A look on some results about Camassa-Holm type equations

Igor Leite Freire
November 26, 2018

Mathematical Institute in Opava
Silesian University in Opava
Centro de Matemática, Computação e Cognição
Universidade Federal do ABC

Sketch of the presentation

Intention:

Sketch of the presentation

Intention:

- to present an overview about some Camassa-Holm (CH) type equations;

Sketch of the presentation

Intention:

- to present an overview about some Camassa-Holm (CH) type equations;
- to show that the CH and other similar equations can be derived using arguments from symmetries and conserved quantities;

Sketch of the presentation

Intention:

- to present an overview about some Camassa-Holm (CH) type equations;
- to show that the CH and other similar equations can be derived using arguments from symmetries and conserved quantities;
- discuss some weak solutions of these equations.

Glossary

Consider an equation $\Delta\left(x, t, u, u_{(1)}, \cdots, u_{(n)}\right)=0$.

Infinitesimal generator (of point symmetry)

Operator $X=\tau(x, t, u) \partial_{t}+\xi(x, t, u) \partial_{x}+\eta(x, t, u) \partial_{u}$ satisfying the condition $X^{(n)} \Delta=0$ when $\Delta=0$.

Glossary

Consider an equation $\Delta\left(x, t, u, u_{(1)}, \cdots, u_{(n)}\right)=0$.

Infinitesimal generator (of point symmetry)

Operator $X=\tau(x, t, u) \partial_{t}+\xi(x, t, u) \partial_{x}+\eta(x, t, u) \partial_{u}$ satisfying the condition $X^{(n)} \Delta=0$ when $\Delta=0$.

Generalized symmetry generator (evolutionary)
Operator $X_{Q}=Q\left(x, u, u_{(1)}, \cdots\right) \partial_{u}$ such that $X^{(n)} \Delta=0$ when $\Delta=0$ and differential consequences.

Glossary

Consider an equation $\Delta\left(x, t, u, u_{(1)}, \cdots, u_{(n)}\right)=0$.

Infinitesimal generator (of point symmetry)

Operator $X=\tau(x, t, u) \partial_{t}+\xi(x, t, u) \partial_{x}+\eta(x, t, u) \partial_{u}$ satisfying the condition $X^{(n)} \Delta=0$ when $\Delta=0$.

Generalized symmetry generator (evolutionary)

Operator $X_{Q}=Q\left(x, u, u_{(1)}, \cdots\right) \partial_{u}$ such that $X^{(n)} \Delta=0$ when $\Delta=0$ and differential consequences.

Recursion operator

An operator \mathcal{R} with the following property: if $X_{Q}=Q \partial_{u}$ is an evolutionary symmetry of $\Delta=0$, then $X_{\mathcal{R} Q}=(\mathcal{R} Q) \partial_{u}$ is also another evolutionary symmetry.

Glossary

Conserved vector and conservation law

A vector field $C=\left(C^{0}, C^{1}\right)$, depending on x, t, u and derivatives of u, is called conserved vector for the equation $\Delta=0$ if its space-time divergence $D_{t} C^{0}+D_{x} C^{1}=0$ (conservation law) when $\Delta=0$ and all of its differential consequences.

Glossary

Conserved vector and conservation law

A vector field $C=\left(C^{0}, C^{1}\right)$, depending on x, t, u and derivatives of u, is called conserved vector for the equation $\Delta=0$ if its space-time divergence $D_{t} C^{0}+D_{x} C^{1}=0$ (conservation law) when $\Delta=0$ and all of its differential consequences.

Characteristic of a conservation law
If $C=\left(C^{0}, C^{1}\right)$ is such that $D_{t} C^{0}+D_{x} C^{1}=Q \Delta$, then C is a conserved vector for the equation and Q is called characteristic, or multiplier, of the conservation law.

Glossary

Conserved vector and conservation law

A vector field $C=\left(C^{0}, C^{1}\right)$, depending on x, t, u and derivatives of u, is called conserved vector for the equation $\Delta=0$ if its space-time divergence $D_{t} C^{0}+D_{x} C^{1}=0$ (conservation law) when $\Delta=0$ and all of its differential consequences.

Characteristic of a conservation law If $C=\left(C^{0}, C^{1}\right)$ is such that $D_{t} C^{0}+D_{x} C^{1}=Q \Delta$, then C is a conserved vector for the equation and Q is called characteristic, or multiplier, of the conservation law.

If the domain of the equation is the entire real line, and if $C^{1} \rightarrow 0$ when $|x| \rightarrow \infty$, then the quantity

$$
H=\int_{\mathbb{R}} C^{0} d x
$$

is constant (constant of motion).

Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_{t}=[M, L]$ represents the original equation.

Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_{t}=[M, L]$ represents the original equation.
(bi-)Hamiltonian \Longrightarrow infinitely many conservation laws

$$
u_{t}=\mathcal{E} \frac{\delta \mathcal{H}_{1}}{\delta u}=\mathcal{D} \frac{\delta \mathcal{H}_{2}}{\delta u} \quad \text { (compatible operators). }
$$

Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_{t}=[M, L]$ represents the original equation.
(bi-)Hamiltonian \Longrightarrow infinitely many conservation laws

$$
u_{t}=\mathcal{E} \frac{\delta \mathcal{H}_{1}}{\delta u}=\mathcal{D} \frac{\delta \mathcal{H}_{2}}{\delta u} \quad \text { (compatible operators). }
$$

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R}=\mathcal{E D}^{-1}$.

Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_{t}=[M, L]$ represents the original equation.
(bi-)Hamiltonian \Longrightarrow infinitely many conservation laws

$$
u_{t}=\mathcal{E} \frac{\delta \mathcal{H}_{1}}{\delta u}=\mathcal{D} \frac{\delta \mathcal{H}_{2}}{\delta u} \quad \text { (compatible operators). }
$$

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R}=\mathcal{E} \mathcal{D}^{-1}$.
$H_{i}=\int_{\mathbb{R}} \mathcal{H}_{i} d x, i=1,2$, are called Hamiltonian functionals.

Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_{t}=[M, L]$ represents the original equation.
(bi-)Hamiltonian \Longrightarrow infinitely many conservation laws

$$
u_{t}=\mathcal{E} \frac{\delta \mathcal{H}_{1}}{\delta u}=\mathcal{D} \frac{\delta \mathcal{H}_{2}}{\delta u} \quad \text { (compatible operators). }
$$

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R}=\mathcal{E} \mathcal{D}^{-1}$.
$H_{i}=\int_{\mathbb{R}} \mathcal{H}_{i} d x, i=1,2$, are called Hamiltonian functionals.
Very strong structure!

Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_{t}=[M, L]$ represents the original equation.
(bi-)Hamiltonian \Longrightarrow infinitely many conservation laws

$$
u_{t}=\mathcal{E} \frac{\delta \mathcal{H}_{1}}{\delta u}=\mathcal{D} \frac{\delta \mathcal{H}_{2}}{\delta u} \quad \text { (compatible operators). }
$$

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R}=\mathcal{E} \mathcal{D}^{-1}$.
$H_{i}=\int_{\mathbb{R}} \mathcal{H}_{i} d x, i=1,2$, are called Hamiltonian functionals.
Very strong structure! ${ }^{(\cdot)}$

Historical background

1834 (J. S. Russell): solitary waves

A wave described by a function $u(x, t)=\phi(x-c t)$ such that $u(t, x) \rightarrow u_{ \pm}$as $x-c t \rightarrow \pm \infty$, where $u_{ \pm}$are constants. In Russell's observation there was a particular solitary wave like a pulse propagating in a channel with water.

Historical background

1834 (J. S. Russell): solitary waves

A wave described by a function $u(x, t)=\phi(x-c t)$ such that $u(t, x) \rightarrow u_{ \pm}$as $x-c t \rightarrow \pm \infty$, where $u_{ \pm}$are constants. In Russell's observation there was a particular solitary wave like a pulse propagating in a channel with water.

1895 (D. Korteweg, G. de Vries): the KdV equation
An equation that might explain the wave observed by Russel:
$u_{t}-6 u u_{x}+u_{x x x}=0, \quad u=u(x, t)$.

A solitary wave: 1 -soliton of KdV equation

Historical background

1965 (N. J. Zabusky, M. D. Kruskal): solitons

- They are of permanent form;

Historical background

1965 (N. J. Zabusky, M. D. Kruskal): solitons

- They are of permanent form;
- They are localized within a region;

Historical background

1965 (N. J. Zabusky, M. D. Kruskal): solitons

- They are of permanent form;
- They are localized within a region;
- They can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.

2-soliton

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;
- a "sort of superposition" of solutions.

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C.
H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;
- a "sort of superposition" of solutions.

There are many more authors to mention, but these are enough to give an naïve overview.

Historical background

1968-1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C.
H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;
- a "sort of superposition" of solutions.

There are many more authors to mention, but these are enough to give an naïve overview.

Comment about solutions

The solitons of the KdV equation are smooth!

Small digression: what is the importance of...

- (bi-)Hamiltonians?

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the following strucutres: bi-Hamiltonian structure, a Lax pair, or infinitely many generalized symmetries.

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the following strucutres: bi-Hamiltonian structure, a Lax pair, or infinitely many generalized symmetries.

Usually, but not always, "superposition of soliton-like solutions" is an indicative of integrable equations.

Camassa-Holm's work

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Let., vol. 71, 1661-1664, (1993) $m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.

Camassa-Holm's work

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Let., vol. 71, 1661-1664, (1993) $m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.

Features of the equation:

Camassa-Holm's work

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Let., vol. 71, 1661-1664, (1993) $m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.

Features of the equation:
bi-Hamiltonian formulation;

Camassa-Holm's work

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Let., vol. 71, 1661-1664, (1993)

$$
m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x} .
$$

Features of the equation:
bi-Hamiltonian formulation;
infinitely many symmetries;

Camassa-Holm's work

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Let., vol. 71, 1661-1664, (1993)

$$
m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x} .
$$

Features of the equation:
bi-Hamiltonian formulation;
infinitely many symmetries;
a "sort of soliton" given by $u(x, t)=c e^{-|x-c t|}$;

Camassa-Holm's work

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Let., vol. 71, 1661-1664, (1993)

$$
m_{t}+2 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}
$$

Features of the equation:
bi-Hamiltonian formulation;
infinitely many symmetries;
a "sort of soliton" given by $u(x, t)=c e^{-|x-c t|}$;
a "sort of superposition" of these solutions, given by

$$
u(x, t)=\sum_{j=1}^{N} p_{j}(t) e^{-\left|x-q_{j}(t)\right|} .
$$

- Multipeakon solutions

$$
u(x, t)=\sum_{j=1}^{N} p_{j}(t) e^{-\left|x-q_{j}(t)\right|}
$$

- Multipeakon solutions

$$
u(x, t)=\sum_{j=1}^{N} p_{j}(t) e^{-\left|x-q_{j}(t)\right|}
$$

- The functions p_{j} and q_{j} evolve according to the dynamical system
- Multipeakon solutions

$$
u(x, t)=\sum_{j=1}^{N} p_{j}(t) e^{-\left|x-q_{j}(t)\right|}
$$

- The functions p_{j} and q_{j} evolve according to the dynamical system

$$
\begin{aligned}
& q_{j}^{\prime}(t)=\sum_{k=1}^{N} p_{k}(t) e^{-\left|q_{j}(t)-q_{k}(t)\right|} \\
& p_{j}^{\prime}(t)=\sum_{k=1}^{N} \operatorname{sign}\left(q_{j}(t)-q_{k}(t)\right) p_{k}(t) e^{-\left|q_{j}(t)-q_{k}(t)\right|}
\end{aligned}
$$

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m)
$$

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m) ;
$$

- Consequence:

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m)
$$

- Consequence: recursion operator

$$
\mathcal{R}=(m D+D m)\left(1-D^{2}\right)^{-1} D^{-1}
$$

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m)
$$

- Consequence: recursion operator

$$
\mathcal{R}=(m D+D m)\left(1-D^{2}\right)^{-1} D^{-1}
$$

- Soliton solutions: (multi-)peakon solutions.

