A look on some results about Camassa-Holm type equations

Igor Leite Freire November 26, 2018

Mathematical Institute in Opava Silesian University in Opava Centro de Matemática, Computação e Cognição Universidade Federal do ABC

• to present an overview about some Camassa-Holm (CH) type equations;

- to present an overview about some Camassa-Holm (CH) type equations;
- to show that the CH and other similar equations can be derived using arguments from symmetries and conserved quantities;

- to present an overview about some Camassa-Holm (CH) type equations;
- to show that the CH and other similar equations can be derived using arguments from symmetries and conserved quantities;
- discuss some weak solutions of these equations.

Consider an equation $\Delta(x, t, u, u_{(1)}, \dots, u_{(n)}) = 0.$

Infinitesimal generator (of point symmetry)

Operator $X = \tau(x, t, u)\partial_t + \xi(x, t, u)\partial_x + \eta(x, t, u)\partial_u$ satisfying the condition $X^{(n)}\Delta = 0$ when $\Delta = 0$.

Consider an equation $\Delta(x, t, u, u_{(1)}, \dots, u_{(n)}) = 0.$

Infinitesimal generator (of point symmetry)

Operator $X = \tau(x, t, u)\partial_t + \xi(x, t, u)\partial_x + \eta(x, t, u)\partial_u$ satisfying the condition $X^{(n)}\Delta = 0$ when $\Delta = 0$.

Generalized symmetry generator (evolutionary)

Operator $X_Q = Q(x, u, u_{(1)}, \dots)\partial_u$ such that $X^{(n)}\Delta = 0$ when $\Delta = 0$ and differential consequences.

Consider an equation $\Delta(x, t, u, u_{(1)}, \dots, u_{(n)}) = 0.$

Infinitesimal generator (of point symmetry)

Operator $X = \tau(x, t, u)\partial_t + \xi(x, t, u)\partial_x + \eta(x, t, u)\partial_u$ satisfying the condition $X^{(n)}\Delta = 0$ when $\Delta = 0$.

Generalized symmetry generator (evolutionary)

Operator $X_Q = Q(x, u, u_{(1)}, \dots)\partial_u$ such that $X^{(n)}\Delta = 0$ when $\Delta = 0$ and differential consequences.

Recursion operator

An operator \mathcal{R} with the following property: if $X_Q = Q\partial_u$ is an evolutionary symmetry of $\Delta = 0$, then $X_{\mathcal{R}Q} = (\mathcal{R}Q)\partial_u$ is also another evolutionary symmetry.

Conserved vector and conservation law

A vector field $C = (C^0, C^1)$, depending on x, t, u and derivatives of u, is called conserved vector for the equation $\Delta = 0$ if its space-time divergence $D_t C^0 + D_x C^1 = 0$ (conservation law) when $\Delta = 0$ and all of its differential consequences.

Conserved vector and conservation law

A vector field $C = (C^0, C^1)$, depending on x, t, u and derivatives of u, is called conserved vector for the equation $\Delta = 0$ if its space-time divergence $D_t C^0 + D_x C^1 = 0$ (conservation law) when $\Delta = 0$ and all of its differential consequences.

Characteristic of a conservation law

If $C = (C^0, C^1)$ is such that $D_t C^0 + D_x C^1 = Q\Delta$, then C is a conserved vector for the equation and Q is called characteristic, or multiplier, of the conservation law.

Conserved vector and conservation law

A vector field $C = (C^0, C^1)$, depending on x, t, u and derivatives of u, is called conserved vector for the equation $\Delta = 0$ if its space-time divergence $D_t C^0 + D_x C^1 = 0$ (conservation law) when $\Delta = 0$ and all of its differential consequences.

Characteristic of a conservation law

If $C = (C^0, C^1)$ is such that $D_t C^0 + D_x C^1 = Q\Delta$, then C is a conserved vector for the equation and Q is called characteristic, or multiplier, of the conservation law.

If the domain of the equation is the entire real line, and if $C^1 \rightarrow 0$ when $|x| \rightarrow \infty$, then the quantity

$$H=\int_{\mathbb{R}}C^{0}dx$$

is constant (constant of motion).

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_t = [M, L]$ represents the original equation.

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_t = [M, L]$ represents the original equation.

(bi-)Hamiltonian \implies infinitely many conservation laws

$$u_t = \mathcal{E} \frac{\delta \mathcal{H}_1}{\delta u} = \mathcal{D} \frac{\delta \mathcal{H}_2}{\delta u}$$
 (compatible operators).

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_t = [M, L]$ represents the original equation.

(bi-)Hamiltonian \implies infinitely many conservation laws

$$u_t = \mathcal{E} \frac{\delta \mathcal{H}_1}{\delta u} = \mathcal{D} \frac{\delta \mathcal{H}_2}{\delta u}$$
 (compatible operators)

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R} = \mathcal{ED}^{-1}$.

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_t = [M, L]$ represents the original equation.

