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Sketch of the presentation

Intention:

• to present an overview about some Camassa-Holm (CH) type

equations;

• to show that the CH and other similar equations can be

derived using arguments from symmetries and conserved

quantities;

• discuss some weak solutions of these equations.
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Glossary

Consider an equation ∆(x , t,u,u(1),⋯,u(n)) = 0.

Infinitesimal generator (of point symmetry)

Operator X = τ(x , t,u)∂t + ξ(x , t,u)∂x + η(x , t,u)∂u satisfying

the condition X (n)∆ = 0 when ∆ = 0.

Generalized symmetry generator (evolutionary)

Operator XQ = Q(x ,u,u(1),⋯)∂u such that X (n)∆ = 0 when

∆ = 0 and differential consequences.

Recursion operator

An operator R with the following property: if XQ = Q∂u is an

evolutionary symmetry of ∆ = 0, then XRQ = (RQ)∂u is also

another evolutionary symmetry.
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Glossary

Conserved vector and conservation law

A vector field C = (C 0,C 1), depending on x , t,u and derivatives

of u, is called conserved vector for the equation ∆ = 0 if its

space-time divergence DtC
0 +DxC

1 = 0 (conservation law) when

∆ = 0 and all of its differential consequences.

Characteristic of a conservation law

If C = (C 0,C 1) is such that DtC
0 +DxC

1 = Q∆, then C is a

conserved vector for the equation and Q is called characteristic,

or multiplier, of the conservation law.

Z If the domain of the equation is the entire real line, and if

C 1 → 0 when ∣x ∣ → ∞, then the quantity

H = ∫
R
C 0dx

is constant (constant of motion).
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Glossary

Lax pair

A pair of operators L (self-adjoint) and M, such that the

compatibility of the Lax equation Lt = [M,L] represents the

original equation.

(bi-)Hamiltonian Ô⇒ infinitely many conservation laws

ut = E
δH1

δu
= D δH2

δu
(compatible operators).

Z If the equation has bi-Hamiltonian structure, then it has a

recursion operator: R = ED−1.

Z Hi = ∫RHidx , i = 1,2, are called Hamiltonian functionals.

Z Very strong structure!,
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Historical background

1834 (J. S. Russell): solitary waves

A wave described by a function u(x , t) = φ(x − ct) such that

u(t, x) → u± as x − ct → ±∞, where u± are constants. In Russell’s

observation there was a particular solitary wave like a pulse

propagating in a channel with water.

1895 (D. Korteweg, G. de Vries): the KdV equation

An equation that might explain the wave observed by Russel:

ut − 6uux + uxxx = 0, u = u(x , t).
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A solitary wave: 1-soliton of KdV equation
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Historical background

1965 (N. J. Zabusky, M. D. Kruskal): solitons

• They are of permanent form;

• They are localized within a region;

• They can interact with other solitons, and emerge from the

collision unchanged, except for a phase shift.
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2-soliton
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Historical background

1968 - 1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C.

H. Su): discovery of several properties of the KdV equation;

• existence of infinitely many conservation laws;

• existence of Lax pair (1968, P. Lax);

• bi-Hamiltonian formulation;

• infinitely many symmetries;

• a “sort of superposition” of solutions.

Z There are many more authors to mention, but these are enough

to give an näıve overview.

Comment about solutions

The solitons of the KdV equation are smooth!
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Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Small digression: what is the importance of...

• (bi-)Hamiltonians?

• Lax pairs?

• Infinitely many (generalized) symmetries?

• A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the

following strucutres: bi-Hamiltonian structure, a Lax pair, or

infinitely many generalized symmetries.

Z Usually, but not always,“superposition of soliton-like solutions”

is an indicative of integrable equations.

11



Camassa-Holm’s work

R. Camassa and D. D. Holm, An integrable shallow water equation

with peaked solitons, Phys. Rev. Let., vol. 71, 1661–1664, (1993)

mt + 2ux m + umx = 0, m = u − uxx .

Features of the equation:

Z bi-Hamiltonian formulation;

Z infinitely many symmetries;

Z a “sort of soliton” given by u(x , t) = ce−∣x−ct∣;

Z a “sort of superposition” of these solutions, given by

u(x , t) =
N

∑
j=1

pj(t)e−∣x−qj(t)∣.
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• Multipeakon solutions

u(x , t) =
N

∑
j=1

pj(t)e−∣x−qj(t)∣.