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m)
$$

- Consequence: recursion operator

$$
\mathcal{R}=(m D+D m)\left(1-D^{2}\right)^{-1} D^{-1}
$$

- Soliton solutions: (multi-)peakon solutions.
- This type of soliton is continuous, and only continuous!

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m)
$$

- Consequence: recursion operator

$$
\mathcal{R}=(m D+D m)\left(1-D^{2}\right)^{-1} D^{-1}
$$

- Soliton solutions: (multi-)peakon solutions.
- This type of soliton is continuous, and only continuous! ;)

Comments about CH equation

The equation is integrable

- Bi-Hamiltonian structure:

$$
m_{t}=-D\left(1-D^{2}\right) \frac{\delta}{\delta m}\left(u^{3}+u u_{x}^{2}\right)=-(m D+D m) \frac{\delta}{\delta m}(u m)
$$

- Consequence: recursion operator

$$
\mathcal{R}=(m D+D m)\left(1-D^{2}\right)^{-1} D^{-1}
$$

- Soliton solutions: (multi-)peakon solutions.
- This type of soliton is continuous, and only continuous! ;) ©

New millenium, new equations l: quadratic equations

For a while (\sim a decade), the CH equation was the only known equation to have such properties.

New millenium, new equations I: quadratic equations

For a while (\sim a decade), the CH equation was the only known equation to have such properties.
A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23-37 (1999) (not exactly new millenium, but...)

New millenium, new equations I: quadratic equations

For a while (\sim a decade), the CH equation was the only known equation to have such properties.
A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23-37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_{t}+3 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.

New millenium, new equations I: quadratic equations

For a while (\sim a decade), the CH equation was the only known equation to have such properties.
A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23-37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_{t}+3 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-72, (2002)

New millenium, new equations I: quadratic equations

For a while (\sim a decade), the CH equation was the only known equation to have such properties.
A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23-37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_{t}+3 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-72, (2002)
b-equation: $m_{t}+b u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$

New millenium, new equations I: quadratic equations

For a while (\sim a decade), the CH equation was the only known equation to have such properties.
A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23-37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_{t}+3 u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$.
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-72, (2002)
b-equation: $m_{t}+b u_{x} m+u m_{x}=0, \quad m=u-u_{x x}$
Only the DP $(b=3)$ and $\mathrm{CH}(b=2)$ equations are integrable.

New millenium, new equations II: cubic equations
Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

New millenium, new equations II: cubic equations

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_{t}+\left(u^{2}-u_{x}^{2}\right) m_{x}+2 m^{2} u_{x}=0, \quad m=u-u_{x x}$

New millenium, new equations II: cubic equations

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_{t}+\left(u^{2}-u_{x}^{2}\right) m_{x}+2 m^{2} u_{x}=0, \quad m=u-u_{x x}$

- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002, (2009)
- A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002, (2008).

New millenium, new equations II: cubic equations

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_{t}+\left(u^{2}-u_{x}^{2}\right) m_{x}+2 m^{2} u_{x}=0, \quad m=u-u_{x x}$

- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002, (2009)
- A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002, (2008).

Novikov equation: $m_{t}+u^{2} m_{x}+3 u u_{x} m=0, \quad m=u-u_{x x}$

New millenium, new equations II: cubic equations

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_{t}+\left(u^{2}-u_{x}^{2}\right) m_{x}+2 m^{2} u_{x}=0, \quad m=u-u_{x x}$

- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002, (2009)
- A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002, (2008).

Novikov equation: $m_{t}+u^{2} m_{x}+3 u u_{x} m=0, \quad m=u-u_{x x}$
Both are integrable.

On the other hand...

P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order partial differential equations, Math. Comput. Modelling., 25, 195-212, (1997).
Symmetries of a family of equations including the b - equation (although it had not been discovered yet!): $X_{1}=\partial_{x}, X_{2}=\partial_{t}, X_{3}=u \partial_{u}-t \partial_{t}$.

On the other hand...

P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order partial differential equations, Math. Comput. Modelling., 25, 195-212, (1997).
Symmetries of a family of equations including the b - equation (although it had not been discovered yet!):
$X_{1}=\partial_{x}, X_{2}=\partial_{t}, X_{3}=u \partial_{u}-t \partial_{t}$.
Y. Bozhkov, I. L. Freire and N. H. Ibragimov, Group analysis of the Novikov equation, Comp. Appl. Math., 33, 193-202, (2014).

Symmetries of the Novikov equation:

$$
X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=2 u \partial_{u}-t \partial_{t}, \quad X_{ \pm}=e^{ \pm x} \partial_{x} \pm e^{ \pm x} u \partial_{u} .
$$

On the other hand...

Characteristic (or multiplier) $Q=u$
It was also clear that both Camassa-Holm and Novikov equations had a conservation law with characteristic $Q=u$.

On the other hand...

Characteristic (or multiplier) $Q=u$
It was also clear that both Camassa-Holm and Novikov equations had a conservation law with characteristic $Q=u$.

Conservation of the Sobolev norm H^{1}
From this charactisc one can obtain the following conserved quantity for the CH and Novikov equations:

On the other hand...

Characteristic (or multiplier) $Q=u$
It was also clear that both Camassa-Holm and Novikov equations had a conservation law with characteristic $Q=u$.

Conservation of the Sobolev norm H^{1}
From this charactisc one can obtain the following conserved quantity for the CH and Novikov equations:

$$
H=\int_{\mathbb{R}}\left(u^{2}+u_{x}^{2}\right) d x=\|u\|_{H^{1}}^{2}
$$

which is nothing but the squared of the norm of a function $u(\cdot, t)$ belonging to the Sobolev space $H^{1}(\mathbb{R})$.

