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Abstract

Any Lagrangian form of order k obtained by horizontalization of a
form of order k — 1 gives rise to Euler-Lagrange equations of order
strictly less than 2k.

But these are not the only possibilities. For example, with two
independent variables, the horizontalization of a first-order 2-form
gives a Lagrangian quadratic in the second-order variables; but
there are also cubic second-order Lagrangians with third-order
Euler—Lagrange equations.
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Abstract (continued)

In this talk | shall show first that any Lagrangian of order k with
Euler-Lagrange equations of order less than 2k must be a
polynomial in the k-th order variables of order not greater than the
number of different symmetric multi-indices of length k.

| shall then describe a geometrical construction, based on
Peter Olver's idea of differential hyperforms, which gives rise to
Lagrangians with reduced-order Euler-Lagrange equations.

| believe (and might be able to prove, though this is not
guaranteed!) that every such Lagrangian arises in this way.
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The Euler-Lagrange equations
Let L be a Lagrangian in a single independent variable z,
n independent variables u®, and n derivative variables u.
The Euler-Lagrange equations are
oL d oL _ 0
ouP dx gyl
and expanding the total derivative d/dz gives

o oL
ouP 8:1:8145

o 0L 0*L

—u— —y —
v auaauﬁ o augauﬁ

In general these equations are second-order, but if L is linear in the
variables u$ then they are first-order.
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The Euler-Lagrange equations (2)
Now suppose there are m independent variables z¢, n independent
variables u®, and mn derivative variables .
The Euler-Lagrange equations are now

oL d oL _,
ouP  dai ﬁu? N

and expanding the total derivative d/dz7 now gives

oL 0L o O°L o O°L

ouP i 8u§ T ue 0u§ ” ous 8uf

In general these equations are second-order, but if L is linear in the
variables u then they are first-order. But ...
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The Euler—Lagrange equations (3)

oL 0L 0L o O°L

[0}

ouP i 8u§ T ue 8uf- Y ous 8u?

The equations can be first-order even when L is not linear:
for example L = f(z,u) (uo‘uﬁ - u?uﬁ)
These Lagrangians come from the geometric construction of

horizontalization on jet bundles:

with a fibred manifold 7 : £ — M,
any differential form w on E
gives a horizontal differential form h(w) on Ji7

For instance, h(du® A du®) = (u?uf — udu)da' A da
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The Euler—Lagrange equations (4)

The same applies for higher-order Lagrangians.

If the Lagrangian L has order k, the Euler—Lagrange equations are

generically of order 2k
k

> g2 -
\T1=0 dx 6u
where I € N* is a symmetric multi-index:

if ub =u?. . then I(i) = |{iy : i = i}|

11920k
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The Euler—Lagrange equations (4)

The same applies for higher-order Lagrangians.

If the Lagrangian L has order k, the Euler—Lagrange equations are

generically of order 2k
k

> g2 -
\T1=0 dx 6u
where I € N* is a symmetric multi-index:

if ub =u?. . then I(i) = |{iy : i = i}|

11920k

The geometry of the multi-index space is important:
|I| = > 1(4) is the length of I;
111> =>" 1(I(i))2 is the square Euclidean norm of I
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Reduced-order Euler-Lagrange equations

k

> ()i o -

20 dz’ 9y

Each total derivative d/dz/ increases the order of its argument by
one, so that the terms of order 2k come from

d’l oL o O’L
Z (—1)kd77 and equa| Z (—l)kuﬂ_‘]ﬁ
|J|=k Uy \T|=|J|=k Qugduy

The equations will have order less than 2k if, and only if, for each
multi-index H of length 2k,
0*L

agn,, P
147=m QuFou;
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The polynomial condition

Euler—Lagrange equations:
k

Z (_1)|J|ﬂail’ -0
|J]=0 do’ 8u§

Condition for lower order equations: whenever |H| = 2k then
d*L
Z wcou’ 0
I+J=H U0l
Theorem

A necessary condition for the Euler-Lagrange equations to have
order less than 2k is that L is a polynomial in the highest-order
derivatives u¢, |I| = k, of order at most py,

where py, is the number of distinct multi-indices of length k
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Proof of the polynomial condition
A necessary condition for the Euler—Lagrange equations to have
order less than 2k is that L is a polynomial in the highest-order
derivatives u, |I| = k, of order at most py,

Consider
8pk+1L

ar Qpy. App+1
oujl -+ Ou Tpy ou oy 1

so at least two of the multi-indices must be the same — say
J1=Jy

. 0%L
Use the condition E —— = 0 to put
(63
47— Oufdu;
oret+lr, Z oretly,
a1 2 S I - o a1 a2 as ..
Ouy Ou? Ouy? P o Ouyl Ouyl Ouy?

