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Minimal maps and spaces

G. D. Birkhoff, Quelques théorémes sur le mouvement des
systémes dynamiques, Bulletin de la Socit́é mathématiques de
France, 40 (1912), 305-323:

Given a compact metric space X , a map f ∶ X → X is called minimal if
for any closed set A ⊂ X such f (A) ⊆ A we must have A = X or A = ∅.

Equivalently, f is said to be minimal if the forward orbit
{f n(x) ∶ n = 1,2, . . .} is dense in X .

In such a case X is called a minimal space.
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What are minimal spaces?

Any dynamical system on a compact space contains minimal
subsystems

Minimal sets/systems are building blocks for more complicated
ones

Periodic orbits are among the simplest examples

Whether a given space admits a minimal map is still unknown
for large classes of spaces

For n-manifolds the question is fully answered only for n < 3

In higher dimensions mainly isolated examples are known

If X is minimal, and D is its decomposition into connected
components then the quotient space X/D must be the Cantor
set, or a finite set.
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The Cantor set

Note: Every compact metric space is a continuous image of the
Cantor set.
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Toy Models

Example

(Irrational rotations) Let S1 = R/Z be the unit circle and α ∉ Q. Then
the irrational rotation

f (x) = x + α

is minimal.

Example

(Denjoy homeomorphisms) The irrational rotation f can be modified
by a ”‘blow-up”’ of an orbit to form a minimal Cantor set
homeomorphism.
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Denjoy homeomorphisms
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2-adic odometer

Example

Define a Cantor set homeomorphism σ ∶ {0,1}N → {0,1}N by “add
one and carry”:
σ(s) = (0, . . . ,0,1,sk+1,sk+2, . . .), where sk = 0 and si = 1 for all i < k
and
σ(1,1,1, . . .) = (0,0,0, . . .).
The homeomorphism σ is minimal.
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Suspensions

Let h∶C → C be a minimal homeomorphism of a compact metric
space C. The suspension of (C,h) is the space X = C ×R/∼, where
∼ is the equivalence relation given by: (x ,y) ∼ (p,q) if y − q ∈ Z and
p = h−y+q(x).
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Suspension flows

The suspension flow defined by h is the continuous flow induced on
X given by φt(x ,s) = (x ,s + t)/∼. Since the orbits of h are dense, the
flow orbits are dense in X , and so X is a continuum. For a generic
choice of parameters t the flow φt is minimal.
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Example

When h is the 2-adic odometer then the suspension is the 2-adic
solenoid.
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Minimal systems meet Banach fixed point theorem

Contractions

A map f is a contraction if there exists an L < 1 such that
d(f (x), f (y)) ≤ Ld(x ,y) for all x ,y ∈ X ;

Banach fixed point theorem (1922)

Every contraction on a complete metric space has a unique fixed
point.
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Minimal systems meet Banach fixed point theorem

Local contractions

A map f is a local contraction if for every x ∈ X there exists an
Lx < 1 and qx > 0 such that d(x ,y) < qx and d(x ,z) < qx implies
d(f (y), f (z)) ≤ Lxd(y ,z);

Edelstein (1961)

For every local contraction f on a compact metric space X there
exists an integer n such that f n has a fixed point.
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Minimal systems meet Banach fixed point theorem

Weak local contractions

A map f is a weak local contraction if for every x ∈ X there
exists an rx > 0 such that d(x ,y) < rx implies
d(f (x), f (y)) ≤ d(x ,y);

A map f is a local isometry if for every x ∈ X there exists an
Rx > 0 such that d(x ,y) < Rx implies d(f (x), f (y)) = d(x ,y).

Edrei’s conjecture (1952)

Suppose X is a compact metric space and f ∶ X → X is a surjective
weak local contraction. Then f is a local isometry.



Recent advances on minimal systems and minimal spaces

Minimal systems meet Banach fixed point theorem

Edrei’s conjecture (1952)

Suppose X is a compact metric space and f ∶ X → X is a weak local
contraction. Then f is a local isometry.

Williams (1954)

4 examples constructed for which

every point is a weak local contraction point,

the map is not a local isometry at some points.
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Definition
A map f ∶ X → X is locally radially shrinking (LRS) if for every x ∈ X
there exists an εx > 0 such that d(x ,y) < εx implies
d(f (x), f (y)) < d(x ,y) for all y ≠ x.

Note: If a differentiable function f has LRS then f ′(x) < 1 for every
x ∈ X .