(bi-)Hamiltonian \implies infinitely many conservation laws

$$u_t = \mathcal{E} \frac{\delta \mathcal{H}_1}{\delta u} = \mathcal{D} \frac{\delta \mathcal{H}_2}{\delta u} \quad \text{(compatible operators)}$$

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R} = \mathcal{ED}^{-1}$.

w $H_i = \int_{\mathbb{R}} \mathcal{H}_i dx$, *i* = 1,2, are called Hamiltonian functionals.

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_t = [M, L]$ represents the original equation.

(bi-)Hamiltonian \implies infinitely many conservation laws

$$u_t = \mathcal{E}\frac{\delta \mathcal{H}_1}{\delta u} = \mathcal{D}\frac{\delta \mathcal{H}_2}{\delta u} \quad \text{(compatible operators)}$$

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R} = \mathcal{ED}^{-1}$.

■ $H_i = \int_{\mathbb{R}} \mathcal{H}_i dx$, i = 1, 2, are called Hamiltonian functionals. ■ Very strong structure!

Lax pair

A pair of operators L (self-adjoint) and M, such that the compatibility of the Lax equation $L_t = [M, L]$ represents the original equation.

(bi-)Hamiltonian \implies infinitely many conservation laws

$$u_t = \mathcal{E} \frac{\delta \mathcal{H}_1}{\delta u} = \mathcal{D} \frac{\delta \mathcal{H}_2}{\delta u}$$
 (compatible operators)

If the equation has bi-Hamiltonian structure, then it has a recursion operator: $\mathcal{R} = \mathcal{ED}^{-1}$.

■ $H_i = \int_{\mathbb{R}} \mathcal{H}_i dx$, i = 1, 2, are called Hamiltonian functionals. ■ Very strong structure! ©

1834 (J. S. Russell): solitary waves

A wave described by a function $u(x, t) = \phi(x - ct)$ such that $u(t, x) \rightarrow u_{\pm}$ as $x - ct \rightarrow \pm \infty$, where u_{\pm} are constants. In Russell's observation there was a particular solitary wave like a pulse propagating in a channel with water.

1834 (J. S. Russell): solitary waves

A wave described by a function $u(x, t) = \phi(x - ct)$ such that $u(t, x) \rightarrow u_{\pm}$ as $x - ct \rightarrow \pm \infty$, where u_{\pm} are constants. In Russell's observation there was a particular solitary wave like a pulse propagating in a channel with water.

1895 (D. Korteweg, G. de Vries): the KdV equation An equation that might explain the wave observed by Russel: $u_t - 6uu_x + u_{xxx} = 0$, u = u(x, t).

A solitary wave: 1-soliton of KdV equation

1965 (N. J. Zabusky, M. D. Kruskal): solitons

• They are of permanent form;

1965 (N. J. Zabusky, M. D. Kruskal): solitons

- They are of permanent form;
- They are localized within a region;

1965 (N. J. Zabusky, M. D. Kruskal): solitons

- They are of permanent form;
- They are localized within a region;
- They can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.

2-soliton

1968 - 1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

• existence of infinitely many conservation laws;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;
- a "sort of superposition" of solutions.

1968 - 1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;
- a "sort of superposition" of solutions.

There are many more authors to mention, but these are enough to give an naïve overview.

1968 - 1971 (C. S. Gardner, M. D. Kuskal, R. M. Miura, C. H. Su): discovery of several properties of the KdV equation;

- existence of infinitely many conservation laws;
- existence of Lax pair (1968, P. Lax);
- bi-Hamiltonian formulation;
- infinitely many symmetries;
- a "sort of superposition" of solutions.

There are many more authors to mention, but these are enough to give an naïve overview.

Comment about solutions The solitons of the KdV equation are smooth!

• (bi-)Hamiltonians?

- (bi-)Hamiltonians?
- Lax pairs?

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.
Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the following strucutres: bi-Hamiltonian structure, a Lax pair, or infinitely many generalized symmetries.

Small digression: what is the importance of...

- (bi-)Hamiltonians?
- Lax pairs?
- Infinitely many (generalized) symmetries?
- A sort of superposition of soliton-like solutions?

Integrability

These structures are related to what today is called integrability.

Definition

An equation is said to be integrable if it has at least one of the following strucutres: bi-Hamiltonian structure, a Lax pair, or infinitely many generalized symmetries.

Usually, but not always, "superposition of soliton-like solutions" is an indicative of integrable equations.

