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Abstract

Any Lagrangian form of order k obtained by horizontalization of a

form of order k − 1 gives rise to Euler�Lagrange equations of order

strictly less than 2k.

But these are not the only possibilities. For example, with two

independent variables, the horizontalization of a �rst-order 2-form
gives a Lagrangian quadratic in the second-order variables; but

there are also cubic second-order Lagrangians with third-order

Euler�Lagrange equations.



Abstract Introduction Polynomials Geometry Determinants

Abstract (continued)

In this talk I shall show �rst that any Lagrangian of order k with

Euler�Lagrange equations of order less than 2k must be a

polynomial in the k-th order variables of order not greater than the

number of di�erent symmetric multi-indices of length k.

I shall then describe a geometrical construction, based on

Peter Olver's idea of di�erential hyperforms, which gives rise to

Lagrangians with reduced-order Euler�Lagrange equations.

I believe (and might be able to prove, though this is not

guaranteed!) that every such Lagrangian arises in this way.
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The Euler�Lagrange equations

Let L be a Lagrangian in a single independent variable x,
n independent variables uα, and n derivative variables uαx .

The Euler�Lagrange equations are

∂L

∂uβ
− d

dx

∂L

∂uβx
= 0

and expanding the total derivative d/dx gives

∂L

∂uβ
− ∂2L

∂x∂uβx
− uαx

∂2L

∂uα∂uβx
− uαxx

∂2L

∂uαx∂u
β
x

In general these equations are second-order, but if L is linear in the

variables uαx then they are �rst-order.
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The Euler�Lagrange equations (2)

Now suppose there are m independent variables xi, n independent

variables uα, and mn derivative variables uαi .

The Euler�Lagrange equations are now

∂L

∂uβ
− d

dxj
∂L

∂uβj
= 0

and expanding the total derivative d/dxj now gives

∂L

∂uβ
− ∂2L

∂xj∂uβj
− uαj

∂2L

∂uα∂uβj
− uαij

∂2L

∂uαi ∂u
β
j

In general these equations are second-order, but if L is linear in the

variables uαi then they are �rst-order. But . . .
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The Euler�Lagrange equations (3)

∂L

∂uβ
− ∂2L

∂xj∂uβj
− uαj

∂2L

∂uα∂uβj
− uαij

∂2L

∂uαi ∂u
β
j

The equations can be �rst-order even when L is not linear:

for example L = f(x, u)
(
uαi u

β
j − uαj u

β
i

)
These Lagrangians come from the geometric construction of

horizontalization on jet bundles:

with a �bred manifold π : E →M ,

any di�erential form ω on E
gives a horizontal di�erential form h(ω) on J1π

For instance, h
(
duα ∧ duβ

)
=
(
uαi u

β
j − uαj u

β
i

)
dxi ∧ dxj
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The Euler�Lagrange equations (4)

The same applies for higher-order Lagrangians.

If the Lagrangian L has order k, the Euler�Lagrange equations are

generically of order 2k
k∑
|I|=0

(−1)|I|
d|I|

dxI
∂L

∂uβI
= 0

where I ∈ Nk is a symmetric multi-index:

if uβI = uβi1i2···ik then I(i) = |{ir : ir = i}|

The geometry of the multi-index space is important:

|I| =
∑m

i=1 I(i) is the length of I;

‖I‖2 =
∑m

i=1

(
I(i)

)2
is the square Euclidean norm of I
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Reduced-order Euler�Lagrange equations

k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uβJ
= 0

Each total derivative d/dxj increases the order of its argument by

one, so that the terms of order 2k come from∑
|J |=k

(−1)k
d|J |

dxJ
∂L

∂uβJ
and equal

∑
|I|=|J |=k

(−1)kuαI+J
∂2L

∂uαI ∂u
β
J

The equations will have order less than 2k if, and only if, for each

multi-index H of length 2k,∑
I+J=H

∂2L

∂uαI ∂u
β
J

= 0
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The polynomial condition

Euler�Lagrange equations:
k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uβJ
= 0