[Ciesielski, Jasinski, 2016]

There exists a minimal Cantor set homeomorphism f that embeds in
the real line R with vanishing derivative everywhere. Moreover, f
extends to a differentiable function F ∶ R→ R

Note: The map f above is the 2-adic odometer.
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Minimal systems meet Banach fixed point theorem

Picture by Ciesielski&Jasiński, Canadian J. Math. (2017)
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Minimal systems meet Banach fixed point theorem

[Ciesielski, Jasinski, 2016]

If X is an infinite compact metric space and a surjective f ∶ X → X has
the (LRS) property then there exists a perfect subset Y such that f ∣Y
is minimal.

Question
What Cantor set homeomorphisms can be embedded into R with
vanishing derivative everywhere?
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Piotr Oprocha, Kraków&Ostrava

Jiřı́ Kupka, Ostrava

BORONSKI J.P.; KUPKA J.; OPROCHA P., Edrei’s Conjecture revisited,
Annales Henri Poincaré 19 (2018) 267–281
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Let s = (sn)n∈N be a nondecreasing sequence of positive integers
such that sn divides sn+1. For each n ≥ 1 define πn∶Zsn+1 → Zsn by the
natural formula πn(m) = m (mod sn) and let Gs denote the following
inverse limit

Gs = lim←Ð
n
(Zsn , πn) = {x ∈

∞
∏
i=1

Zsn ∶ xn = πn(xn+1)},

where each Zsn is given the discrete topology, and on ∏∞
i=1 Zsn we

have the Tychonoff product topology. On Gs we define Ts∶Gs → Gs by

Ts(x)n = xn + 1 (mod sn).

Then Gs is a compact metrizable space and Ts is a homeomorphism,
therefore (Gs,Ts) is a dynamical system (odometer).
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All odometers are equicontinuous; i.e. for every ε > 0 there is δ > 0
such that if d(x ,y) < δ then d(T n(x),T n(y)) < ε for every n ≥ 0.
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Theorem (B.,Kupka,Oprocha)

All odometers can be embedded into R with derivative equal to 0
everywhere.
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Minimality vs. LRS

We obtain the following immediate corollaries.

Lemma (Jarnik Theorem)

Let X ⊂ R be a perfect set and let f ∶X → R be differentiable. Then
there exists a differentiable extension F ∶R→ R of f , that is F ∣X = f .

Theorem (B.,Kupka,Oprocha)

Every odometer is conjugate to a homeomorphism f ∶ C → C such
that f′ ≡ 0 and f extends to a differentiable surjection f̄ ∶ R→ R.

Corollary (B.,Kupka,Oprocha)

For every odometer (X ,T ) there exists an equivalent metric ρ such
that T has (LRS) property with respect to ρ.
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Minimality vs. LRS

Corollary (B.,Kupka,Oprocha)

There exists a Cantor set C ⊆ R2 and a homeomorphism F such that
F has the (LRS) property, C = ⋃i∈I Mi where I is uncountable,
Mi ∩Mj = ∅ for i ≠ j and (Mi ,F) if minimal for every i.
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Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

There exists a minimal weakly mixing Cantor set homeomorphism
T ∶ X → X that embeds in R with vanishing derivative everywhere.
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Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

There exists a transitive, nonminimal and periodic point free Cantor
set homeomorphism that embeds in R with vanishing derivative
everywhere.
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Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

Every minimal dynamical system (X ,T ) with (LRS) property can be
extended to a non-transitive dynamical system (Z ,F) with (LRS)
property.

Theorem (B.,Kupka,Oprocha)

There exists a Cantor set W ⊆ R2 and a nontransitive
homeomorphism G with the (LRS) property such that the set of
periodic points of G consists of a single fixed point.
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Question
Can every minimal Cantor set homeomorphism be embedded into R
with vanishing derivative everywhere?
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Minimality and Cartesian Products

Piotr Oprocha, Kraków&Ostrava

Alex Clark, University of Leicester
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Is minimality with respect to homeomorphisms preserved under
Cartesian product in the class of compact spaces?
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Observation

No product of a homeomorphism h ∶ X → X with itself

(h,h) ∶ X ×X → X ×X

is minimal, by the fact that it keeps the diagonal

∆ = {(x ,x) ∶ x ∈ X}

invariant.
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Minimality and Cartesian Products

Toy Models

1 If X is a Cantor set then X ×X is a Cantor set as well, so
minimality is preserved.

2 If X = S1 then X ×X = T2 and

H(x ,y) = (x + α,y + β)

is minimal if and only if 1, α, β are Q-independent.