Features of the equation: Final tonian formulation;

- bi-Hamiltonian formulation;
- infinitely many symmetries;

- bi-Hamiltonian formulation;
- infinitely many symmetries;
- s a "sort of soliton" given by $u(x, t) = ce^{-|x-ct|}$;

- bi-Hamiltonian formulation;
- infinitely many symmetries;
- s a "sort of soliton" given by $u(x, t) = ce^{-|x-ct|}$;
- a "sort of superposition" of these solutions, given by

$$u(x,t) = \sum_{j=1}^{N} p_j(t) e^{-|x-q_j(t)|}.$$

• Multipeakon solutions

$$u(x,t) = \sum_{j=1}^{N} p_j(t) e^{-|x-q_j(t)|}.$$

• Multipeakon solutions

$$u(x,t) = \sum_{j=1}^{N} p_j(t) e^{-|x-q_j(t)|}.$$

• The functions p_j and q_j evolve according to the dynamical system

• Multipeakon solutions

$$u(x,t) = \sum_{j=1}^{N} p_j(t) e^{-|x-q_j(t)|}$$

• The functions p_j and q_j evolve according to the dynamical system

$$q'_j(t) = \sum_{k=1}^N p_k(t) e^{-|q_j(t)-q_k(t)|},$$

$$p'_{j}(t) = \sum_{k=1}^{N} \operatorname{sign}(q_{j}(t) - q_{k}(t)) p_{k}(t) e^{-|q_{j}(t) - q_{k}(t)|}.$$

The equation is integrable

• Bi-Hamiltonian structure:

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

• Consequence:

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

$$\mathcal{R} = (mD + Dm)(1 - D^2)^{-1}D^{-1};$$

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

• Consequence: recursion operator

$$\mathcal{R} = (mD + Dm)(1 - D^2)^{-1}D^{-1};$$

• Soliton solutions: (multi-)peakon solutions.

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

$$\mathcal{R} = (mD + Dm)(1 - D^2)^{-1}D^{-1};$$

- Soliton solutions: (multi-)peakon solutions.
- This type of soliton is continuous, and only continuous!

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

$$\mathcal{R} = (mD + Dm)(1 - D^2)^{-1}D^{-1};$$

- Soliton solutions: (multi-)peakon solutions.
- This type of soliton is continuous, and only continuous! 😕

The equation is integrable

• Bi-Hamiltonian structure:

$$m_t = -D(1-D^2)\frac{\delta}{\delta m}(u^3 + uu_x^2) = -(mD + Dm)\frac{\delta}{\delta m}(um);$$

$$\mathcal{R} = (mD + Dm)(1 - D^2)^{-1}D^{-1};$$

- Soliton solutions: (multi-)peakon solutions.
- This type of soliton is continuous, and only continuous!

For a while (~ a decade), the CH equation was the only known equation to have such properties.

For a while (~ a decade), the CH equation was the only known equation to have such properties.

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23–37 (1999) (not exactly new millenium, but...) Iso For a while (~ a decade), the CH equation was the only known equation to have such properties.

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23–37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_t + 3u_x m + um_x = 0$, $m = u - u_{xx}$.

■ For a while (~ a decade), the CH equation was the only known equation to have such properties.

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23–37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_t + 3u_x m + um_x = 0$, $m = u - u_{xx}$.

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-72, (2002)

■ For a while (~ a decade), the CH equation was the only known equation to have such properties.

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23–37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_t + 3u_xm + um_x = 0$, $m = u - u_{xx}$.

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-72, (2002)

b-equation: $m_t + bu_x m + um_x = 0$, $m = u - u_{xx}$

For a while (~ a decade), the CH equation was the only known equation to have such properties.

A. Degasperis and M. Procesi, Asymptotic integrability, in: Symmetry and Perturbation Theory, World Scientific, 23–37 (1999) (not exactly new millenium, but...)

Degasperis-Procesi equation: $m_t + 3u_xm + um_x = 0$, $m = u - u_{xx}$.

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-72, (2002)

b-equation: $m_t + bu_x m + um_x = 0$, $m = u - u_{xx}$

real only the DP (b = 3) and CH (b = 2) equations are integrable.

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_t + (u^2 - u_x^2)m_x + 2m^2u_x = 0$, $m = u - u_{xx}$

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_t + (u^2 - u_x^2)m_x + 2m^2u_x = 0$, $m = u - u_{xx}$

- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002, (2009)
- A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002, (2008).

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_t + (u^2 - u_x^2)m_x + 2m^2u_x = 0$, $m = u - u_{xx}$

- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002, (2009)
- A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002, (2008).

Novikov equation: $m_t + u^2 m_x + 3u u_x m = 0$, $m = u - u_{xx}$

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47, 112701 (2006)

Qiao equation: $m_t + (u^2 - u_x^2)m_x + 2m^2u_x = 0$, $m = u - u_{xx}$

- V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42, 342002, (2009)
- A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41, 372002, (2008).

Novikov equation: $m_t + u^2 m_x + 3u u_x m = 0$, $m = u - u_{xx}$

Both are integrable.

On the other hand...

P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order partial differential equations, Math. Comput. Modelling., 25, 195–212, (1997).

Symmetries of a family of equations including the b- equation (although it had not been discovered yet!):

 $X_1 = \partial_x, \ X_2 = \partial_t, \ X_3 = u\partial_u - t\partial_t.$

P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order partial differential equations, Math. Comput. Modelling., 25, 195–212, (1997).