Condition for lower order equations: whenever |H| = 2k then∑
I+J=H

∂2L

∂uαI ∂u
β
J

= 0

Theorem

A necessary condition for the Euler�Lagrange equations to have

order less than 2k is that L is a polynomial in the highest-order

derivatives uαI , |I| = k, of order at most pk

where pk is the number of distinct multi-indices of length k
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Proof of the polynomial condition
A necessary condition for the Euler�Lagrange equations to have

order less than 2k is that L is a polynomial in the highest-order

derivatives uαI , |I| = k, of order at most pk

Consider
∂pk+1L

∂uα1
J1
· · · ∂uαpkJpk

∂u
αpk+1

Jpk+1

so at least two of the multi-indices must be the same � say

J1 = J2

Use the condition
∑

I+J=H

∂2L

∂uαI ∂u
β
J

= 0 to put

∂pk+1L

∂uα1
J1
∂uα2

J2
∂uα3

J3
· · ·

=
∑

K1+K2=J1+J2
(K1,K2)6=(J1,J2)

− ∂pk+1L

∂uα1
K1
∂uα2

K2
∂uα3

J3
· · ·
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Proof of the polynomial condition (2)

∂pk+1L

∂uα1
J1
∂uα2

J2
∂uα3

J3
· · ·

=
∑

K1+K2=J1+J2
(K1,K2)6=(J1,J2)

− ∂pk+1L

∂uα1
K1
∂uα2

K2
∂uα3

J3
· · ·

But each term on the RHS also has a repeated multi-index! So we

can continue . . .

But eventually, every term will have a repeated `pure' multi-index J
(where J(j) = k for some j, and J(j) = 0 for i 6= j)

and then
∑

J+J=H

∂2L

∂uαJ∂u
β
J

= 0 implies that

∂2L

∂uαJ∂u
β
J

= 0
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∂uαJ∂u
β
J

= 0 implies that

∂2L

∂uαJ∂u
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Proof of the polynomial condition (3)

Why is this process guaranteed to terminate?

The parallellogram rule for Euclidean norms!

2‖x‖2 ≤ 2‖x‖2 + 2‖y‖2 = ‖x+ y‖2 + ‖x− y‖2

with equality when y = 0, so that in

∂pk+1L

∂uα1
J ∂u

α2
J ∂u

α3
J3
· · ·

=
∑

K1+K2=J+J
(K1,K2)6=(J,J)

− ∂pk+1L

∂uα1
K1
∂uα2

K2
∂uα3

J3
· · ·

we have ‖J‖2 + ‖J‖2 = 2‖J‖2 < ‖K1‖2 + ‖K2‖2

The sum of the square Euclidean norms in the terms keeps

increasing, eventually giving k + 1 pure multi-indices per term
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Proof of the polynomial condition (4)

Therefore
∂pk+1L

∂uα1
J1
· · · ∂uαpkJpk

∂u
αpk+1

Jpk+1

= 0

so that L is a polynomial in the uαJ , |J | = k, of degree at most pk.

But this necessary condition is not su�cient: for instance,

L = (uxy)
2 has Euler�Lagrange equations 2uxxyy = 0

All the Lagrangians with lower-order equations appear to be

determinants

Geometrically, determinants arise as the coe�cients of wedge

products dx ∧ dy ∧ dz ∧ · · ·

. . . but also as coe�cients of dx2 ∧ dxdy ∧ dy2 ∧ · · ·
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Di�erential hyperforms

Di�erential hyperforms were described in an unpublished paper by

Peter Olver from 1982

They are covariant tensors with symmetry properties described by

Young diagrams (ordinary di�erential forms are purely alternating,

but hyperforms can have more complicated symmetries)

Consider hyperforms on jet manifolds Jkπ that are

• horizontal over M , and

• wedge products of symmetric tensors (all of the same rank)

A (p, q) hyperform is a section of
∧p SqT ∗M , pulled back to Jkπ

These are generated over C∞(Jkπ) by dxI1 ∧ dxI2 ∧ · · · ∧ dxIp
where dxI = dxi1dxi2 · · · dxiq with I = (i1, i2, · · · , iq)
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A�ne (1, q) hyperforms