On the other hand...

Characteristic (or multiplier) $Q=u$
It was also clear that both Camassa-Holm and Novikov equations had a conservation law with characteristic $Q=u$.

Conservation of the Sobolev norm H^{1}
From this charactisc one can obtain the following conserved quantity for the CH and Novikov equations:

$$
H=\int_{\mathbb{R}}\left(u^{2}+u_{x}^{2}\right) d x=\|u\|_{H^{1}}^{2}
$$

which is nothing but the squared of the norm of a function $u(\cdot, t)$ belonging to the Sobolev space $H^{1}(\mathbb{R})$.

Sobolev space $H^{1}(\mathbb{R})$
It is the space of functions (including distributions) endowed with the norm defined above.

Summary until now

Camassa-Holm $u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}$

Summary until now

Camassa-Holm $u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}$

- Symmetries: $X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=1 u \partial_{u}-t \partial_{t} ;$

Summary until now

Camassa-Holm $u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}$

- Symmetries: $X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=1 u \partial_{u}-t \partial_{t} ;$
- Conservation law:

$$
\begin{aligned}
& D_{t}\left(u^{2}+u_{x}^{2}\right)+2 D_{x}\left(u^{3}-u^{2} u_{x x}-u u_{t x}\right)= \\
& u\left(m_{t}+2 u_{x} m+u m_{x}\right)
\end{aligned}
$$

Summary until now

Camassa-Holm $u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}$

- Symmetries: $X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=1 u \partial_{u}-t \partial_{t} ;$
- Conservation law:

$$
\begin{aligned}
& D_{t}\left(u^{2}+u_{x}^{2}\right)+2 D_{x}\left(u^{3}-u^{2} u_{x x}-u u_{t x}\right)= \\
& u\left(m_{t}+2 u_{x} m+u m_{x}\right)
\end{aligned}
$$

Novikov $u_{t}-u_{t x x}+4 u^{2} u_{x}=3 u u_{x} u_{x x}+u^{2} u_{x x x}$

Summary until now

Camassa-Holm $u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}$

- Symmetries: $X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=1 u \partial_{u}-t \partial_{t} ;$
- Conservation law:

$$
\begin{aligned}
& D_{t}\left(u^{2}+u_{x}^{2}\right)+2 D_{x}\left(u^{3}-u^{2} u_{x x}-u u_{t x}\right)= \\
& u\left(m_{t}+2 u_{x} m+u m_{x}\right)
\end{aligned}
$$

Novikov $u_{t}-u_{t x x}+4 u^{2} u_{x}=3 u u_{x} u_{x x}+u^{2} u_{x x x}$

- Symmetries:

$$
X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=2 u \partial_{u}-t \partial_{t}, \quad X_{ \pm}=e^{ \pm x} \partial_{x} \pm e^{ \pm x} u \partial_{u} ;
$$

Summary until now

Camassa-Holm $u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}$

- Symmetries: $X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=1 u \partial_{u}-t \partial_{t} ;$
- Conservation law:

$$
\begin{aligned}
& D_{t}\left(u^{2}+u_{x}^{2}\right)+2 D_{x}\left(u^{3}-u^{2} u_{x x}-u u_{t x}\right)= \\
& u\left(m_{t}+2 u_{x} m+u m_{x}\right)
\end{aligned}
$$

Novikov $u_{t}-u_{t x x}+4 u^{2} u_{x}=3 u u_{x} u_{x x}+u^{2} u_{x x x}$

- Symmetries:

$$
X_{1}=\partial_{x}, \quad X_{2}=\partial_{t}, \quad X_{3}=2 u \partial_{u}-t \partial_{t}, \quad X_{ \pm}=e^{ \pm x} \partial_{x} \pm e^{ \pm x} u \partial_{u} ;
$$

- Conservation law:

$$
\begin{aligned}
& D_{t}\left(u^{2}+u_{x}^{2}\right)+2 D_{x}\left(u^{4}-u^{3} u_{x x}-u u_{t x}\right)= \\
& u\left(m_{t}+3 u u_{x} m+u^{2} m_{x}\right)
\end{aligned}
$$

Question

Consider the family of equations

$$
u_{t}-u_{t x x}+f(u) u_{x}+g(u) u_{x} u_{x x}+h(u) u_{x x x}=0
$$

Question

Consider the family of equations

$$
u_{t}-u_{t x x}+f(u) u_{x}+g(u) u_{x} u_{x x}+h(u) u_{x x x}=0
$$

What would be the most general equation in this family having...

Question

Consider the family of equations

$$
u_{t}-u_{t x x}+f(u) u_{x}+g(u) u_{x} u_{x x}+h(u) u_{x x x}=0
$$

What would be the most general equation in this family having...

1. the operator $X=u \partial_{u}-p t \partial_{t}$ as a generator of a group of scaling symmetries; and

Question

Consider the family of equations

$$
u_{t}-u_{t x x}+f(u) u_{x}+g(u) u_{x} u_{x x}+h(u) u_{x x x}=0
$$

What would be the most general equation in this family having...

1. the operator $X=u \partial_{u}-p t \partial_{t}$ as a generator of a group of scaling symmetries; and
2. a charactheristic $Q=u$?

Question

Consider the family of equations

$$
u_{t}-u_{t x x}+f(u) u_{x}+g(u) u_{x} u_{x x}+h(u) u_{x x x}=0
$$

What would be the most general equation in this family having...

1. the operator $X=u \partial_{u}-p t \partial_{t}$ as a generator of a group of scaling symmetries; and
2. a charactheristic $Q=u$?

Answer

$u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0$
P. L. da Silva and I. L. Freire, An equation unifying both

Camassa-Holm and Novikov equations, Discrete Contin. Dyn.
Syst., Suppl., 304-311, (2015).

[^0]
$u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0$ and??