Symmetries of a family of equations including the b- equation (although it had not been discovered yet!):

 $X_1 = \partial_x, \ X_2 = \partial_t, \ X_3 = u\partial_u - t\partial_t.$

Y. Bozhkov, I. L. Freire and N. H. Ibragimov, Group analysis of the Novikov equation, Comp. Appl. Math., 33, 193–202, (2014).

Symmetries of the Novikov equation:

 $X_1=\partial_x, \quad X_2=\partial_t, \quad X_3=2u\partial_u-t\partial_t, \quad X_\pm=e^{\pm x}\partial_x\pm e^{\pm x}u\partial_u.$

On the other hand...

Characteristic (or multiplier) Q = u

It was also clear that both Camassa-Holm and Novikov equations

had a conservation law with characteristic Q = u.

On the other hand...

Characteristic (or multiplier) Q = u

It was also clear that both Camassa-Holm and Novikov equations

had a conservation law with characteristic Q = u.

Conservation of the Sobolev norm H^1

From this charactisc one can obtain the following conserved quantity for the CH and Novikov equations:
On the other hand...

Characteristic (or multiplier) Q = u

It was also clear that both Camassa-Holm and Novikov equations had a conservation law with characteristic Q = u.

Conservation of the Sobolev norm H^1

From this charactisc one can obtain the following conserved quantity for the CH and Novikov equations:

$$H = \int_{\mathbb{R}} (u^2 + u_x^2) dx = ||u||_{H^1}^2$$

which is nothing but the squared of the norm of a function $u(\cdot, t)$ belonging to the Sobolev space $H^1(\mathbb{R})$.

On the other hand...

Characteristic (or multiplier) Q = u

It was also clear that both Camassa-Holm and Novikov equations had a conservation law with characteristic Q = u.

Conservation of the Sobolev norm H^1

From this charactisc one can obtain the following conserved quantity for the CH and Novikov equations:

$$H = \int_{\mathbb{R}} (u^2 + u_x^2) dx = ||u||_{H^1}^2$$

which is nothing but the squared of the norm of a function $u(\cdot, t)$ belonging to the Sobolev space $H^1(\mathbb{R})$.

Sobolev space $H^1(\mathbb{R})$

It is the space of functions (including distributions) endowed with the norm defined above.

Camassa-Holm $u_t - u_{txx} + 3uu_x = 2u_xu_{xx} + uu_{xxx}$

Camassa-Holm $u_t - u_{txx} + 3uu_x = 2u_xu_{xx} + uu_{xxx}$

• Symmetries: $X_1 = \partial_x$, $X_2 = \partial_t$, $X_3 = \mathbf{1}u\partial_u - t\partial_t$;

Camassa-Holm $u_t - u_{txx} + 3uu_x = 2u_xu_{xx} + uu_{xxx}$

- Symmetries: $X_1 = \partial_x$, $X_2 = \partial_t$, $X_3 = \mathbf{1}u\partial_u t\partial_t$;
- Conservation law:

$$D_t(u^2 + u_x^2) + 2D_x(u^3 - u^2u_{xx} - uu_{tx}) = u(m_t + 2u_xm + um_x).$$

Camassa-Holm $u_t - u_{txx} + 3uu_x = 2u_xu_{xx} + uu_{xxx}$

- Symmetries: $X_1 = \partial_x$, $X_2 = \partial_t$, $X_3 = \mathbf{1}u\partial_u t\partial_t$;
- Conservation law:

$$D_t(u^2 + u_x^2) + 2D_x(u^3 - u^2u_{xx} - uu_{tx}) = u(m_t + 2u_xm + um_x).$$

Novikov $u_t - u_{txx} + 4u^2 u_x = 3u u_x u_{xx} + u^2 u_{xxx}$

Camassa-Holm $u_t - u_{txx} + 3uu_x = 2u_xu_{xx} + uu_{xxx}$

- Symmetries: $X_1 = \partial_x$, $X_2 = \partial_t$, $X_3 = \mathbf{1}u\partial_u t\partial_t$;
- Conservation law:

$$D_t(u^2 + u_x^2) + 2D_x(u^3 - u^2u_{xx} - uu_{tx}) = u(m_t + 2u_xm + um_x).$$

Novikov $u_t - u_{txx} + 4u^2 u_x = 3u u_x u_{xx} + u^2 u_{xxx}$

• Symmetries:

 $X_1 = \partial_x, \quad X_2 = \partial_t, \quad X_3 = 2u\partial_u - t\partial_t, \quad X_{\pm} = e^{\pm x}\partial_x \pm e^{\pm x}u\partial_u;$

Camassa-Holm $u_t - u_{txx} + 3uu_x = 2u_xu_{xx} + uu_{xxx}$

- Symmetries: $X_1 = \partial_x$, $X_2 = \partial_t$, $X_3 = \mathbf{1}u\partial_u t\partial_t$;
- Conservation law:

$$D_t(u^2 + u_x^2) + 2D_x(u^3 - u^2u_{xx} - uu_{tx}) = u(m_t + 2u_xm + um_x).$$

Novikov $u_t - u_{txx} + 4u^2 u_x = 3u u_x u_{xx} + u^2 u_{xxx}$

• Symmetries:

