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Statistical models

General

Probability distribution on a set X is a non-negative real function function

p : X → R
1) if X discrete and countable Σx∈X p(x) = 1;

2) if X = Rn
∫

X p(x)dx = 1.

p is a probability density function.

Let Λ be a domain in Rm. We consider families of probability distributions on a
set X parametrized by λ ∈ Λ.

P = {p(x ;λ)|λ ∈ Λ}
(1) Λ is a domain in Rm,
(2) p(x ;λ) for a fixed x is a smooth function in λ,
(3) the operation of integration with respect to x and differentiation with
respect to λ are commutative.

Λ is called an m-dimensional statistical model (parametric model).
Notation Λ = {p(x ;λ)} = {pλ(x)}, p(x ;λ) = pλ(x)
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Statistical models

Examples

Example (Normal distribution)

X = R, m=2

Λ = {(µ, σ) : −∞ < µ <∞,0 < σ <∞}

p(x ;λ) =
1√
2πσ

exp{− (x − µ)2

2σ2 }

Example (Multivariate normal distribution)

X = Rk , m = k + k(k+1)
2 , λ = (µ,Σ)

Λ = {(µ,Σ): µ ∈ Rk , Σ ∈ Rk2
: positive definite}

p(x ;λ) = (2π)−k/2(detΣ)−1/2exp{−1
2

(x − µ)t Σ−1(x − µ)}
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Statistical models

Examples cont.

Example (Poisson distribution)

X = N, m = 1, Λ = (0,∞)

p(x ;λ) = e−λ
λx

x!

Example (P(X ) for finite X )

X = {x0, x1, ..., xn}, Λ = {(λ1, ..., λn) : λi > 0, Σn
i=1λ

i < 1}

p(x ;λ) =

{
λi 1 ≤ i ≤ n
1− Σn

i=1λ
i i = 0
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Statistical models

Fisher metric

Definition

Let P = {p(x ;λ)|λ ∈ Λ} be a family of probability distributions on a set X
parametrized by λ ∈ Λ.

We set lλ = l(x ;λ) = logp(x ;λ) and denote by Eλ the expectation with respect
to pλ(x) = p(x ;λ).

Then the matrix gF (λ) = [gij (λ)] defined by

gij (λ) = Eλ[
∂lλ
∂λi

∂lλ
∂λj ] =

∫
X

∂l(x ;λ)

∂λi
∂l(x ;λ)

∂λj p(x ;λ)dx

is called the Fisher information matrix tensor.
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Statistical models

Fisher metric cont.

Simple calculations show that

gij (λ) = −Eλ[
∂2lλ
∂λi∂λj ].

The Fisher information matrix tensor gF (λ) = [gij (λ)] is positive semi-definite
on Λ:

Σi.jgij (λ)c ic j =

∫
X
{Σic i ∂l(x ;λ)

∂λi }2p(x ;λ)dx ≥ 0.

In information geometry the standard assumption has been:

(4) For a family of probability distributions P = {p(x ;λ)|λ ∈ Λ} the Fisher
information matrix tensor gF (λ) = [gij (λ)] is positive definite on Λ.

Remark The general case seems to be difficult to study if not hopeless. Therefore to
develop a meaningful more general theory in our paper [BW] we assume that the
Fisher information matrix tensor is parallel with respect to some torsion-free
connection on Λ. The condition permits us to construct a foliation, and under some
reasonable assumptions it has a transverse Hessian structure.
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Statistical models

Connections

(Γ
(α)
ij,k )λ = Eλ[(∂i∂j lλ +

1− α
2

∂i lλ∂j lλ)(∂k lλ)]

where α is an arbitrary real number.

We define an affine connection ∇(α) on Λ by

g(∇(α)
∂i
∂j , ∂k ) = Γ

(α)
ij,k .

∇(α) is called the α-connection. ∇(α) is a symmetric connection.

Γ(β)
ij,k = Γ(α)

ij,k +
α− β

2
Tijk ,

where Tijk is a covariant symmetric tensor of degree 3 defined by

(Tijk )λ = Eλ[∂i lλ∂j lλ∂k lλ].

Moreover,

∇(α) = (1− α)∇(0) + α∇(1) =
1 + α

2
∇(1) +

1− α
2
∇(−1)
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Statistical models

Connections cont.

Theorem
The 0-connection is the Riemannian connection with respect to the Fisher
metric.
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Statistical models

Exponential family

If an m-dimensional model

S = {pθ : θ ∈ Θ}

can be expressed in terms of functions {C,F1, ...,Fm} on X and a function ψ
on Θ:

p(x ; θ) = exp[C(x) + Σn
i=1θ

iFi (x)− ψ(θ)],

then S is called an exponential family and {θi} are called natural or
canonical parameters.
From the normality condition

ψ(θ) = log
∫

exp[C(x) + Σn
i=1θ

iFi (x)]dx .