Nice choice: $\gamma=p+2, \delta=-1$

$u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0$ and??

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$

$u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0$ and??

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

$$
u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0 \text { and?? }
$$

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Some observations

- CH: $p=1$. Novikov: $p=2$.

$$
u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0 \text { and?? }
$$

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Some observations

- CH: $p=1$. Novikov: $p=2$.
- the parameter controls coefficients and nonlinearities!

$$
u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0 \text { and?? }
$$

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Some observations

- CH: $p=1$. Novikov: $p=2$.
- the parameter controls coefficients and nonlinearities!

Natural questions

$$
u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0 \text { and?? }
$$

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Some observations

- CH: $p=1$. Novikov: $p=2$.
- the parameter controls coefficients and nonlinearities!

Natural questions

1. Are there other integrable members in the family?

$$
u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0 \text { and?? }
$$

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Some observations

- CH: $p=1$. Novikov: $p=2$.
- the parameter controls coefficients and nonlinearities!

Natural questions

1. Are there other integrable members in the family?
2. Are there further conservation laws?

$$
u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0 \text { and?? }
$$

Nice choice: $\gamma=p+2, \delta=-1$

- $u_{t}-u_{t x x}+(p+2) u^{p} u_{x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$
- Alternative form: $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Some observations

- CH: $p=1$. Novikov: $p=2$.
- the parameter controls coefficients and nonlinearities!

Natural questions

1. Are there other integrable members in the family?
2. Are there further conservation laws?
3. Are there other members having peakon solutions?

Answers

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Answers

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little more general equation:

Answers

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little more general equation:

$$
u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0 .
$$

Answers

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little more general equation:

$$
u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0
$$

S. C. Anco, P. L. da Silva and I. L. Freire, A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations, J. Math. Phys., 56, 091506, (2015).

Oth order conservation laws

Theorem

The local Oth order conservation laws admitted by the equation consists of three Oth order conservation laws:

Oth order conservation laws

Theorem

The local Oth order conservation laws admitted by the equation consists of three Oth order conservation laws:

- $C^{0}=u$ and $C^{1}=(a /(p+1)) u^{p+1}+(p c-b) u_{x}^{2} / 2+u_{t x}$

$$
\text { if } p=1 \text { or } b=p c \text {; }
$$

Oth order conservation laws

Theorem

The local Oth order conservation laws admitted by the equation consists of three Oth order conservation laws:

- $C^{0}=u$ and $C^{1}=(a /(p+1)) u^{p+1}+(p c-b) u_{x}^{2} / 2+u_{t x}$ if $p=1$ or $b=p c$;
- $C^{0}=(c-a) e^{ \pm \sqrt{a / c} x} u$ and
$C^{1}=e^{ \pm \sqrt{a / c x}}\left(\pm \sqrt{a c}\left(u_{t}+c u u_{x}\right)-c u_{t x}-c^{2}\left(u_{x}^{2}+u u_{x x}\right)\right.$
if $p=1, b=3 c$ and $c \neq 0$;

Oth order conservation laws

Theorem

The local Oth order conservation laws admitted by the equation consists of three Oth order conservation laws:

- $C^{0}=u$ and $C^{1}=(a /(p+1)) u^{p+1}+(p c-b) u_{x}^{2} / 2+u_{t x}$ if $p=1$ or $b=p c$;
- $C^{0}=(c-a) e^{ \pm \sqrt{a / c} x} u$ and
$C^{1}=e^{ \pm \sqrt{a / c x}}\left(\pm \sqrt{a c}\left(u_{t}+c u u_{x}\right)-c u_{t x}-c^{2}\left(u_{x}^{2}+u u_{x x}\right)\right.$
if $p=1, b=3 c$ and $c \neq 0$;
- $C^{0}=0$ and $C^{1}=f(t) e^{ \pm x}\left(\pm\left(u_{t}+c u u_{x}\right)-u_{t x}-c\left(u_{x}^{2}+u_{x x}\right)\right)$, if $p=1, a=c$ and $b=3 c$.

1st order conservation laws

Theorem

The 1st-order local conservation laws admitted by the equation are:

1st order conservation laws

Theorem

The 1st-order local conservation laws admitted by the equation are:

- $C^{0}=\left(u^{2}+u_{x}^{2}\right) / 2$ and $\left.C^{1}=(a /(p+2)) u-c u_{x x}\right) u^{p+1}-u u_{t x}$ if $b=(p+1) c$;

1st order conservation laws

Theorem

The 1st-order local conservation laws admitted by the equation are:

- $C^{0}=\left(u^{2}+u_{x}^{2}\right) / 2$ and $\left.C^{1}=(a /(p+2)) u-c u_{x x}\right) u^{p+1}-u u_{t x}$ if $b=(p+1) c$;
- $C^{0}=x u-c t\left(u^{2}+u_{x}^{2}\right) / 2$ and
$C^{1}=(c t u-x)\left(u_{t x}+c u u_{x x}\right)+u_{t}-c^{2} t u^{3} / 3+c x\left(u^{2}-u_{x}^{2}+2 u u_{x}\right) / 2$
if $p=1, a=c$ and $b=2 c$.

1st order conservation laws

Theorem

The 1st-order local conservation laws admitted by the equation are:

- $C^{0}=\left(u^{2}+u_{x}^{2}\right) / 2$ and $\left.C^{1}=(a /(p+2)) u-c u_{x x}\right) u^{p+1}-u u_{t x}$ if $b=(p+1) c$;
- $C^{0}=x u-c t\left(u^{2}+u_{x}^{2}\right) / 2$ and
$C^{1}=(c t u-x)\left(u_{t x}+c u u_{x x}\right)+u_{t}-c^{2} t u^{3} / 3+c x\left(u^{2}-u_{x}^{2}+2 u u_{x}\right) / 2$
if $p=1, a=c$ and $b=2 c$.