 $X_1=\partial_x,\quad X_2=\partial_t,\quad X_3=2u\partial_u-t\partial_t,\quad X_\pm=e^{\pm x}\partial_x\pm e^{\pm x}u\partial_u;$

• Conservation law:

$$D_t(u^2 + u_x^2) + 2D_x(u^4 - u^3 u_{xx} - u u_{tx}) = u(m_t + 3u u_x m + u^2 m_x).$$

Consider the family of equations

$$u_t - u_{txx} + f(u)u_x + g(u)u_xu_{xx} + h(u)u_{xxx} = 0.$$

Consider the family of equations

$$u_t - u_{txx} + f(u)u_x + g(u)u_xu_{xx} + h(u)u_{xxx} = 0.$$

What would be the most general equation in this family having...

Consider the family of equations

$$u_t - u_{txx} + f(u)u_x + g(u)u_x u_{xx} + h(u)u_{xxx} = 0.$$

What would be the most general equation in this family having...

1. the operator $X = u\partial_u - pt\partial_t$ as a generator of a group of scaling symmetries; and

Consider the family of equations

$$u_t - u_{txx} + f(u)u_x + g(u)u_x u_{xx} + h(u)u_{xxx} = 0.$$

What would be the most general equation in this family having...

- 1. the operator $X = u\partial_u pt\partial_t$ as a generator of a group of scaling symmetries; and
- 2. a charactheristic Q = u?

Consider the family of equations

$$u_t - u_{txx} + f(u)u_x + g(u)u_x u_{xx} + h(u)u_{xxx} = 0.$$

What would be the most general equation in this family having...

- 1. the operator $X = u\partial_u pt\partial_t$ as a generator of a group of scaling symmetries; and
- 2. a charactheristic Q = u?

Answer

 $u_t - u_{txx} + \gamma u^p u_x + \delta(p+1)u^{p-1}u_x u_{xx} + \delta u^p u_{xxx} = 0$ $\mathbb{R}P$. L. da Silva and I. L. Freire, An equation unifying both Camassa-Holm and Novikov equations, Discrete Contin. Dyn. Syst., Suppl., 304–311, (2015).

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

•
$$u_t - u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$$

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

Some observations

• CH: *p* = 1. Novikov: *p* = 2.

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

Some observations

- CH: *p* = 1. Novikov: *p* = 2.
- the parameter *controls* coefficients and nonlinearities!

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

Some observations

- CH: *p* = 1. Novikov: *p* = 2.
- the parameter *controls* coefficients and nonlinearities!

Natural questions

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

Some observations

- CH: *p* = 1. Novikov: *p* = 2.
- the parameter *controls* coefficients and nonlinearities!

Natural questions

1. Are there other integrable members in the family?

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

Some observations

- CH: *p* = 1. Novikov: *p* = 2.
- the parameter *controls* coefficients and nonlinearities!

Natural questions

- 1. Are there other integrable members in the family?
- 2. Are there further conservation laws?

$$u_t - u_{txx} + \gamma u^p u_x + \delta(p+1) u^{p-1} u_x u_{xx} + \delta u^p u_{xxx} = 0$$
 and??

- $u_t u_{txx} + (p+2)u^p u_x = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$
- Alternative form: $m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$.

Some observations

- CH: *p* = 1. Novikov: *p* = 2.
- the parameter *controls* coefficients and nonlinearities!

Natural questions

- 1. Are there other integrable members in the family?
- 2. Are there further conservation laws?
- 3. Are there other members having peakon solutions?

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little more general equation:

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little more general equation:

$$u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0.$$

Other integrable members?

No. See M. Hay, A. N.W. Hone, V. S. Novikov and J. P. Wang, Remarks on certain two-component systems with peakon solutions, arXiv:1805.03323, (2018).

Further conservation laws? Peakons?

Positive answers, but they will be shown by considering a little more general equation:

$$u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0.$$

S. C. Anco, P. L. da Silva and I. L. Freire, A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations, J. Math. Phys., 56, 091506, (2015).

The local 0th order conservation laws admitted by the equation consists of three 0th order conservation laws:

The local 0th order conservation laws admitted by the equation consists of three 0th order conservation laws:

•
$$C^0 = u$$
 and $C^1 = (a/(p+1))u^{p+1} + (pc-b)u_x^2/2 + u_{tx}$
if $p = 1$ or $b = pc$;

The local 0th order conservation laws admitted by the equation consists of three 0th order conservation laws:

The local 0th order conservation laws admitted by the equation consists of three 0th order conservation laws:

C⁰ = u and C¹ = (a/(p+1))u^{p+1} + (pc - b)u²_x/2 + u_{tx} if p = 1 or b = pc;
C⁰ = (c - a)e^{±√a/cx}u and C¹ = e^{±√a/cx}(±√ac(ut + cuu_x) - cu_{tx} - c²(u²_x + uu_{xx}) if p = 1, b = 3c and c ≠ 0;
C⁰ = 0 and C¹ = f(t)e^{±x}(±(ut + cuu_x) - u_{tx} - c(u²_x + u_{xx})), if p = 1, a = c and b = 3c.

