

Jan P. Boroński

< ロ > (四) (四) (王) (-)

Introduction to minimality

2 Minimal systems meet Banach fixed point theorem

3 Minimality vs. LRS

4 Minimality and Cartesian Products

Minimal maps and spaces

G. D. Birkhoff, *Quelques théorémes sur le mouvement des systèmes dynamiques*, Bulletin de la Socité mathématiques de France, 40 (1912), 305-323:

Given a compact metric space *X*, a map $f : X \to X$ is called **minimal** if for any closed set $A \subset X$ such $f(A) \subseteq A$ we must have A = X or $A = \emptyset$.

Equivalently, *f* is said to be **minimal** if the forward orbit $\{f^n(x) : n = 1, 2, ...\}$ is dense in *X*.

In such a case X is called a **minimal space**.

What are minimal spaces?

- Any dynamical system on a compact space contains minimal subsystems
- Minimal sets/systems are *building blocks* for more complicated ones
- Periodic orbits are among the simplest examples
- Whether a given space admits a minimal map is still unknown for large classes of spaces
- For *n-manifolds* the question is fully answered only for *n* < 3
- In higher dimensions mainly isolated examples are known
- If X is minimal, and D is its decomposition into connected components then the quotient space X/D must be the Cantor set, or a finite set.

The Cantor set

Note: Every compact metric space is a continuous image of the Cantor set.

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

-Introduction to minimality

Toy Models

Example

(Irrational rotations) Let $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ be the unit circle and $\alpha \notin \mathbb{Q}$. Then the irrational rotation

$$f(x) = x + \alpha$$

is minimal.

Example

(Denjoy homeomorphisms) The irrational rotation *f* can be modified by a "blow-up" of an orbit to form a minimal Cantor set homeomorphism.

(日)

Denjoy homeomorphisms

The process of inserting the intervals I_n into $S^i(1)$ to obtain a new circle $S^i(1 + a)$ is expressed formally by a continuous map $g: S^i(1 + a) \rightarrow S^i(1)$ which collapses each interval $I_n \subset S^i(1 + a)$ to the corresponding point $x_n \in S^i(1)$ and is one-to-one outside I_* . We choose $a_n = \text{length}(I_n) > 0$ to satisfy

$$(1) a = \sum_{n \in \mathbb{Z}} a_n < \infty$$

so that the disjoint intervals I_n will all fit into $S^1(1 + a)$ and

$$\lim_{n\to\pm\infty}a_{n+1}/a_n=1$$

so that |f can be C^1 . For example, $a_n = (1 + n^s)^{-1}$ suffices. Then the map g is induced by the continuous map g_i : $[0, 1 + a] \rightarrow [0, 1]$ defined (see Figure 4)

(3)
$$g_1(y) = \limsup\{x_n \mid x_n + \sum_{x_k < x_n} a_k < y\}.$$

2-adic odometer

Example

Define a Cantor set homeomorphism $\sigma : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ by "add one and carry": $\sigma(s) = (0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots)$, where $s_k = 0$ and $s_i = 1$ for all i < k and $\sigma(1, 1, 1, \ldots) = (0, 0, 0, \ldots)$. The homeomorphism σ is minimal.

Suspensions

Let $h: C \to C$ be a minimal homeomorphism of a compact metric space *C*. The **suspension** of (C, h) is the space $X = C \times \mathbb{R}/_{\sim}$, where ~ is the equivalence relation given by: $(x, y) \sim (p, q)$ if $y - q \in \mathbb{Z}$ and $p = h^{-y+q}(x)$.

Suspension flows

The **suspension flow** defined by *h* is the continuous flow induced on *X* given by $\phi_t(x, s) = (x, s + t)/_{\sim}$. Since the orbits of *h* are dense, the flow orbits are dense in *X*, and so *X* is a continuum. For a generic choice of parameters *t* the flow ϕ_t is minimal.

Example

When *h* is the 2-adic odometer then the suspension is the 2-adic solenoid.

Minimal systems meet Banach fixed point theorem

2 Minimal systems meet Banach fixed point theorem

3 Minimality vs. LRS

4 Minimality and Cartesian Products

Minimal systems meet Banach fixed point theorem

Contractions

 A map f is a contraction if there exists an L < 1 such that d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ X;

Banach fixed point theorem (1922)

Every contraction on a complete metric space has a unique fixed point.

- Minimal systems meet Banach fixed point theorem

Local contractions

• A map *f* is a **local contraction** if for every $x \in X$ there exists an $L_x < 1$ and $q_x > 0$ such that $d(x, y) < q_x$ and $d(x, z) < q_x$ implies $d(f(y), f(z)) \le L_x d(y, z)$;

Edelstein (1961)

For every local contraction f on a compact metric space X there exists an integer n such that f^n has a fixed point.