There are also two other conservation laws with multipliear os 2 nd order.
Observe that the Sobolev norm is conserved if $b=(p+1) c$,

1st order conservation laws

Theorem

The 1st-order local conservation laws admitted by the equation are:

- $C^{0}=\left(u^{2}+u_{x}^{2}\right) / 2$ and $\left.C^{1}=(a /(p+2)) u-c u_{x x}\right) u^{p+1}-u u_{t x}$ if $b=(p+1) c$;
- $C^{0}=x u-c t\left(u^{2}+u_{x}^{2}\right) / 2$ and
$C^{1}=(c t u-x)\left(u_{t x}+c u u_{x x}\right)+u_{t}-c^{2} t u^{3} / 3+c x\left(u^{2}-u_{x}^{2}+2 u u_{x}\right) / 2$
if $p=1, a=c$ and $b=2 c$.

There are also two other conservation laws with multipliear os 2 nd order.
Observe that the Sobolev norm is conserved if $b=(p+1) c$, that is, we have the equation

$$
u_{t}-u_{t x x}+a u^{p} u_{x x}-(p+1) c u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0
$$

Peakon solutions

- First and foremost, peakons are solutions in the distributional sense!

Peakon solutions

- First and foremost, peakons are solutions in the distributional sense!
- Assume that $u(x, t)=\phi(z), z=x-v t$, be a solution of $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$. Then we have the ODE $-v\left(\phi-\phi^{\prime}\right)^{\prime \prime}+a \phi^{p}+\phi^{\prime}-b \phi^{p-1} \phi^{\prime} \phi^{\prime \prime}-c \phi^{p} \phi^{\prime \prime \prime}=0$.

Peakon solutions

- First and foremost, peakons are solutions in the distributional sense!
- Assume that $u(x, t)=\phi(z), z=x-v t$, be a solution of $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$. Then we have the ODE $-v\left(\phi-\phi^{\prime}\right)^{\prime \prime}+a \phi^{p}+\phi^{\prime}-b \phi^{p-1} \phi^{\prime} \phi^{\prime \prime}-c \phi^{p} \phi^{\prime \prime \prime}=0$.

Weak formulation for travelling waves

A weak solution of the ODE is a function satisfying the integral equation, for any test function ψ

$$
\begin{aligned}
& 0=\int_{\mathbb{R}}\left(v\left(\psi^{\prime \prime}-\psi\right) \phi^{\prime}+\left(a \psi-c \psi^{\prime \prime}\right) \phi^{p} \phi^{\prime}\right) d z \\
& \left.+\frac{1}{2} \int_{\mathbb{R}}(b-3 p c) \psi^{\prime} \phi^{p-1}\left(\phi^{\prime}\right)^{2}+(p-1)(b-p c) \psi \phi^{p-2}\left(\phi^{\prime}\right)^{3}\right) d z
\end{aligned}
$$

Peakon solutions

- If we suppose $\phi(z)=\alpha e^{-|z|}$, the integral equation reads:

Peakon solutions

- If we suppose $\phi(z)=\alpha e^{-|z|}$, the integral equation reads:

$$
2 \alpha\left(v-c \alpha^{p}\right) \psi^{\prime}(0)+\alpha^{p+1}(b+c-a) \int_{\mathbb{R}} \operatorname{sign}(z) \psi e^{-(p+1)|z|} d z=0
$$

Peakon solutions

- If we suppose $\phi(z)=\alpha e^{-|z|}$, the integral equation reads:

$$
2 \alpha\left(v-c \alpha^{p}\right) \psi^{\prime}(0)+\alpha^{p+1}(b+c-a) \int_{\mathbb{R}} \operatorname{sign}(z) \psi e^{-(p+1)|z|} d z=0 .
$$

- If $a=b+c$ and $c \alpha^{p}=v$, then the ODE
$-v\left(\phi-\phi^{\prime}\right)^{\prime \prime}+a \phi^{p}+\phi^{\prime}-b \phi^{p-1} \phi^{\prime} \phi^{\prime \prime}-c \phi^{p} \phi^{\prime \prime \prime}=0$ has the weak solution $\phi(z)=\alpha e^{-|z|}$.

Peakon solutions

- If we suppose $\phi(z)=\alpha e^{-|z|}$, the integral equation reads:

$$
2 \alpha\left(v-c \alpha^{p}\right) \psi^{\prime}(0)+\alpha^{p+1}(b+c-a) \int_{\mathbb{R}} \operatorname{sign}(z) \psi e^{-(p+1)|z|} d z=0
$$

- If $a=b+c$ and $c \alpha^{p}=v$, then the ODE $-v\left(\phi-\phi^{\prime}\right)^{\prime \prime}+a \phi^{p}+\phi^{\prime}-b \phi^{p-1} \phi^{\prime} \phi^{\prime \prime}-c \phi^{p} \phi^{\prime \prime \prime}=0$ has the weak solution $\phi(z)=\alpha e^{-|z|}$.

Theorem

Assume that $a=b+c$ and $c \alpha^{p}=v$. Then the equation $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$ has the peakon solution $u(x, t)=(v / c)^{1 / p} e^{-|x-v t|}$.

Some interesting observations

Equation

$u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$

Some interesting observations

Equation

$u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$
Conservation of Sobolev norm
$b=(p+1) c$

Some interesting observations

Equation

$u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$
Conservation of Sobolev norm
$b=(p+1) c$
1-peakon solution
$a=b+c$.

Some interesting observations

Equation

$u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$
Conservation of Sobolev norm
$b=(p+1) c$

1-peakon solution

$a=b+c$.

Theorem

If the equation has the 1-peakon solution
$u(x, t)=(v / c)^{1 / p} e^{-|x-v t|}$ and also has the Sobolev norm $\|u\|_{H^{1}}$ as a conserved quantity, then, after a scaling in t, we have $u_{t}-u_{t x x}+(p+2) u^{p} u_{x x}=(p+1) u^{p-1} u_{x} u_{x x}+u^{p} u_{x x x}$ or its equivalent form $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$.