(K1,K2)#(J1,J2)
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Proof of the polynomial condition (2)

orktly, opet+1p,
OuF ouS2ouG® - - - Z
59Uy, O gy

- aq g as |
Kyt Koy OV O Ot
(K1,K2)#(J1,J2)
But each term on the RHS also has a repeated multi-index! So we
can continue . ..
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Proof of the polynomial condition (2)

oretly,

orktly,
a1 g a3.__: z : - aq a2 as .
8uJ1 8uJ2 aqu P o 8uK1 auKQ auJ3
(K1,K2)#(J1,J2)

But each term on the RHS also has a repeated multi-index! So we
can continue . ..

But eventually, every term will have a repeated ‘pure’ multi-index J
(where J(j) = k for some j, and J(j) = 0 for i # j)

0%L .
and then Z — = 0 implies that
Ja—p Ououy

L
ﬁuﬁc{?ug
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Proof of the polynomial condition (3)

Why is this process guaranteed to terminate?
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Proof of the polynomial condition (3)
Why is this process guaranteed to terminate?
The parallellogram rule for Euclidean norms!

22)* < 2]le|® + 2lly|1* = llo + yl* + [|lz — y]|?

with equality when y = 0,
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Proof of the polynomial condition (3)
Why is this process guaranteed to terminate?
The parallellogram rule for Euclidean norms!

22)* < 2]le|® + 2lly|1* = llo + yl* + [|lz — y]|?

with equality when y = 0, so that in

oretly, Z oret1r,

a1 a o020 a3 = T g 01 s as .
ou' ouj 8uJ3 auKlﬁuK28UJ3

Ki\+Ko=J+J
(K1,K2)#(J,J)
we have ||J]* + [|J]|> = 2[|J[[* < [[Ky||* + || K2|]?

The sum of the square Euclidean norms in the terms keeps
increasing, eventually giving k + 1 pure multi-indices per term
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Proof of the polynomial condition (4)
Therefore
orrtly,
=0
ay Qpy, Qpp+1
ouy) 8quk 8qu,€+1
so that L is a polynomial in the u5, |J| = k, of degree at most py.
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Proof of the polynomial condition (4)

Therefore
82%-&-1 L

Qp,, Qp;+1
oust---0u, Fou "
J1 Ipy 7 Ipp 41

=0

so that L is a polynomial in the u9,

J| =k, of degree at most py.
L]

But this necessary condition is not sufficient: for instance,
L = (ugy)? has Euler-Lagrange equations 2ty = 0

All the Lagrangians with lower-order equations appear to be
determinants

Geometrically, determinants arise as the coefficients of wedge
products de Ady Adz A ---
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Proof of the polynomial condition (4)

Therefore
82%-&-1 L

Qp,, Qp;+1
oust---0u, Fou "
J1 Ipy 7 Ipp 41

=0

so that L is a polynomial in the u9,

J| =k, of degree at most py.
L]

But this necessary condition is not sufficient: for instance,
L = (ugy)? has Euler-Lagrange equations 2ty = 0

All the Lagrangians with lower-order equations appear to be
determinants

Geometrically, determinants arise as the coefficients of wedge
products de Ady Adz A ---

... but also as coefficients of dz? A dzdy A dy? A - - -
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)

Consider hyperforms on jet manifolds J*7 that are
e horizontal over M, and

e wedge products of symmetric tensors (all of the same rank)
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)

Consider hyperforms on jet manifolds J*7 that are
e horizontal over M, and

e wedge products of symmetric tensors (all of the same rank)