• The functions pj and qj evolve according to the dynamical

system

q′j(t) =
N

∑
k=1

pk(t) e−∣qj(t)−qk(t)∣,

p′j(t) =
N

∑
k=1

sign(qj(t) − qk(t))pk(t) e−∣qj(t)−qk(t)∣.

14
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Comments about CH equation

The equation is integrable

• Bi-Hamiltonian structure:

mt = −D(1 −D2) δ

δm
(u3 + uu2

x) = −(mD +Dm) δ

δm
(um);

• Consequence: recursion operator

R = (mD +Dm)(1 −D2)−1D−1;

• Soliton solutions: (multi-)peakon solutions.

• This type of soliton is continuous, and only continuous!
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New millenium, new equations I: quadratic equations

Z For a while (∼ a decade), the CH equation was the only known

equation to have such properties.

A. Degasperis and M. Procesi, Asymptotic integrability, in:

Symmetry and Perturbation Theory, World Scientific, 23–37

(1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: mt + 3uxm + umx = 0, m = u − uxx .

A. Degasperis, D. D. Holm and A. N. W. Hone, A new

integrable equation with peakon solutions, Theor. Math.

Phys., 133, 1461-72, (2002)

b−equation: mt + buxm + umx = 0, m = u − uxx

Z Only the DP (b = 3) and CH (b = 2) equations are integrable.
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New millenium, new equations II: cubic equations

Z. Qiao, A new integrable equation with cuspons and

W/M-shape-peaks solitons, J. Math. Phys., 47, 112701

(2006)

Qiao equation: mt + (u2 − u2
x)mx + 2m2ux = 0, m = u − uxx

• V. Novikov, Generalizations of the Camassa–Holm

equation, J. Phys. A: Math. Theor., 42, 342002, (2009)

• A. N. W. Hone and J. P. Wang, Integrable peakon

equations with cubic nonlinearity, J. Phys. A: Math.

Theor., 41, 372002, (2008).

Novikov equation: mt + u2mx + 3uuxm = 0, m = u − uxx

Z Both are integrable.
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On the other hand...

P. A. Clarkson, E. L. Mansfield and T. J. Priestley,

Symmetries of a class of nonlinear third-order partial

differential equations, Math. Comput. Modelling., 25,

195–212, (1997).

Symmetries of a family of equations including the b− equation

(although it had not been discovered yet!):

X1 = ∂x , X2 = ∂t , X3 = u∂u − t∂t .

Y. Bozhkov, I. L. Freire and N. H. Ibragimov, Group analysis

of the Novikov equation, Comp. Appl. Math., 33, 193–202,

(2014).

Symmetries of the Novikov equation:

X1 = ∂x , X2 = ∂t , X3 = 2u∂u − t∂t , X± = e±x∂x ± e±xu∂u.
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On the other hand...

Characteristic (or multiplier) Q = u

It was also clear that both Camassa-Holm and Novikov equations

had a conservation law with characteristic Q = u.

Conservation of the Sobolev norm H1

From this charactisc one can obtain the following conserved

quantity for the CH and Novikov equations:

H = ∫
R
(u2 + u2

x)dx = ∥u∥2
H1

which is nothing but the squared of the norm of a function u(⋅, t)
belonging to the Sobolev space H1(R).

Sobolev space H1(R)
It is the space of functions (including distributions) endowed with

the norm defined above.
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Summary until now

Camassa-Holm ut − utxx + 3uux = 2uxuxx + uuxxx

• Symmetries: X1 = ∂x , X2 = ∂t , X3 = 1u∂u − t∂t ;

• Conservation law:

Dt(u2 + u2
x) + 2Dx(u3 − u2uxx − uutx) =

u(mt + 2uxm + umx).

Novikov ut − utxx + 4u2ux = 3uuxuxx + u2uxxx

• Symmetries:

X1 = ∂x , X2 = ∂t , X3 = 2u∂u − t∂t , X± = e±x∂x ± e±xu∂u;

• Conservation law:

Dt(u2 + u2
x) + 2Dx(u4 − u3uxx − uutx) =

u(mt + 3uuxm + u2mx).
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Question

Consider the family of equations

ut − utxx + f (u)ux + g(u)uxuxx + h(u)uxxx = 0.

What would be the most general equation in this family having...