Theorem

The 1st-order local conservation laws admitted by the equation are:

Theorem

The 1st-order local conservation laws admitted by the equation are:

• $C^0 = (u^2 + u_x^2)/2$ and $C^1 = (a/(p+2))u - cu_{xx})u^{p+1} - uu_{tx}$ if b = (p+1)c;

Theorem

The 1st-order local conservation laws admitted by the equation are:

• $C^0 = (u^2 + u_x^2)/2$ and $C^1 = (a/(p+2))u - cu_{xx})u^{p+1} - uu_{tx}$ if b = (p+1)c;

•
$$C^0 = xu - ct(u^2 + u_x^2)/2$$
 and
 $C^1 = (ctu - x)(u_{tx} + cuu_{xx}) + u_t - c^2tu^3/3 + cx(u^2 - u_x^2 + 2uu_x)/2$
if $p = 1$, $a = c$ and $b = 2c$.

Theorem

The 1st-order local conservation laws admitted by the equation are:

• $C^0 = (u^2 + u_x^2)/2$ and $C^1 = (a/(p+2))u - cu_{xx})u^{p+1} - uu_{tx}$ if b = (p+1)c;

•
$$C^0 = xu - ct(u^2 + u_x^2)/2$$
 and
 $C^1 = (ctu - x)(u_{tx} + cuu_{xx}) + u_t - c^2tu^3/3 + cx(u^2 - u_x^2 + 2uu_x)/2$
if $p = 1$, $a = c$ and $b = 2c$.

There are also two other conservation laws with multipliear os 2nd order.

Observe that the Sobolev norm is conserved if b = (p+1)c,

Theorem

The 1st-order local conservation laws admitted by the equation are:

• $C^0 = (u^2 + u_x^2)/2$ and $C^1 = (a/(p+2))u - cu_{xx})u^{p+1} - uu_{tx}$ if b = (p+1)c;

•
$$C^0 = xu - ct(u^2 + u_x^2)/2$$
 and
 $C^1 = (ctu - x)(u_{tx} + cuu_{xx}) + u_t - c^2tu^3/3 + cx(u^2 - u_x^2 + 2uu_x)/2$
if $p = 1$, $a = c$ and $b = 2c$.

There are also two other conservation laws with multipliear os 2nd order.

Observe that the Sobolev norm is conserved if b = (p+1)c, that is, we have the equation $u_t - u_{txx} + au^p u_{xx} - (p+1)cu^{p-1}u_x u_{xx} - cu^p u_{xxx} = 0.$
• First and foremost, peakons are solutions in the distributional sense!

- First and foremost, peakons are solutions in the distributional sense!
- Assume that $u(x,t) = \phi(z), z = x vt$, be a solution of

 $u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0.$ Then we have the ODE $-v(\phi - \phi')'' + a\phi^p + \phi' - b\phi^{p-1}\phi'\phi'' - c\phi^p\phi''' = 0.$

- First and foremost, peakons are solutions in the distributional sense!
- Assume that $u(x, t) = \phi(z), z = x vt$, be a solution of

 $u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0.$ Then we have the ODE $-v(\phi - \phi')'' + a\phi^p + \phi' - b\phi^{p-1}\phi'\phi'' - c\phi^p\phi''' = 0.$

Weak formulation for travelling waves

A weak solution of the ODE is a function satisfying the integral equation, for any test function ψ

$$0 = \int_{\mathbb{R}} (v(\psi'' - \psi)\phi' + (a\psi - c\psi'')\phi^{p}\phi')dz$$

+ $\frac{1}{2} \int_{\mathbb{R}} (b - 3pc)\psi'\phi^{p-1}(\phi')^{2} + (p-1)(b - pc)\psi\phi^{p-2}(\phi')^{3})dz.$

• If we suppose $\phi(z) = \alpha e^{-|z|}$, the integral equation reads:

• If we suppose $\phi(z) = \alpha e^{-|z|}$, the integral equation reads:

$$2\alpha(v-c\alpha^{p})\psi'(0)+\alpha^{p+1}(b+c-a)\int_{\mathbb{R}}\operatorname{sign}(z)\psi e^{-(p+1)|z|}dz=0.$$

• If we suppose $\phi(z) = \alpha e^{-|z|}$, the integral equation reads:

$$2\alpha(v-c\alpha^{p})\psi'(0)+\alpha^{p+1}(b+c-a)\int_{\mathbb{R}}\operatorname{sign}(z)\psi e^{-(p+1)|z|}dz=0.$$

• If a = b + c and $c\alpha^{p} = v$, then the ODE $-v(\phi - \phi')'' + a\phi^{p} + \phi' - b\phi^{p-1}\phi'\phi'' - c\phi^{p}\phi''' = 0$ has the weak solution $\phi(z) = \alpha e^{-|z|}$.