The parametrization θ 7→ pθ is one-to-one iff the m+1 functions {F1, ...,Fm,1}
are linearly independent.
Always assumed!
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Statistical models

Examples

Example (Normal distribution)

C(x) = 0, F1(x) = x , F2(x) = x2, θ1 =
µ

σ2 θ2 = − 1
2σ2

ψ(θ) =
µ2

2σ2 + log(
√

2πσ) = − (θ1)2

4θ2 +
1
2

log(− π
θ2 ).

Example

Consider an m-dimensional model S = {pθ} which can be expressed in terms
of function {C,F1, ...,Fm} on X as

p(x ; θ) = C(x) + Σiθ
iFi (x).

S forms an affine subspace of P(X ).
S is called a mixture family with mixture parameters θi .
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Statistical models

Example (Multivariate normal distribution)

C(x) = 0, Fi (x) = xi , Fij (x) = xixj (i ≤ j)

θi = Σj (Σ−1)ijµj , θii = (−1/2)(Σ−1)ii , θij = −(Σ−1)ij (i < j)

and

FA(x) = x , FB(x) = xx t , θA = Σ−1µ, θB = (−1/2)Σ−1,

We have

p(x ; θ) = exp[Σ1≤i≤kθ
iFi (x) + Σ1≤i≤j≤kθ

ijFij (x)− ψ(θ)]

= exp[(θA)tFA(x) + tr(θBFB(x))− ψ(θ)]

where ψ(θ) = ....
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Statistical models

Theorem

An exponential family (a mixture family, respectively) is ∇(1)-flat (∇(−1)-flat,
respectively) and its natural parameters (mixture parameters, respectively)
form a ∇(1)-affine (∇(−1)-affine, respectively) coordinate system.

Theorem
Let S be an exponential family (a mixture family, respectively) and M a
submanifold of S. Them M is an exponential family (a mixture family,
respectively) iff M is ∇(1)-autoparallel ( ∇(−1)-autoparallel ) in S.
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Dual Connections

Dual connections

When investigating the properties of the Fisher metric g and the α-connection
∇(α) it is important to consider them not individually, but rather as the triple
(g,∇(α),∇(−α)). The reason for this is that, through g, there exists a kind of
duality between ∇(α) and ∇(−α) which is of fundamental significance. This
notion of duality emerges not only when considering statistical models but
also in many different problems related to information geometry.

(S,g) a Riemannian manifold, ∇ and ∇∗ two connections.

Definition

If for any X ,Y ,Z ∈ X (S)

Zg(X ,Y ) = g(∇Z X ,Y ) + g(X ,∇∗Z Y )

holds then the connections ∇ and ∇∗ are said to be dual (or conjugate).
The triple (g,∇,∇∗) is called a dualistic structure on S.
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Dual Connections

In local coordinates we have

∂k gij = Γki,j + Γ∗kj,i

For given g and ∇ there exists a unique dual connection ∇∗

Moreover,
1 (∇∗)∗ = ∇,
2 (∇+∇∗)/2 is a metric connection,
3 if a connection ∇′ has the same torsion as ∇∗ and if (∇+∇′)/2 is metric,

then ∇′ = ∇∗.

Theorem

For any statistical model, the (α)-connection and the (−α)-connection are
dual with respect to the Fisher metric.
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Dual Connections

Theorem
Let hγ : TpS → TqS (resp. h∗γ be the parallel transport along curve γ from p to
q with respect to ∇ (resp. ∇∗), then

g(hγ(X ),h∗γ(Y )) = g(X ,Y )

for any vectors X ,Y ∈ TpS.

For any vector fields X ,Y ,Z ,W ∈ X (X )

g(R(X ,Y )Z ,W ) = −g(R∗(X ,Y )W ,Z )

thus

R = 0 iff R∗ = 0.

However, a similar property does not hold for the torsion tensors.
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Dual Connections

Let (g,∇,∇∗) be a dualistic structure on a manifold S. If the connections ∇
amd and ∇∗ are both symmetric (T = T ∗ = 0), then the ∇-flatness and
∇∗-flatness are equivalent.

Since the α-connections are always symmetric, for any statistical model S and
for any real number α S is α-flat iff S is (−α)-flat.

We call (S,g,∇,∇∗) a dually flat space if both dual connections are flat.

Theorem

Let (S,g,∇,∇∗) be a dually flat space. If a submanifold M of S is autoparallel
with respect to either ∇ or ∇∗, then M is a dually flat space with respect to the
dualistic structure (gM ,∇M ,∇∗M) induced on M by (g,∇,∇∗).
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Dual Connections

ξ̂ : X → Rm is called an estimator.