1. the operator X = u∂u − pt∂t as a generator of a group of

scaling symmetries; and

2. a charactheristic Q = u?

Answer

ut − utxx + γupux + δ(p + 1)up−1uxuxx + δupuxxx = 0

ZP. L. da Silva and I. L. Freire, An equation unifying both

Camassa-Holm and Novikov equations, Discrete Contin. Dyn.

Syst., Suppl., 304–311, (2015).
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ut − utxx + γupux + δ(p + 1)up−1uxuxx + δupuxxx = 0 and??

Nice choice: γ = p + 2, δ = −1

• ut − utxx + (p + 2)upux = (p + 1)up−1uxuxx + upuxxx

• Alternative form: mt + (p + 1)up−1uxm + upmx = 0.

Some observations

• CH: p = 1. Novikov: p = 2.

• the parameter controls coefficients and nonlinearities!

Natural questions

1. Are there other integrable members in the family?

2. Are there further conservation laws?

3. Are there other members having peakon solutions?
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Answers

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang,

Remarks on certain two-component systems with peakon

solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little

more general equation:

ut − utxx + aupuxx − bup−1uxuxx − cupuxxx = 0.

S. C. Anco, P. L. da Silva and I. L. Freire, A family of

wave-breaking equations generalizing the Camassa-Holm

and Novikov equations, J. Math. Phys., 56, 091506, (2015).
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0th order conservation laws

Theorem

The local 0th order conservation laws admitted by the equation

consists of three 0th order conservation laws:

• C 0 = u and C 1 = (a/(p + 1))up+1 + (pc − b)u2
x/2 + utx

if p = 1 or b = pc;

• C 0 = (c − a)e±
√

a/cxu and

C 1 = e±
√

a/cx(±
√
ac(ut + cuux) − cutx − c2(u2

x + uuxx)
if p = 1, b = 3c and c ≠ 0;

• C 0 = 0 and C 1 = f (t)e±x(±(ut + cuux) − utx − c(u2
x + uxx)),

if p = 1, a = c and b = 3c.
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1st order conservation laws

Theorem

The 1st-order local conservation laws admitted by the equation

are:

• C 0 = (u2 + u2
x)/2 and C 1 = (a/(p + 2))u − cuxx)up+1 − uutx if

b = (p + 1)c;
• C 0 = xu − ct(u2 + u2

x)/2 and

C 1 = (ctu−x)(utx +cuuxx)+ut −c2tu3/3+cx(u2−u2
x +2uux)/2

if p = 1, a = c and b = 2c.

There are also two other conservation laws with multipliear os 2nd

order.

Observe that the Sobolev norm is conserved if b = (p + 1)c,

that is, we have the equation

ut − utxx + aupuxx − (p + 1)cup−1uxuxx − cupuxxx = 0.
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Peakon solutions

• First and foremost, peakons are solutions in the distributional

sense!

• Assume that u(x , t) = φ(z), z = x − vt, be a solution of

ut − utxx + aupuxx − bup−1uxuxx − cupuxxx = 0. Then we have

the ODE −v(φ − φ′)′′ + aφp + φ′ − bφp−1φ′φ′′ − cφpφ′′′ = 0.

Weak formulation for travelling waves

A weak solution of the ODE is a function satisfying the integral

equation, for any test function ψ

0 = ∫
R
(v(ψ′′ − ψ)φ′ + (aψ − cψ′′)φpφ′)dz

+1

2 ∫R(b − 3pc)ψ′φp−1(φ′)2 + (p − 1)(b − pc)ψφp−2(φ′)3)dz .
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Peakon solutions

• If we suppose φ(z) = αe−∣z ∣, the integral equation reads:

2α(v −cαp)ψ′(0)+αp+1(b+c−a)∫
R

sign(z)ψe−(p+1)∣z ∣dz = 0.

• If a = b + c and cαp = v , then the ODE

−v(φ − φ′)′′ + aφp + φ′ − bφp−1φ′φ′′ − cφpφ′′′ = 0 has the weak

solution φ(z) = αe−∣z ∣.

Theorem

Assume that a = b + c and cαp = v. Then the equation

ut − utxx + aupuxx − bup−1uxuxx − cupuxxx = 0 has the peakon

solution u(x , t) = (v/c)1/pe−∣x−vt ∣.
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Some interesting observations

Equation

ut − utxx + aupuxx − bup−1uxuxx − cupuxxx = 0

Conservation of Sobolev norm

b = (p + 1)c

1-peakon solution

a = b + c .