- Minimal systems meet Banach fixed point theorem

Weak local contractions

- A map *f* is a weak local contraction if for every *x* ∈ *X* there exists an *r_x* > 0 such that *d*(*x*, *y*) < *r_x* implies *d*(*f*(*x*), *f*(*y*)) ≤ *d*(*x*, *y*);
- A map *f* is a **local isometry** if for every $x \in X$ there exists an $R_x > 0$ such that $d(x, y) < R_x$ implies d(f(x), f(y)) = d(x, y).

Edrei's conjecture (1952)

Suppose X is a compact metric space and $f: X \rightarrow X$ is a surjective weak local contraction. Then f is a local isometry.

-Minimal systems meet Banach fixed point theorem

Edrei's conjecture (1952)

Suppose X is a compact metric space and $f: X \rightarrow X$ is a weak local contraction. Then f is a local isometry.

Williams (1954)

4 examples constructed for which

- every point is a weak local contraction point,
- the map is not a local isometry at some points.

- Minimal systems meet Banach fixed point theorem

Definition

A map $f : X \to X$ is locally radially shrinking (LRS) if for every $x \in X$ there exists an $\epsilon_x > 0$ such that $d(x, y) < \epsilon_x$ implies d(f(x), f(y)) < d(x, y) for all $y \neq x$.

Note: If a differentiable function *f* has LRS then f'(x) < 1 for every $x \in X$.

[Ciesielski, Jasinski, 2016]

There exists a minimal Cantor set homeomorphism \mathfrak{f} that embeds in the real line \mathbb{R} with **vanishing derivative everywhere**. Moreover, \mathfrak{f} extends to a differentiable function $F : \mathbb{R} \to \mathbb{R}$

Note: The map \mathfrak{f} above is the 2-adic odometer.

Minimal systems meet Banach fixed point theorem

Picture by Ciesielski&Jasiński, Canadian J. Math. (2017)

Minimal systems meet Banach fixed point theorem

Minimal systems meet Banach fixed point theorem

[Ciesielski, Jasinski, 2016]

If X is an infinite compact metric space and a surjective $f : X \to X$ has the (LRS) property then there exists a perfect subset Y such that f|Y is minimal.

Question

What Cantor set homeomorphisms can be embedded into ${\mathbb R}$ with vanishing derivative everywhere?

- Minimal systems meet Banach fixed point theorem

[Ciesielski, Jasinski, 2016]

If X is an infinite compact metric space and a surjective $f : X \to X$ has the (LRS) property then there exists a perfect subset Y such that f|Y is minimal.

Question

What Cantor set homeomorphisms can be embedded into \mathbb{R} with vanishing derivative everywhere?

Minimality vs. LRS

2 Minimal systems meet Banach fixed point theorem

3 Minimality vs. LRS

4 Minimality and Cartesian Products

Minimality vs. LRS

Piotr Oprocha, Kraków&Ostrava

Jiří Kupka, Ostrava

BORONSKI J.P.; KUPKA J.; OPROCHA P., *Edrei's Conjecture revisited*, Annales Henri Poincaré 19 (2018) 267–281

Minimality vs. LRS

Let $\mathbf{s} = (s_n)_{n \in \mathbb{N}}$ be a nondecreasing sequence of positive integers such that s_n divides s_{n+1} . For each $n \ge 1$ define $\pi_n: \mathbb{Z}_{s_{n+1}} \to \mathbb{Z}_{s_n}$ by the natural formula $\pi_n(m) = m \pmod{s_n}$ and let $G_{\mathbf{s}}$ denote the following inverse limit

$$G_{\mathbf{s}} = \varprojlim_{n} (\mathbb{Z}_{s_{n}}, \pi_{n}) = \Big\{ x \in \prod_{i=1}^{\infty} \mathbb{Z}_{s_{n}} : x_{n} = \pi_{n}(x_{n+1}) \Big\},$$

where each \mathbb{Z}_{s_n} is given the discrete topology, and on $\prod_{i=1}^{\infty} \mathbb{Z}_{s_n}$ we have the Tychonoff product topology. On G_s we define $T_s: G_s \to G_s$ by

$$T_{\mathbf{s}}(x)_n = x_n + 1 \pmod{s_n}.$$

Then G_s is a compact metrizable space and T_s is a homeomorphism, therefore (G_s, T_s) is a dynamical system (odometer).

Minimality vs. LRS

All odometers are **equicontinuous**; i.e. for every $\varepsilon > 0$ there is $\delta > 0$ such that if $d(x, y) < \delta$ then $d(T^n(x), T^n(y)) < \varepsilon$ for every $n \ge 0$.

Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

All odometers can be embedded into $\mathbb R$ with derivative equal to 0 everywhere.

-Minimality vs. LRS

We obtain the following immediate corollaries.

Lemma (Jarnik Theorem)

Let $X \subset \mathbb{R}$ be a perfect set and let $f: X \to \mathbb{R}$ be differentiable. Then there exists a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ of f, that is $F|_X = f$.

Theorem (B.,Kupka,Oprocha)

Every odometer is conjugate to a homeomorphism $f: C \to C$ such that $f' \equiv 0$ and f extends to a differentiable surjection $\overline{f}: \mathbb{R} \to \mathbb{R}$.

Corollary (B.,Kupka,Oprocha)

For every odometer (X, T) there exists an equivalent metric ρ such that T has (LRS) property with respect to ρ .

Minimality vs. LRS

Corollary (B.,Kupka,Oprocha)

There exists a Cantor set $C \subseteq \mathbb{R}^2$ and a homeomorphism F such that F has the (LRS) property, $C = \bigcup_{i \in I} M_i$ where I is uncountable, $M_i \cap M_i = \emptyset$ for $i \neq j$ and (M_i, F) if minimal for every i.

Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

There exists a minimal weakly mixing Cantor set homeomorphism $T: X \rightarrow X$ that embeds in \mathbb{R} with vanishing derivative everywhere.

Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

There exists a transitive, nonminimal and periodic point free Cantor set homeomorphism that embeds in \mathbb{R} with vanishing derivative everywhere.

-Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

Every minimal dynamical system (X, T) with (LRS) property can be extended to a non-transitive dynamical system (Z, F) with (LRS) property.

Theorem (B.,Kupka,Oprocha)

There exists a Cantor set $W \subseteq \mathbb{R}^2$ and a nontransitive homeomorphism G with the (LRS) property such that the set of periodic points of G consists of a single fixed point.

-Minimality vs. LRS

Theorem (B.,Kupka,Oprocha)

Every minimal dynamical system (X, T) with (LRS) property can be extended to a non-transitive dynamical system (Z, F) with (LRS) property.

Theorem (B.,Kupka,Oprocha)

There exists a Cantor set $W \subseteq \mathbb{R}^2$ and a nontransitive homeomorphism G with the (LRS) property such that the set of periodic points of G consists of a single fixed point.

(日)

Minimality vs. LRS

Question

Can every minimal Cantor set homeomorphism be embedded into \mathbb{R} with vanishing derivative everywhere?

Minimality and Cartesian Products

2 Minimal systems meet Banach fixed point theorem

3 Minimality vs. LRS

Minimality and Cartesian Products

Piotr Oprocha, Kraków&Ostrava

Alex Clark, University of Leicester

<ロ> <四> <四> <三> <三> <三> <三> <三

Minimality and Cartesian Products

Is minimality with respect to homeomorphisms preserved under Cartesian product in the class of compact spaces?

Minimality and Cartesian Products

Observation

No product of a homeomorphism $h: X \to X$ with itself

$$(h,h): X \times X \to X \times X$$

is minimal, by the fact that it keeps the diagonal

$$\Delta = \{(x, x) : x \in X\}$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ へ ○

invariant.

Minimality and Cartesian Products

Toy Models

If X is a Cantor set then X × X is a Cantor set as well, so minimality is preserved.

2 If
$$X = \mathbb{S}^1$$
 then $X \times X = \mathbb{T}^2$ and

$$H(x,y)=(x+\alpha,y+\beta)$$

として 小山 マイドマ 小山 マイロマ

is minimal if and only if $1, \alpha, \beta$ are \mathbb{Q} -independent.

Here we shall show that a **Cartesian power of a minimal spaces need not be minimal**.

Minimality and Cartesian Products

Theorem

(B.,Clark,Oprocha)There exists a compact connected metric minimal space Y such that $Y \times Y$ is not minimal.

Minimality and Cartesian Products

Almost Slovak space

A compact space X is an **almost Slovak space** if its homeomorphism group

$$\mathrm{H}(X) = \mathrm{H}_+(X) \cup \mathrm{H}_-(X),$$

with

$$\mathrm{H}_+(X)\cap\mathrm{H}_-(X)=\{\mathsf{id}_X\},$$

where $H_+(X)$ is cyclic and generated by a minimal homeomorphism, and for every $g \in H_-(X)$ we have $g^2 \in H_+(X)$.

Minimality and Cartesian Products

The Pseudo-circle

The *pseudo-arc P* is defined as the unique *arc-like* continuum that is *hereditarily indecomposable*.