Multi-peakons

- Let us now suppose that p is a positive integer.

Multi-peakons

- Let us now suppose that p is a positive integer.
- Let us assume that

$$
u(x, t)=\sum_{i=1}^{N} p_{i}(t) e^{-\left|x-q_{i}(t)\right|}
$$

Multi-peakons

- Let us now suppose that p is a positive integer.
- Let us assume that

$$
u(x, t)=\sum_{i=1}^{N} p_{i}(t) e^{-\left|x-q_{i}(t)\right|}
$$

- $m=u-u_{x x}=2 \sum_{i=1}^{N} p_{i}(t) \delta\left(x-q_{i}(t)\right)$;

Multi-peakons

- Let us now suppose that p is a positive integer.
- Let us assume that

$$
u(x, t)=\sum_{i=1}^{N} p_{i}(t) e^{-\left|x-q_{i}(t)\right|}
$$

- $m=u-u_{x x}=2 \sum_{i=1}^{N} p_{i}(t) \delta\left(x-q_{i}(t)\right)$;
- $m_{x}=2 \sum_{i=1}^{N} p_{i}(t) \delta^{\prime}\left(x-q_{i}(t)\right)$;

Multi-peakons

- Let us now suppose that p is a positive integer.
- Let us assume that

$$
u(x, t)=\sum_{i=1}^{N} p_{i}(t) e^{-\left|x-q_{i}(t)\right|}
$$

- $m=u-u_{x x}=2 \sum_{i=1}^{N} p_{i}(t) \delta\left(x-q_{i}(t)\right)$;
- $m_{x}=2 \sum_{i=1}^{N} p_{i}(t) \delta^{\prime}\left(x-q_{i}(t)\right)$;
- $m_{t}=2 \sum_{i=1}^{N} p_{i}^{\prime}(t) \delta\left(x-q_{i}(t)\right)-2 \sum_{i=1}^{N} p_{i}(t) q_{i}^{\prime}(t) \delta^{\prime}\left(x-q_{i}(t)\right)$;

Multi-peakons

- Let us now suppose that p is a positive integer.
- Let us assume that

$$
u(x, t)=\sum_{i=1}^{N} p_{i}(t) e^{-\left|x-q_{i}(t)\right|}
$$

- $m=u-u_{x x}=2 \sum_{i=1}^{N} p_{i}(t) \delta\left(x-q_{i}(t)\right)$;
- $m_{x}=2 \sum_{i=1}^{N} p_{i}(t) \delta^{\prime}\left(x-q_{i}(t)\right)$;
- $m_{t}=2 \sum_{i=1}^{N} p_{i}^{\prime}(t) \delta\left(x-q_{i}(t)\right)-2 \sum_{i=1}^{N} p_{i}(t) q_{i}^{\prime}(t) \delta^{\prime}\left(x-q_{i}(t)\right)$;
- Substituting these quantities into
$m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$ and integrating against test functions, we have the following:

Multipeakon solution

Theorem

The equation

$$
m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0
$$

admits $u(x, t)=\sum_{i=1}^{N} p_{i}(t) e^{-\left|x-q_{i}(t)\right|}$ as a multipeakon solution if the functions $p_{i}, q_{i}, i=1, \ldots, N$, satisfy the following dynamical system:

$$
\begin{aligned}
& p_{i}^{\prime}=p_{i} \sum_{i_{1}, \ldots, i_{b}=1}^{N} \operatorname{sign}\left(q_{i}-q_{i_{1}}\right) p_{i_{1}} \ldots p_{i_{b}} e^{-\left|q_{j}-q_{i_{1}}\right|-\cdots-\left|q_{j}-q_{i_{b}}\right|}, \\
& q_{i}^{\prime}=\sum_{i_{1}, \ldots, i_{b}=1}^{N} p_{i_{1}} \ldots p_{i_{b}} e^{-\left|q_{j}-q_{i_{1}}\right|-\cdots-\left|q_{j}-q_{i_{b}}\right|}
\end{aligned}
$$

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$
More than one peakon

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$
More than one peakon
Life,

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$
More than one peakon
Life, or science,

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0) \checkmark$
More than one peakon
Life, or science, or both,

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$
More than one peakon
Life, or science, or both, is not so simple...

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$
More than one peakon
Life, or science, or both, is not so simple...()

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$
More than one peakon
Life, or science, or both, is not so simple...()
What could be done?

Explicity solutions $m_{t}+(p+1) u^{p-1} u_{x} m+u^{p} m_{x}=0$

1-peakon

$u(x, t)=c^{1 / p} e^{-|x-c t|}($ assuming $c>0)$

More than one peakon

Life, or science, or both, is not so simple...()

What could be done?

We can try to have some information for the case in which we have 2 peakons.

2-peakons: what can be done

Let us consider a solution given by
$u(x, t)=p_{1}(t) e^{-\left|x-q_{1}(t)\right|}+p_{2}(t) e^{-\left|x-q_{2}(t)\right|}$.

2-peakons: what can be done

Let us consider a solution given by
$u(x, t)=p_{1}(t) e^{-\left|x-q_{1}(t)\right|}+p_{2}(t) e^{-\left|x-q_{2}(t)\right|}$.

- Sobolev norm implies:

2-peakons: what can be done

Let us consider a solution given by
$u(x, t)=p_{1}(t) e^{-\left|x-q_{1}(t)\right|}+p_{2}(t) e^{-\left|x-q_{2}(t)\right|}$.

- Sobolev norm implies: $H=p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} e^{-\left|q_{1}-q_{2}\right|}=$ const.

2-peakons: what can be done

Let us consider a solution given by
$u(x, t)=p_{1}(t) e^{-\left|x-q_{1}(t)\right|}+p_{2}(t) e^{-\left|x-q_{2}(t)\right|}$.

