The general version of the algebraic method of group classification

g∪ =
⋃
θ∈S gθ = the set of vector fields for which the system of determining equations

is consistent with respect to the arbitrary elements with the auxiliary system S of the
class L|S .

=⇒ The set g∪ can be obtained at the onset of group classification, independently
from deriving the maximal Lie invariance algebras of equations from the class L|S .

We can extend g∪ to its linear span g〈〉 = 〈gθ|θ ∈ S〉. Often g∪ = g〈〉.

Via push-forwarding of vector fields, equivalence (resp. admissible) point transformations
for L|S induce an equivalence relation on algebras contained in g∪.

We should classify, up to the above equivalence relation, only appropriate algebras. An
algebra s contained in g∪ is called appropriate if it is the maximal Lie invariance algebra
of an equation from the class L|S . The simplest restriction for s is s ⊃ g∩. The
condition that s is really maximal Lie invariance algebras for an equation from L|S is
more nontrivial to verify.

Substituting the basis elements of each algebra obtained into the determining equa-
tions gives a compatible system for values of the arbitrary elements associated with Lie
symmetry extensions.
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The general version of the algebraic method of group classification

This whole construction is based on the following assertion:

Proposition

Let Si be the subset of S that consists of all arbitrary elements for which the
corresponding equations from L|S are invariant with respect to the same algebra of
vector fields, i = 1, 2. Then the algebras g∩(L|S1 ) and g∩(L|S2 ) are similar with
respect to push-forwards of vector fields by transformations from G∼ (resp. point
transformations) if and only if the subsets S1 and S2 are mapped to each other by
transformations from G∼ (resp. point transformations).
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Preliminary group classification

Proposition

Let a be a subalgebra of the equivalence algebra g∼ of the class L|S , a ⊂ g∼, and let
θ0(x , u(r)) ∈ S be a value of the tuple of arbitrary elements θ for which the algebraic
equation θ = θ0(x , u(r)) is invariant with respect to a. Then the differential equation
Lθ0 is invariant with respect to the projection of a to the space of variables (x , u).

Proposition

Let Si be the subset of S that consists of tuples of arbitrary elements for which the
corresponding algebraic equations are invariant with respect to the same subalgebra
of g∼ and let ai be the maximal subalgebra of g∼ for which Si satisfies this property,
i = 1, 2. Then the subalgebras a1 and a2 are equivalent with respect to the adjoint
action of G∼ if and only if the subsets S1 and S2 are mapped to each other by
transformations from G∼.

=⇒ To construct particular cases of symmetry extensions, we can classify subalgebras
of g∼ instead of algebras of vector fields contained in g∪.

This procedure is called preliminary group classification [Akhatov, Gazizov, Ibragimov,
1989].
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Nonlinear wave equations

utt = f (x , ux)uxx + g(x , ux)

Ibragimov N.H., Torrisi M. and Valenti A., Preliminary group classification of
equations vtt = f (x , vx)vxx + g(x , vx), J. Math. Phys. 32 (1991), 2988–2995.

Harin A.O., On a countabe-dimensional subalgebra of the equivalence algebra for
equations vtt = f (x , vx)vxx + g(x , vx), J. Math. Phys. 34 (1993), 3676–3682.

Ibragimov N.H. and Khabirov S.V., Contact transformation group classification of
nonlinear wave equations, Nonlin. Dyn. 22 (2000), 61–71.

Morozov O., Contact Equivalence Problem for Nonlinear Wave Equations.
arxiv:math-ph/0306007.

Ibragimov N.H., Torrisi M. and Valenti A., Differential invariants of nonlinear
equations vtt = f (x , vx)vxx + g(x , vx), Commun. Nonlinear Sci. Numer. Simul. 9
(2004), 69–80.

Khabirov S.V., A property of the determining equations for an algebra in the
group classification problem for wave equations, Sibirsk. Mat. Zh. 50 (2009),
647–668, in Russian; translation in Sib. Math. J., 50:515–532, 2009.
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classification of a class of nonlinear wave equations, J. Math. Phys. 53 (2012),
123515, 32 pp., arXiv:1106.4801.
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Nonlinear wave equations

W : utt = f (x , ux)uxx + g(x , ux), f 6= 0, (fux , guxux ) 6= (0, 0)

The equivalence algebra g∼:

Du = u∂u + ux∂ux + g∂g , Dt = t∂t − 2f ∂f − 2g∂g , P t = ∂t ,

D(ϕ) = ϕ∂x − ϕxux∂ux + 2ϕx f ∂f + ϕxxux f ∂g ,

G(ψ) = ψ∂u + ψx∂ux − ψxx f ∂g , F1 = t∂u, F2 = t2∂u + 2∂g ,

where ϕ = ϕ(x) and ψ = ψ(x) run through the set of smooth functions of x

Theorem

The equivalence group G∼ = G∼(W) of the class W consists of the transformations

t̃ = c1t + c0, x̃ = ϕ(x), ũ = c2u + c4t2 + c3t + ψ(x),

ũx̃ =
c2ux + ψx

ϕx
, f̃ =

ϕ2
x

c2
1

f , g̃ =
1

c2
1

(
c2g +

c2ux + ψx

ϕx
ϕxx f − ψxx f + 2c4

)
,

where c0, . . . , c4 are arbitrary constants satisfying the condition c1c2 6= 0 and ϕ and ψ
run through the set of smooth functions of x , ϕx 6= 0.

The class W admits three independent discrete equivalence transformations:
(t, x , u, f , g) 7→ (−t, x , u, f , g), 7→ (t,−x , u, f , g) and 7→ (t, x ,−u, f ,−g).
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Nonlinear wave equations

Two subclasses of W: W0 ∼ fux = 0, guxux 6= 0 and W1 ∼ fux 6= 0

Theorem

The subclass W0 is normalized and saved by any transformation from T(W). G∼(W0) = G∼.

K0 = {utt = ±u−4
x uxx + µ(x)u−3

x } ⊂ K ∼ (f , g) = (±u−4
x , µ(x)u−3

x ) mod G∼ ⊂ W1

Theorem

The subclass K0 is normalized. The subclass K is semi-normalized with respect to G∼.
Any admissible transformation in K is generated by G∼ or is represented as a composition of
(θ1, θ2, T1), (θ2, θ2, T2) and (θ2, θ3, T3), where θ1 = (f , g), θ2 = (±u−4

x , µu−3
x ), θ3 = (f̃ , g̃)

and T1, T3 are equivalence transformations and T2: t̃ = 1/t, x̃ = x , ũ = u/t is a symmetry
transformation of Lθ2

.

Theorem

The complement K̄1 =W1 \ K and, therefore, K̄ =W \K are normalized with respect to G∼.
G∼(K̄)1 = G∼(K̄) = G∼.

Corollary

The entire class W is semi-normalized. Hence

group classification of W
up to G∼-equivalence

∼ group classification of W
up to general point equivalence
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Nonlinear wave equations

Conclusion

group classification of W =
group classification of K0 + group classification of K̄

The subclasses K0 and K̄ are normalized. =⇒

We can carry out complete group classification by the algebraic method!
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Thanks

Thank you for your attention!
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