A (1, q) hyperform (1 ≤ q ≤ k) is a horizontal symmetric tensor

θ : Jkπ → SqT ∗M

As Jkπ → Jk−1π is an a�ne bundle, we say that θ is an a�ne

(1, q) hyperform if its restriction to each �bre of the bundle is an

a�ne map: in coordinates

θ =
∑
|I|=k
|J |=q

(
θIαJ u

α
I + θJ

)
dxJ

These a�ne (1, q) hyperforms are too general. We shall restrict

attention to special a�ne (1, q) hyperforms
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Special a�ne (1, q) hyperforms

The a�ne bundle Jkπ → Jk−1π has associated vector bundle

V π ⊗ SkT ∗M → Jk−1π

The �bre-a�ne map θ has an associated �bre-linear `di�erence

map' θ̄ : V π ⊗ SkT ∗M → SqT ∗M

We say that θ is a special a�ne (1, q) hyperform if there is a tensor

θ̃ ∈ V π∗ ⊗ Sk−qTM such that the di�erence map θ̄ is given by

contraction of elements of its domain V π ⊗ SkT ∗M with θ̃.

In coordinates (where θIα are the coordinates of θ̃)

θ =
∑
|I|=k−q
|J |=q

(
θIαu

α
I+J + θJ

)
dxJ
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Special a�ne (1, q) hyperforms � example

θ =
∑
|I|=k−q
|J |=q

(
θIαu

α
I+J + θJ

)
dxJ

In the special case where q = 1 we have

θ =
∑
|I|=k−1

(
θIαu

α
I+1j + θj

)
dxj

the ordinary horizontalization of the 1-form∑
|I|=k−1 θ

I
αdu

α
I + θjdx

j

There is no invariant operation of horizontalization for hyperforms

when q ≥ 2; but special a�ne (1, q) hyperforms generalize the

images of the horizontalization operator on ordinary 1-forms
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Hypera�ne (pq, q) hyperforms

A (pq, q) hyperform ω is a section of the line bundle
∧pq SqT ∗M ,

pulled back to Jkπ

It is hypera�ne if it is generated by wedge products of special

a�ne hyperforms θ =
∑
|I|=k−q,|J |=q

(
θIαu

α
I+J + θJ

)
dxJ

If ω = ωqdx
J1 ∧ dxJ2 ∧ · · · ∧ dxJpq then ωq is a linear combination

of determinants (or their minors)∣∣∣∣∣∣∣∣∣∣
uα1
I1+J1 uα1

I1+J2 · · · uα1
I1+Jpq

uα2
I2+J1 uα2

I2+J2 · · · uα2
I2+Jpq

...
...

. . .
...

u
αpq
Ipq+J1 u

αpq
Ipq+J2 · · · u

αp1
Ipq+Jpq

∣∣∣∣∣∣∣∣∣∣
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What does this have to do with Lagrangians?
A Lagrangian m-form λ de�nes local Lagrangian functions L by

λ = Ldx1 ∧ dx2 ∧ · · · ∧ dxm

Say that λ is hypera�ne if, in any coordinate system,

L = ω1 + ω2 · · ·+ ωk

where each ωq is the coe�cient of a hypera�ne hyperform

ω = ωqdx
J1 ∧ dxJ2 ∧ · · · ∧ dxJpq

This is independent of the coordinate system

In new coordinates (x̃, ũ), the volume dx1 ∧ dx2 ∧ · · · ∧ dxm
changes by the Jacobian determinant J(x̃, x), whereas each
hypervolume dxJ1 ∧ dxJ2 ∧ · · · ∧ dxJpq changes by a power of

J(x̃, x)
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Euler�Lagrange equations of hypera�ne Lagrangians
Theorem

If L is the Lagrangian function of a hypera�ne Lagrangian then the

Euler-Lagrange equations have reduced order

It is su�cient to show this for a determinant

∆ =

∣∣∣∣∣∣∣∣∣∣
uα1
I1+J1 uα1

I1+J2 · · · uα1
I1+Jpq

uα2
I2+J1 uα2

I2+J2 · · · uα2
I2+Jpq

...
...