- Sobolev norm implies: $H=p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} e^{-\left|q_{1}-q_{2}\right|}=$ const .
- Consequence:

2-peakons: what can be done

Let us consider a solution given by
$u(x, t)=p_{1}(t) e^{-\left|x-q_{1}(t)\right|}+p_{2}(t) e^{-\left|x-q_{2}(t)\right|}$.

- Sobolev norm implies: $H=p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} e^{-\left|q_{1}-q_{2}\right|}=$ const.
- Consequence: $0 \leq e^{-\left|q_{1}-q_{2}\right|}=\left(H-p_{1}^{2}-p_{2}^{2}\right) /\left(2 p_{1} p_{2}\right) \leq 1$.

2-peakons: what can be done

Let us consider a solution given by $u(x, t)=p_{1}(t) e^{-\left|x-q_{1}(t)\right|}+p_{2}(t) e^{-\left|x-q_{2}(t)\right|}$.

- Sobolev norm implies: $H=p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} e^{-\left|q_{1}-q_{2}\right|}=$ const.
- Consequence: $0 \leq e^{-\left|q_{1}-q_{2}\right|}=\left(H-p_{1}^{2}-p_{2}^{2}\right) /\left(2 p_{1} p_{2}\right) \leq 1$.

Qualitative analysis of the dynamical system

$$
\begin{aligned}
& q_{1}^{\prime}=A_{1}^{p}, q_{2}^{\prime}=A_{2}^{p}, \\
& A_{1}=\left(H+p_{1}^{2}-p_{2}^{2}\right) /\left(2 p_{1}\right), A_{2}=\left(H-p_{1}^{2}+p_{2}^{2}\right) /\left(2 p_{1}\right), \\
& p_{1}^{\prime}=\frac{1}{2} \operatorname{sign}\left(q_{1}-q_{2}\right) A_{1}^{p-1}\left(H-p_{1}^{2}-p_{2}^{2}\right), \\
& p_{2}^{\prime}=-\frac{1}{2} \operatorname{sign}\left(q_{1}-q_{2}\right) A_{2}^{p-1}\left(H-p_{1}^{2}-p_{2}^{2}\right) .
\end{aligned}
$$

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.
Features and problems of the equation

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.
Features and problems of the equation
ves: peakon and multi-peakon solutions.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.
Features and problems of the equation
18: peakon and multi-peakon solutions.(3)

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.
Features and problems of the equation
: peakon and multi-peakon solutions.(3)
18: few conservation laws.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.
Features and problems of the equation
: peakon and multi-peakon solutions.(-)
: few conservation laws.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.

Features and problems of the equation

18: peakon and multi-peakon solutions.(3)
: few conservation laws.
: other weak travelling wave solutions:

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.

Features and problems of the equation

18: peakon and multi-peakon solutions.()
: few conservation laws.
(es): other weak travelling wave solutions:Kinks.

Some work in progress

Our old friend: $u_{t}-u_{t x x}+a u^{p} u_{x x}-b u^{p-1} u_{x} u_{x x}-c u^{p} u_{x x x}=0$.
Consider the case $b=0$ and $a=c$.
Then we have the equation: $u_{t}+u^{p} m_{x}=0$.

Features and problems of the equation

18: peakon and multi-peakon solutions.()
: few conservation laws.
: other weak travelling wave solutions:Kinks.

Work in progress

Kink solution: $u(x, t)=\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(x-q_{j}(t)\right)\left(e^{-\left|x-q_{j}(t)\right|}-1\right)$.

Work in progress

Kink solution: $u(x, t)=\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(x-q_{j}(t)\right)\left(e^{-\left|x-q_{j}(t)\right|}-1\right)$.

- c_{j} are constants;

Work in progress

Kink solution: $u(x, t)=\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(x-q_{j}(t)\right)\left(e^{-\left|x-q_{j}(t)\right|}-1\right)$.

- c_{j} are constants;
- The functions q_{j}, evolve according to the dynamical system

Work in progress

Kink solution: $u(x, t)=\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(x-q_{j}(t)\right)\left(e^{-\left|x-q_{j}(t)\right|}-1\right)$.

- c_{j} are constants;
- The functions q_{j}, evolve according to the dynamical system

$$
q_{j}^{\prime}=-\left(\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(q_{j}-q_{i}\right)\left(e^{-\left|q_{j}-q_{i}\right|}-1\right)^{p}, \quad 1 \leq j \leq N\right.
$$

- Example of 2-kink solutions with $p=1$ (B. Xia and Z. Qiao, Physics Letters A, 377(2013)2340-2342)

Work in progress

Kink solution: $u(x, t)=\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(x-q_{j}(t)\right)\left(e^{-\left|x-q_{j}(t)\right|}-1\right)$.

- c_{j} are constants;
- The functions q_{j}, evolve according to the dynamical system

$$
q_{j}^{\prime}=-\left(\sum_{j=1}^{N} c_{j} \operatorname{sign}\left(q_{j}-q_{i}\right)\left(e^{-\left|q_{j}-q_{i}\right|}-1\right)^{p}, \quad 1 \leq j \leq N\right.
$$

- Example of 2-kink solutions with $p=1$ (B. Xia and Z. Qiao, Physics Letters A, 377(2013)2340-2342)

$$
\begin{aligned}
u(x, t)= & \operatorname{sign}\left(x-\frac{1}{2}\right) \ln \left(e^{2 t}+1\right)\left(e^{-\left|x-\frac{1}{2} \ln \left(e^{2 t}+1\right)\right|}-1\right) \\
& +\operatorname{sign}\left(x+\frac{1}{2}\right) \ln \left(e^{2 t}+1\right)\left(e^{-\left|x+\frac{1}{2} \ln \left(e^{2 t}+1\right)\right|}-1\right) .
\end{aligned}
$$

- For $p>1$ we hope to report some results soon!

Simulation of the solution

Simulation of the solution

Thank you! :)

[^0]: $u_{t}-u_{t x x}+\gamma u^{p} u_{x}+\delta(p+1) u^{p-1} u_{x} u_{x x}+\delta u^{p} u_{x x x}=0$ and??