A (p,q) hyperform is a section of AP SYT* M, pulled back to J*r

These are generated over C°(J*7) by daxlt A dx!2 A -+ A da'le
where dz! = dz®dx’ - - - dx'e with T = (iy, g, - - ,zq)



Geometry

@00

Affine (1, q) hyperforms

A (1,q) hyperform (1 < ¢ < k) is a horizontal symmetric tensor
0:Jkr — SIT*M

As J57 — J*11 is an affine bundle, we say that 0 is an affine
(1,q) hyperform if its restriction to each fibre of the bundle is an
affine map: in coordinates

0= Z (9£ju? + 93)d$‘7
\T|=k
|T1=q
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Affine (1, q) hyperforms

A (1,q) hyperform (1 < ¢ < k) is a horizontal symmetric tensor
0:Jkr — SIT*M

As J57 — J*11 is an affine bundle, we say that 0 is an affine
(1,q) hyperform if its restriction to each fibre of the bundle is an
affine map: in coordinates

0= Z (%ju? + 93)d$‘7
\T|=k
|T1=q

These affine (1, ) hyperforms are too general. We shall restrict
attention to special affine (1,q) hyperforms
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Special affine (1, q) hyperforms

The affine bundle J¥7 — J*~11 has associated vector bundle
Va SkT*M — J1r

The fibre-affine map 6 has an associated fibre-linear ‘difference
map' 0 : Vi @ SFT*M — SIT*M

We say that 0 is a special affine (1,q) hyperform if there is a tensor
6 € Vi @ S¥=9TM such that the difference map 0 is given by
contraction of elements of its domain Vrr @ SET*M with 6.

In coordinates (where 6% are the coordinates of 6)

0= > (0lufs+07)de”

|I|=k—q
|T1=q
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Special affine (1, q) hyperforms — example

0= Y (0ufys+07)da’
[1|=k—q
|T1=q

In the special case where ¢ = 1 we have

0= (0lufy, +06;)da’
[I|=k—1

the ordinary horizontalization of the 1-form

There is no invariant operation of horizontalization for hyperforms
when ¢ > 2; but special affine (1, q) hyperforms generalize the
images of the horizontalization operator on ordinary 1-forms
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Hyperaffine (p,, q) hyperforms

A (pq,q) hyperform w is a section of the line bundle AP ST*M,
pulled back to Jk7

It is hyperaffine if it is generated by wedge products of special
affine hyperforms 0 = Z|I|:k—q,\j\:q (%uﬁj + Qj)dl'j

If w = wydz?t Adz?2 A -+ AdxPa then wy is a linear combination
of determinants (or their minors)

a1 a1 o .. a1
Unva Yn+s u11+Jpq

a2 a2 o .. az
U+ YLt Ut Tpg

Otpq

u uapq e !
Ipq"!‘jl Ipq+j2 Ipq+qu
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What does this have to do with Lagrangians?

A Lagrangian m-form X defines local Lagrangian functions L by

A=Ldz' Ndz®> A+ Adz™
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What does this have to do with Lagrangians?

A Lagrangian m-form X defines local Lagrangian functions L by
A=Ldz' Ndz? A+ Ada™
Say that \ is hyperaffine if, in any coordinate system,
L=w +wy 4w
where each w, is the coefficient of a hyperaffine hyperform
w = wqdwjl AdzT2 Ao A daTea

This is independent of the coordinate system

In new coordinates (&, 1), the volume dz! A dx? A --- A dz™
changes by the Jacobian determinant J(Z, z), whereas each
hypervolume dzt A dz72 A --- A da?pa changes by a power of
J(Z,x)



Geometry

[e]e] o]

Euler—Lagrange equations of hyperaffine Lagrangians
Theorem

If L is the Lagrangian function of a hyperaffine Lagrangian then the
Euler-Lagrange equations have reduced order
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Euler—Lagrange equations of hyperaffine Lagrangians
Theorem

If L is the Lagrangian function of a hyperaffine Lagrangian then the
Euler-Lagrange equations have reduced order