• If we suppose $\phi(z) = \alpha e^{-|z|}$, the integral equation reads:

$$2\alpha(v-c\alpha^{p})\psi'(0)+\alpha^{p+1}(b+c-a)\int_{\mathbb{R}}\operatorname{sign}(z)\psi e^{-(p+1)|z|}dz=0.$$

• If
$$a = b + c$$
 and $c\alpha^p = v$, then the ODE
 $-v(\phi - \phi')'' + a\phi^p + \phi' - b\phi^{p-1}\phi'\phi'' - c\phi^p\phi''' = 0$ has the weak
solution $\phi(z) = \alpha e^{-|z|}$.

Theorem

Assume that a = b + c and $c\alpha^p = v$. Then the equation $u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0$ has the peakon solution $u(x, t) = (v/c)^{1/p} e^{-|x-vt|}$.

Equation

$$u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0$$

Equation

$$u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0$$

Conservation of Sobolev norm

b = (p+1)c

Equation

$$u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0$$

Conservation of Sobolev norm

$$b = (p+1)c$$

1-peakon solution

a = b + c.

Equation

$$u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0$$

Conservation of Sobolev norm

b = (p+1)c

1-peakon solution

a = b + c.

Theorem

If the equation has the 1-peakon solution $u(x,t) = (v/c)^{1/p}e^{-|x-vt|}$ and also has the Sobolev norm $||u||_{H^1}$ as a conserved quantity, then, after a scaling in t, we have $u_t - u_{txx} + (p+2)u^p u_{xx} = (p+1)u^{p-1}u_x u_{xx} + u^p u_{xxx}$ or its equivalent form $m_t + (p+1)u^{p-1}u_x m + u^p m_x = 0$. • Let us now suppose that *p* is a positive integer.

- Let us now suppose that *p* is a positive integer.
- Let us assume that

$$u(x,t) = \sum_{i=1}^{N} p_i(t) e^{-|x-q_i(t)|};$$

- Let us now suppose that *p* is a positive integer.
- Let us assume that

$$u(x,t) = \sum_{i=1}^{N} p_i(t) e^{-|x-q_i(t)|};$$

•
$$m = u - u_{xx} = 2 \sum_{i=1}^{N} p_i(t) \delta(x - q_i(t));$$

- Let us now suppose that *p* is a positive integer.
- Let us assume that

$$u(x,t) = \sum_{i=1}^{N} p_i(t) e^{-|x-q_i(t)|};$$

•
$$m = u - u_{xx} = 2 \sum_{i=1}^{N} p_i(t) \delta(x - q_i(t));$$

• $m_x = 2 \sum_{i=1}^{N} p_i(t) \delta'(x - q_i(t));$

- Let us now suppose that *p* is a positive integer.
- Let us assume that

$$u(x,t) = \sum_{i=1}^{N} p_i(t) e^{-|x-q_i(t)|};$$

•
$$m = u - u_{xx} = 2 \sum_{i=1}^{N} p_i(t) \delta(x - q_i(t));$$

• $m_x = 2 \sum_{i=1}^{N} p_i(t) \delta'(x - q_i(t));$
• $m_t = 2 \sum_{i=1}^{N} p'_i(t) \delta(x - q_i(t)) - 2 \sum_{i=1}^{N} p_i(t) q'_i(t) \delta'(x - q_i(t));$

- Let us now suppose that p is a positive integer.
- Let us assume that

$$u(x,t) = \sum_{i=1}^{N} p_i(t) e^{-|x-q_i(t)|};$$

•
$$m = u - u_{xx} = 2 \sum_{i=1}^{N} p_i(t) \delta(x - q_i(t));$$

• $m_x = 2 \sum_{i=1}^{N} p_i(t) \delta'(x - q_i(t));$
• $m_t = 2 \sum_{i=1}^{N} p'_i(t) \delta(x - q_i(t)) - 2 \sum_{i=1}^{N} p_i(t) q'_i(t) \delta'(x - q_i(t));$

 Substituting these quantities into
 m_t + (p + 1)u^{p-1}u_xm + u^pm_x = 0 and integrating against test
 functions, we have the following:

Multipeakon solution

Theorem

The equation

$$m_t + (p+1)u^{p-1}u_xm + u^pm_x = 0$$

admits $u(x,t) = \sum_{i=1}^{N} p_i(t)e^{-|x-q_i(t)|}$ as a multipeakon solution if the functions $p_i, q_i, i = 1, ..., N$, satisfy the following dynamical system:

$$p'_{i} = p_{i} \sum_{i_{1},...,i_{b}=1}^{N} \operatorname{sign} (q_{i} - q_{i_{1}}) p_{i_{1}} \dots p_{i_{b}} e^{-|q_{j} - q_{i_{1}}| - \dots - |q_{j} - q_{i_{b}}|},$$
$$q'_{i} = \sum_{i_{1},...,i_{b}=1}^{N} p_{i_{1}} \dots p_{i_{b}} e^{-|q_{j} - q_{i_{1}}| - \dots - |q_{j} - q_{i_{b}}|}.$$