ξ̂ is called an unbiased estimator if Eξ[ξ̂(X )] = ξ for any ξ.

The mean squared error of an inbiased estimator ξ̂ may be expressed as the
variance-covariance matrix Vξ[ξ̂] = [v ij

ξ ] where

v ij
ξ = Eξ[(ξ̂i (X ) = ξi )(ξ̂j (X ) = ξj )]

An unbiased estimator ξ̂ achieving the equality Vξ[ξ̂] = G(ξ)−1 for all ξ is
called an efficient estimator.

Theorem
A necessary and sufficient condition for a coordinate system ξ of a model
S = {pξ} to have an efficient estimator is that S is an exponential family and ξ
is (−1)-affine.
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Hessian structures

Hessian structures

Definition

A Riemannian metric g on a flat manifold (M,D) is called a Hessian metric if
for any point x of M there exists a local function φ defined on an open nbhd of
x such that

g = Ddφ

If (x1, ..., xm) is an affine coordinate system for D then

gij =
∂2φ

∂x i∂x j ,

The pair (D,g) is called a Hessian structure on M; M is called a Hessian
manifold - notation (M,D,g). A function φ is called a (local) potential of
(D,g).

Definition
A Hessian structure (D,g) is said to be of Koszul type if there exists a closed
1-form ω such that g = Dω.
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Hessian structures

Hessian structures cont.

Let ∇ be the Levi-Civita connection of the Riemannian metric g.
Let γ be the difference tensor

γX Y = ∇X Y − DX Y

As ∇ and D are torsion-free γX Y = γY X .

Proposition

Let (M,D) be a flat manifold and g a Riemannian metric on M. Then the
following conditions are equivalent:

1 g is a Hessian metric,
2 (DX g)(Y ,Z ) = (DY g)(X ,Z ),

3
∂gij

∂xk =
∂gkj

∂x i ,

4 g(γX Y ,Z ) = g(Y , γX Z ),

5 γijk = γjik .
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Hessian structures

cont.

Let (M,D) be a flat manifold and π : TM → M its tangent bundle.
To an affine chart (x1, ..., xm) we associate a complex chart on TM

z j = ξj + iξm+j

where ξi = x iπ and ξm+i = dx i for i = 1, ...,m. JD the associated complex
structure on TM.

On TM we define the following Riemannian metric gT

gT = Σgijπdz idz̄ j

Proposition

Let (M,D) be a flat manifold and g a Riemannian metric on M. Then the
following conditions are equivalent:
(1) g is a Hessian metric on (M,D),
(2) gT is a Kählerian metric on (TM, JD).
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Hessian structures

cont.

Theorem
Let (M,D,g) be a Hessian manifold and let ∇ be the Levi-Civita connection of
g. Define a connection D′ by

D′ = 2∇− D.

Then
(1) D’ is a flat connection,
(2) Xg(Y ,Z ) = g(DX Y ,Z ) + g(Y ,D′X Z ),
(3) (D’,g) is a Hessian structure.
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Hessian structures

Codazzi structures

Proposition

Let D be a torsion-free connection and let g be a Riemannian metric. Let D′

be a new connection defined by

Xg(Y ,Z ) = g(DX Y ,Z ) + g(Y ,D′X Z )

Then the following conditions are equivalent:
(1) the connection D′ is torsion-free,
(2) The pair (D,g) satisfies the Codazzi equation

(DX g)(Y ,Z ) = (DY g)(X ,Z ),

(3) Let ∇ be the Levi-Civita connection for g, let γX Y = ∇X Y − DX Y . Then

gγX Y ,Z ) = g(Y , γX Z ).

If the pair (D,g) satisfies the Codazzi equation, so does the pair (D′,g) and

D′ = 2∇− D and (DX g)(Y ,Z ) = 2g(γX Y ,Z ).
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Hessian structures

Codazzi structures cont.

Definition

A pair (D,g) where D is a torsion-free connection and g a Riemannian metric
on a manifold M is called a Codazzi structure if it satisfies the Codazzi

(DX g)(Y ,Z ) = (DY g)(X ,Z ),

For a Codazzi structure (D,g) the connection D′ defined by

Xg(Y ,Z ) = g(DX Y ,Z ) + g(Y ,D′X Z )

is called the dual connection of D with respect to g, and the pair (D′,g) the
dual Codazzi structure of (D,g).

Definition

A Codazzi structure (D,g) is of constant curvature c if the curvature tensor
RD of D satisfies

RD(X ,Y )Z = c{g(Y ,Z )X − g(X ,Z )Y}.
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Hessian structures

Proposition

Let (D,g) be a Codazzi structure nad (D′,g) its dual Codazzi structure. Then
(1)

g(RD(X ,Y )Z ,W ) + g(Z ,RD′(X ,Y )W ) = 0;

(2) if (D,g) is a Codazzi struccture of constant curvature c, then (D′,g) is also
of constant curvature c.