- *P* is *arc-like* means that for each $\epsilon > 0$ there exists a map $f_{\epsilon} : P \to [0, 1]$ with $diam(f^{-1}(t)) < \epsilon$ for every *t*; alternatively, $P = \lim_{\epsilon \to 0} \{[0, 1], f_i\}$
- *P* is *indecomposable* means that it *does not decompose* into the union of *two proper subcontinua*
- *P* is *hereditarily indecomposable* means that all subcontinua of *P* are indecomposable

The *pseudo-circle* is defined as the unique *circle-like*, *hereditarily indecomposable* and **plane separating** continuum.

- Minimality and Cartesian Products

The Pseudo-arc

The pseudo-arc P may be considered as a very **bad fractal**, as it is hereditarily equivalent, and so it has a self-similarity feature. **Hereditary equivalence** means that every subcontinuum of P is homeomorphic to P.

Note: No indecomposable continuum is a continuous image of [0,1]!

Minimality and Cartesian Products

Pseudo-arcs and Pseudo-circles in Dynamics (select results)

- (1982) Handel: pseudo-circle as an attracting minimal set of a C[∞]-smooth diffeomorphism of the plane
- (1996) Kennedy&Yorke: constructed a C^{∞} diffeomorphism on a 7-manifold which has an invariant set with an uncontable number of pseudocircle components and is stable to C^1 perturbations
- (2010) Chéritat: pseudo-circle as a boundary of a Siegel disk of a holomorphic map
- (2014) B.&Oprocha: pseudo-circle as a Birkhoff-type attractor on the 2-torus
- (2016) Rempe-Gillen: pseudo-arc as a compactification Julia set component of entire functions of disjoint type

- Minimality and Cartesian Products

Outline of the proof:

Theorem. (B., Clark, Oprocha) There exists a compact connected metric minimal space Y such that $Y \times Y$ is not minimal.

Start with a minimal suspension flow homeomorphism.

Perform a "surgery" inserting obstacles in place of one of the orbits.

The resulting space will have an almost cyclic homeomorphism group and will be factorwise rigid.

Minimality and Cartesian Products

ヘロン 人間 とくほど 人ほど 一日

Minimality and Cartesian Products

Thank You for Your Attention

Minimality and Cartesian Products

Graphs

By a *graph* we mean a pair G = (V, E) of finite sets, where $E \subset V \times V$ (V ... set of *vertices*, E ... set of *edges*).

The graphs we consider are always *edge surjective*, i.e. for every $v \in V$ there are $u, w \in V$ such that $(u, v), (v, w) \in E$.

Graph homomorphisms

A map $\phi: V_1 \to V_2$ is a *graph homomorphism* between graphs $(V_1, E_1), (V_2, E_2)$ if for every $(u, v) \in E_1$ we have $(\phi(u), \phi(v)) \in E_2$. A homomorphism ϕ is *bidirectional* if $(u, v), (u, v') \in E_1$ implies $\phi(v) = \phi(v')$ and $(w, u), (w', u) \in E_1$ implies $\phi(w) = \phi(w')$.

- Minimality and Cartesian Products

bd-covers

If ϕ is a bidirectional map between edge-surjective graps then we call it bd-cover.

Construction [Akin, Glasner, Weiss, 2008]

Let $\mathcal{G} = \langle \phi_i \rangle_{i=0}^{\infty}$ denote a sequence of bd-covers $\phi_i: (V_{i+1}, E_{i+1}) \rightarrow (V_i, E_i)$, and let

$$V_{\mathcal{G}} = \varprojlim (V_i, \phi_i) = \{ x \in \prod_{i=0}^{\infty} V_i : \phi_i(x_{i+1}) = x_i \text{ for all } i \ge 0 \}$$

be the inverse limit defined by \mathcal{G} .

Set

$$E_{\mathcal{G}} = \{ e \in V_{\mathcal{G}} \times V_{\mathcal{G}} : e_i \in E_i \text{ for each } i = 1, 2, \dots \}$$

As usual, V_i is endowed with discrete topology and $\mathbb{X} = \prod_{i=0}^{\infty} V_i$ is endowed with product topology.

IRAFM

・ロット (雪) (日) (日)

Minimality and Cartesian Products

Lemma (Shimomura, 2016)

Let $\mathcal{G} = \langle \phi_i \rangle$ be a sequence of bd-covers $\phi_i: (V_{i+1}, E_{i+1}) \rightarrow (V_i, E_i)$. Then $V_{\mathcal{G}}$ is a zero-dimensional compact metric space and the relation $E_{\mathcal{G}}$ defines a homeomorphism.