Here we shall show that a Cartesian power of a minimal spaces
need not be minimal.
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Theorem
(B.,Clark,Oprocha)There exists a compact connected metric minimal
space Y such that Y ×Y is not minimal.
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Minimality and Cartesian Products

Almost Slovak space

A compact space X is an almost Slovak space if its
homeomorphism group

H(X) = H+(X) ∪H−(X),

with
H+(X) ∩H−(X) = {idX},

where H+(X) is cyclic and generated by a minimal homeomorphism,
and for every g ∈ H−(X) we have g2 ∈ H+(X).
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The Pseudo-circle

The pseudo-arc P is defined as the unique arc-like continuum that is
hereditarily indecomposable.

P is arc-like means that for each ε > 0 there exists a map
fε ∶ P → [0,1] with diam(f −1(t)) < ε for every t ; alternatively,
P = lim←{[0,1], fi}

P is indecomposable means that it does not decompose into
the union of two proper subcontinua

P is hereditarily indecomposable means that all subcontinua
of P are indecomposable

The pseudo-circle is defined as the unique circle-like, hereditarily
indecomposable and plane separating continuum.
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The Pseudo-arc

The pseudo-arc P may be considered as a very bad fractal, as it is
hereditarily equivalent, and so it has a self-similarity feature.
Hereditary equivalence means that every subcontinuum of P is
homeomorphic to P.

Note: No indecomposable continuum is a continuous image of
[0,1]!
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Pseudo-arcs and Pseudo-circles in Dynamics (select results)

(1982) Handel: pseudo-circle as an attracting minimal set of a
C∞-smooth diffeomorphism of the plane

(1996) Kennedy&Yorke: constructed a C∞ diffeomorphism on a
7-manifold which has an invariant set with an uncontable number
of pseudocircle components and is stable to C1 perturbations

(2010) Chéritat: pseudo-circle as a boundary of a Siegel disk of
a holomorphic map

(2014) B.&Oprocha: pseudo-circle as a Birkhoff-type attractor on
the 2-torus

(2016) Rempe-Gillen: pseudo-arc as a compactification Julia set
component of entire functions of disjoint type
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Outline of the proof:

Theorem. (B.,Clark,Oprocha)There exists a compact connected
metric minimal space Y such that Y ×Y is not minimal.

1 Start with a minimal suspension flow homeomorphism.

2 Perform a “surgery” inserting obstacles in place of one of the
orbits.

3 The resulting space will have an almost cyclic
homeomorphism group and will be factorwise rigid.
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The square W ×W of the special composant W



Recent advances on minimal systems and minimal spaces

Minimality and Cartesian Products

Thanksgiving

Thank You for Your Attention
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Graphs

By a graph we mean a pair G = (V ,E) of finite sets, where E ⊂ V ×V
(V ... set of vertices, E ... set of edges).

The graphs we consider are always edge surjective, i.e. for every
v ∈ V there are u,w ∈ V such that (u,v), (v ,w) ∈ E .

Graph homomorphisms

A map φ∶V1 → V2 is a graph homomorphism between graphs
(V1,E1), (V2,E2) if for every (u,v) ∈ E1 we have (φ(u), φ(v)) ∈ E2.

A homomorphism φ is bidirectional if (u,v), (u,v ′) ∈ E1 implies
φ(v) = φ(v ′) and (w ,u), (w ′,u) ∈ E1 implies φ(w) = φ(w ′).
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bd-covers
If φ is a bidirectional map between edge-surjective graps then we call
it bd-cover.

Construction [Akin, Glasner, Weiss, 2008]

Let G = ⟨φi⟩∞i=0 denote a sequence of bd-covers
φi ∶ (Vi+1,Ei+1) → (Vi ,Ei), and let

VG = lim←Ð(Vi , φi) = {x ∈ Π∞
i=0Vi ∶ φi(xi+1) = xi for all i ≥ 0}

be the inverse limit defined by G.

Set
EG = {e ∈ VG ×VG ∶ ei ∈ Ei for each i = 1,2, . . .}

As usual, Vi is endowed with discrete topology and X = ∏∞
i=0 Vi is

endowed with product topology.
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Lemma (Shimomura, 2016)

Let G = ⟨φi⟩ be a sequence of bd-covers φi ∶ (Vi+1,Ei+1) → (Vi ,Ei).
Then VG is a zero-dimensional compact metric space and the relation
EG defines a homeomorphism.
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