. . .
...

u
αpq
Ipq+J1 u

αpq
Ipq+J2 · · · u

αp1
Ipq+Jpq

∣∣∣∣∣∣∣∣∣∣
so write ∆ as

∆ =
∑
σ∈Sh

εσu
α1
I1+Jσ(1)u

α2
I2+Jσ(2) · · ·u

αh
Ih+Jσ(h)
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Euler�Lagrange equations of hypera�ne Lagrangians (2)

∆ =
∑
σ∈Sh

εσu
α1
I1+Jσ(1)u

α2
I2+Jσ(2) · · ·u

αh
Ih+Jσ(h)

Substituting in the Euler�Lagrange equations gives

∑
|K|=k

d|K|

dxK
∂L

∂uβK
=

∑
1≤r,s≤h
s 6=r

∑
σ∈Sh

δαrβ εσΦrsσu
αs
Ir+Is+Jσ(r)+Jσ(s)

where the coe�cients Φrsσ are

Φrsσ = uα1
I1+Jσ(1)u

α2
I2+Jσ(2) · · · r̂ · · · ŝ · · ·u

αh
Ih+Jσ(h)

Fix r 6= s. Given σ ∈ Sh put σ̃ = σ ◦ (r, s) 6= σ.
Φrsσ = Φrsσ̃ and εσ = −εσ̃ so all the terms cancel.
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Determinants

Established so far:

• If a Lagrangian function of order k has reduced-order

Euler�Lagrange equations then it is a polynomial of order at

most pk in the variables uαH (|H| = k);

• Every hypera�ne Lagrangian has reduced-order

Euler�Lagrange equations (and is a polynomial with a

particular determinant structure)

I conjecture that every Lagrangian with reduced-order

Euler�Lagrange equations has this particular determinant structure,

and so is hypera�ne.
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Determinants (2)

A general polynomial Lagrangian function of order k and degree pk
is

L =

pk∑
r=0

AH1H2···Hr
α1α2···αr u

α1
H1
uα2
H2
· · ·uαrHr

with implicit sums over the indices and multi-indices, and with

|H| = k

Can this be written as a linear combination of determinants∣∣∣∣∣∣∣∣∣
uα1
I1+J1 uα1

I1+J2 · · · uα1
I1+Jr

uα2
I2+J1 uα2

I2+J2 · · · uα2
I2+Jr

...
...

. . .
...

uαrIr+J1 uαrIr+J2 · · · uαrIr+Jr

∣∣∣∣∣∣∣∣∣
|J | = q, |I| = k − q

1 ≤ q ≤ k, 0 ≤ r ≤ pq ?
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Determinants (3)

Consider homogeneous polynomials AH1H2···Hr
α1α2···αr u

α1
H1
uα2
H2
· · ·uαrHr

In the case r = 2 there is a constructive proof

Partition the quadratic terms by H1 +H2 = H and put

ψH =
∑

H1+H2=H

AH1H2
α1α2

uα1
H1
uα2
H2

Choose a term AK1K2
α1α2

uα1
K1
uα2
K2

arbitrarily, so from E�L we have

AK1K2
α1α2

=
∑

H1+H2=H,(H1,H2)6=(K1,K2)

−AH1H2
α1α2

and so

ψH =
∑

H1+H2=H

AH1H2
α1α2

(uα1
H1
uα2
H2
− uα1

K1
uα2
K2

)
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Determinants (4)

For cubic and higher terms, there is no obvious algorithm to give an

explicit construction

(although ad-hoc methods work for all examples investigated)

A possible approach would use an abstract dimension argument:

The number of variables uαI , |I| = k, is known,
and so the dimension of the space of homogeneous polynomials of

degree r is also known

The number of E�L constraints for quadratic polynomials is known,

so the number of constraints for degree r polynomials can in

principle be calculated

The theorem will be proved if there are enough independent

r × r determinants of the correct type
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