It is sufficient to show this for a determinant

aq (63} . (63}
Un+an Un+g U +Tpg
a2 a2 o a2
Un+vn ULt U+ Tpg
A= . . .
apq apq .. apl
ulpq+j1 ulpq+\72 u[pq+\7pq

so write A as

_ ai az R
A= Z 50u11+50(1)u12+70(2) UL+ T )
oeSy,
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Euler-Lagrange equations of hyperaffine Lagrangians (2)

_ ai az R
A= Z 50u11+30(1)u12+~70(2) UL+ T n)
oeSy,

Substituting in the Euler-Lagrange equations gives

d¥l oL 5o o
Z d$K auﬁ - Z Z B 8U®Tsaulr+ls+jo(r)+ja(s)

K 1<r,s<h c€6y,
S#r

where the coefficients ®,.,, are

e al a2 -;;A-;¢A¢~- ah
Crse = u11+jg(1)u12+~70(2) rees u1h+Jg(h)
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Euler-Lagrange equations of hyperaffine Lagrangians (2)

_ ai az R
A= Z 50u11+70(1)u12+~70(2) UL+ T n)
oeSy,

Substituting in the Euler-Lagrange equations gives

d¥l oL P

Z dxK 9,8 Z Z g €o TSUUIT+Is+jU(r)+~70(s)

IK|=k T Qug 1<r,s<h o€y,
S#r

where the coefficients ®,.,, are

e a]‘ a2 "‘A"‘A..' ah
Crse = u11+jg(1)u12+~70(2) rees ulh+~70(h)

Fix r # s. Given 0 € &, put 6 =0 o (r,s) # 0.
Do = D5 and e, = —e5 so all the terms cancel. O



Determinants
@00

Determinants

Established so far:

e If a Lagrangian function of order k has reduced-order
Euler-Lagrange equations then it is a polynomial of order at
most py, in the variables u%; (|H| = k);

e Every hyperaffine Lagrangian has reduced-order
Euler—Lagrange equations (and is a polynomial with a
particular determinant structure)

| conjecture that every Lagrangian with reduced-order
Euler—Lagrange equations has this particular determinant structure,
and so is hyperaffine.
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Determinants (2)

A general polynomial Lagrangian function of order k and degree py
is

L ZAHlHQ -H, al

s
Qoo H1 qu uHT

with implicit sums over the indices and multi-indices, and with
|H| =k

Can this be written as a linear combination of determinants

a1 al oo al
“le “ng “Qwr 7] o=k
2 2 - 2 = = —
Un+r  UYL+7 Ur,+7, & q

Qr Qr .o Qr
U+ UL+ U+,
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Determinants (3)

AH1H2---H aq

- i oz g0
Consider homogeneous polynomials Ag 1,72 rufy u3f - - ugy

In the case r = 2 there is a constructive proof
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Determinants (3)

HH>---H

Consider homogeneous polynomials A5 1727 0"

ra, X1, Q2 ) Qp
Wpp Up, UGS
In the case r = 2 there is a constructive proof

Partition the quadratic terms by Hy + Hy = H and put

_ E Hi1H3, a1, a2
l/JH - Aa1a2 ququ
H\+Hs=H
Ki1Ka,01 ,,02 H H _
Choose a term Aj 2ufgs ug? arbitrarily, so from E-L we have
KiKy _ E HyiH>
Aa1a2 - _Aa1a2
Hy+He=H,(Hy,H2)#(K1,K2)
and so
— H1H2 a1 ag _ (o5} (D)
¢H - E Aa1a2 (quuHQ uKluKz)

Hi+Ho=H
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Determinants (4)

For cubic and higher terms, there is no obvious algorithm to give an
explicit construction

(although ad-hoc methods work for all examples investigated)



Determinants

Determinants (4)

For cubic and higher terms, there is no obvious algorithm to give an
explicit construction

(although ad-hoc methods work for all examples investigated)

A possible approach would use an abstract dimension argument:

The number of variables u¢, |I| = k, is known,
and so the dimension of the space of homogeneous polynomials of
degree r is also known

The number of E-L constraints for quadratic polynomials is known,
so the number of constraints for degree r polynomials can in
principle be calculated

The theorem will be proved if there are enough independent
r X r determinants of the correct type
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