Theorem

If the equation has the 1-peakon solution

u(x , t) = (v/c)1/pe−∣x−vt∣ and also has the Sobolev norm ∥u∥H1

as a conserved quantity, then, after a scaling in t, we have

ut − utxx + (p + 2)upuxx = (p + 1)up−1uxuxx + upuxxx or its

equivalent form mt + (p + 1)up−1uxm + upmx = 0.
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Multi-peakons

• Let us now suppose that p is a positive integer.

• Let us assume that

u(x , t) =
N

∑
i=1

pi(t)e−∣x−qi(t)∣;

• m = u − uxx = 2
N

∑
i=1

pi(t)δ(x − qi(t));

• mx = 2
N

∑
i=1

pi(t)δ′(x − qi(t));

• mt = 2
N

∑
i=1

p′i (t)δ(x − qi(t)) − 2
N

∑
i=1

pi(t)q′i (t)δ′(x − qi(t));

• Substituting these quantities into

mt + (p + 1)up−1uxm + upmx = 0 and integrating against test

functions, we have the following:
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Multipeakon solution

Theorem

The equation

mt + (p + 1)up−1uxm + upmx = 0

admits u(x , t) =
N

∑
i=1

pi(t)e−∣x−qi(t)∣ as a multipeakon solution if

the functions pi ,qi , i = 1, . . . ,N, satisfy the following dynamical

system:

p′i = pi
N

∑
i1,...,ib=1

sign (qi − qi1)pi1 . . .pibe−∣qj−qi1 ∣−⋯−∣qj−qib ∣,

q′i =
N

∑
i1,...,ib=1

pi1 . . .pibe
−∣qj−qi1 ∣−⋯−∣qj−qib ∣.
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Explicity solutions mt + (p + 1)up−1uxm + upmx = 0

1-peakon

u(x , t) = c1/pe−∣x−ct ∣ (assuming c > 0)

✓

More than one peakon

Life, or science, or both, is not so simple...

What could be done?

We can try to have some information for the case in which we

have 2 peakons.
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have 2 peakons.
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2-peakons: what can be done

Let us consider a solution given by

u(x , t) = p1(t)e−∣x−q1(t)∣ + p2(t)e−∣x−q2(t)∣.

• Sobolev norm implies: H = p2
1 + p2

2 + 2p1p2e
−∣q1−q2∣ = const.

• Consequence: 0 ≤ e−∣q1−q2∣ = (H − p2
1 − p2

2)/(2p1p2) ≤ 1.

Qualitative analysis of the dynamical system

q′1 = Ap
1 , q

′

2 = Ap
2 ,

A1 = (H + p2
1 − p2

2)/(2p1), A2 = (H − p2
1 + p2

2)/(2p1),

p′1 = 1
2 sign(q1 − q2)Ap−1

1 (H − p2
1 − p2

2),

p′2 = −1
2 sign(q1 − q2)Ap−1

2 (H − p2
1 − p2

2).
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Some work in progress

Our old friend: ut − utxx + aupuxx − bup−1uxuxx − cupuxxx = 0.

Consider the case b = 0 and a = c .

Then we have the equation: ut + upmx = 0.

Features and problems of the equation

Z: peakon and multi-peakon solutions.

Z: few conservation laws.

Z: other weak travelling wave solutions:Kinks.
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Work in progress

Kink solution: u(x , t) = ∑N
j=1 cjsign(x − qj(t))(e−∣x−qj(t)∣ − 1).

• cj are constants;

• The functions qj , evolve according to the dynamical system

q′j = −
⎛
⎝

N

∑
j=1

cjsign(qj − qi)(e−∣qj−qi ∣ − 1
⎞
⎠

p

, 1 ≤ j ≤ N.

• Example of 2-kink solutions with p = 1 (B. Xia and Z. Qiao,

Physics Letters A, 377(2013)2340–2342)

u(x , t) = sign(x − 1
2) ln (e2t + 1)(e−∣x− 1

2
ln (e2t

+1)∣ − 1)

+sign(x + 1
2) ln (e2t + 1)(e−∣x+ 1

2
ln (e2t

+1)∣ − 1).

• For p > 1 we hope to report some results soon!
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Simulation of the solution

Thank you!
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Simulation of the solution

Thank you!
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