Proposition

A Codazzi structure (D,g) is of constant curvature 0 iff (D,g) is a Hessian
structure.

Proposition

Let (D,g) be a Codazzi structure of constant curvature. Then locally g is of
the form

Ddφ+
φ

m − 1
RicD

where RicD is the Ricci tensor of D and φ is a local function.
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Hessian structures

Example

Let S(m) be the set of real symmetric matrices of degree m, and let S(m)+ be
the subset of S(m) consisting of of positive-definite symmetric matrices. Put

p(x ;µ, σ) = (2π)−m/2(detσ)−1/2exp({−
t (x − µ)σ−1(x − µ)

2
}),

where µ ∈ Rm and σ ∈ S(m)+. Then {p(x ;µ, σ) : (µ, σ) ∈ Rm × S(m)+} is a
family of probability distributions on Rm parametrized by (µ, σ) and called a
family of m-dimensional normal distributions.
Let Ω be a domain in a finite dimensional real vector space V , and let ρ be an
injective linear mapping from Ω into S(m)+.

Proposition

Let {p(x ;µ, ω) : (µ, ω) ∈ Rm × Ω} be a family of probability distributions
induced by ρ. Then the family is an exponential family parametrized by
θ = ρ(ω)µ ∈ Rm and ω ∈ Ω. The Fisher information metric is a Hessian metric
on Rm × Ω with potential function

φ(θ, ω) = (1/2){tθρ(ω)−1θ − log detρ(ω)}.
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Hessian structures
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Hessian structures

Foliations

Let F be a foliation on an m-manifold M. Then F is defined by a cocycle
U = {Ui , fi , kij}i∈I modeled on a q-manifold N0 (0 < q < m) such that
(1) {Ui}i∈I is an open covering of M,
(2) fi : Ui → N0 are submersions with connected fibres,
(3) kij : N0 → N0 are local diffeomorphisms of N0 with fi = kij fj on Ui ∩ Uj .

The connected components of the trace of any leaf of F on Ui are fibres of fi ,
and the trace itself consists of at most a denombrable number of these fibres.

The open subsets Ni = fi (Ui ) ⊂ N0 form a q-dimensional manifold NU =
⊔

Ni ,
which can be considered to be a complete transverse manifold of the foliation
F . The pseudogroup HU of local diffeomorphisms of N generated by kij is
called the holonomy pseudogroup of the foliated manifold (M,F) defined by
the cocycle U .

A foliation on a smooth manifold M understood as an involutive subbundle of
TM, or equivalently, according to the Frobenius theorem as a partition of the
manifold by submanifolds of the same dimension with some regularity
condition, can be defined by many different cocycles.
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Hessian structures

There is a notion of equivalent cocycles, similar to the notion of equivalent
atlases of a smooth manifold, and a foliation can be understood as an
equivalence class of such cocycles. The equivalence class H of HU , is called
the holonomy group of F , or of the foliated manifold (M,F).

The vector bundle N(M,F) = TM/TF is called the normal bundle of the
foliation F . Then the tangent bundle TM is isomorphic to the direct sum
TF ⊕ N(M,F). These isomorphisms are determined by the choice of a
supplementary subbundle Q in TM to the tangent bundle to the foliation TF .

The cocycle U = {Ui , fi , kij}i∈I modeled on a q-manifold N0 induces on the
normal bundle a cocycle V = {Vi , f̄i , k̄ij}i∈I modeled on the 2q-manifold TN0,

where Vi = TUi , f̄i is the mapping induced by dfi , and k̄ij = dkij .

The foliation FN of the normal bundle is of codimension 2q, its leaves project
on leaves of F . They are, in fact, coverings of these leaves.

In a similar way one can foliate any bundle obtained via a point-wise process
from the normal bundle, e.g., the frame bundle of the normal bundle, the dual
normal bundle, any tensor product of these bundles.
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Hessian structures

Geometric structures on foliated manifolds

In the case of a foliated manifold we can consider three types of geometrical
structures related to the foliation:

transverse - defined on the transverse manifold, the associated holonomy
pseudogroup consists of automorphisms of this geometrical structure;

foliated - only defined on the normal bundle, and when expressed in a local
adapted chart, depending only on the transverse coordinates; a foliated
structure projects to a transverse structure along submersions of the cocycle
defining the foliation.;

associated - defined globally, on the tangent bundle but adapted to the
spliting, and defining a foliated structure on the normal bundle.

Foliated and transverse structures are in one-to-one correspondence, an
associated structure defines a foliated structure, but different associated
structures can define the same foliated structure.
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