 $u(x,t) = c^{1/p}e^{-|x-ct|}$ (assuming c > 0)

 $u(x,t) = c^{1/p}e^{-|x-ct|}$ (assuming c > 0)

$$u(x,t) = c^{1/p}e^{-|x-ct|}$$
 (assuming $c > 0)$

More than one peakon

1-peakon $u(x,t) = c^{1/p}e^{-|x-ct|}$ (assuming c > 0)

More than one peakon Life,

1-peakon $u(x,t) = c^{1/p}e^{-|x-ct|}$ (assuming c > 0)

More than one peakon

Life, or science,

1-peakon $u(x, t) = c^{1/p}e^{-|x-ct|}$ (assuming $c > 0)\checkmark$

More than one peakon

Life, or science, or both,

$$u(x,t) = c^{1/p}e^{-|x-ct|}$$
 (assuming $c > 0)$

More than one peakon

Life, or science, or both, is not so simple...

1-peakon $u(x, t) = c^{1/p}e^{-|x-ct|}$ (assuming $c > 0)\checkmark$

More than one peakon

Life, or science, or both, is not so simple...

$$u(x,t) = c^{1/p}e^{-|x-ct|}$$
 (assuming $c > 0)$

More than one peakon

Life, or science, or both, is not so simple....

What could be done?

$$u(x,t) = c^{1/p}e^{-|x-ct|}$$
 (assuming $c > 0)$

More than one peakon

Life, or science, or both, is not so simple...

What could be done?

We can try to have some information for the case in which we have 2 peakons.

Let us consider a solution given by $u(x,t) = p_1(t)e^{-|x-q_1(t)|} + p_2(t)e^{-|x-q_2(t)|}.$

Let us consider a solution given by $u(x,t) = p_1(t)e^{-|x-q_1(t)|} + p_2(t)e^{-|x-q_2(t)|}.$

• Sobolev norm implies:

Let us consider a solution given by $u(x,t) = p_1(t)e^{-|x-q_1(t)|} + p_2(t)e^{-|x-q_2(t)|}.$

• Sobolev norm implies: $H = p_1^2 + p_2^2 + 2p_1p_2e^{-|q_1-q_2|} = const.$

Let us consider a solution given by $u(x,t) = p_1(t)e^{-|x-q_1(t)|} + p_2(t)e^{-|x-q_2(t)|}.$

- Sobolev norm implies: $H = p_1^2 + p_2^2 + 2p_1p_2e^{-|q_1-q_2|} = const.$
- Consequence:

Let us consider a solution given by $u(x,t) = p_1(t)e^{-|x-q_1(t)|} + p_2(t)e^{-|x-q_2(t)|}.$

- Sobolev norm implies: $H = p_1^2 + p_2^2 + 2p_1p_2e^{-|q_1-q_2|} = const.$
- Consequence: $0 \le e^{-|q_1-q_2|} = (H p_1^2 p_2^2)/(2p_1p_2) \le 1.$

Let us consider a solution given by $u(x,t) = p_1(t)e^{-|x-q_1(t)|} + p_2(t)e^{-|x-q_2(t)|}.$

- Sobolev norm implies: $H = p_1^2 + p_2^2 + 2p_1p_2e^{-|q_1-q_2|} = const.$
- Consequence: $0 \le e^{-|q_1-q_2|} = (H p_1^2 p_2^2)/(2p_1p_2) \le 1.$

Qualitative analysis of the dynamical system

$$q_1' = A_1^p, \ q_2' = A_2^p,$$

$$A_1 = (H + p_1^2 - p_2^2)/(2p_1), \ A_2 = (H - p_1^2 + p_2^2)/(2p_1),$$

$$p'_1 = \frac{1}{2} \operatorname{sign}(q_1 - q_2) A_1^{p-1} (H - p_1^2 - p_2^2),$$

$$p_2' = -\frac{1}{2} \operatorname{sign}(q_1 - q_2) A_2^{p-1} (H - p_1^2 - p_2^2).$$

Our old friend: $u_t - u_{txx} + au^p u_{xx} - bu^{p-1} u_x u_{xx} - cu^p u_{xxx} = 0.$

Our old friend: $u_t - u_{txx} + au^p u_{xx} - bu^{p-1}u_x u_{xx} - cu^p u_{xxx} = 0.$ Consider the case b = 0 and a = c.
Features and problems of the equation

Peakon and multi-peakon solutions.

Features and problems of the equation

res: peakon and multi-peakon solutions.

- re: peakon and multi-peakon solutions.
- ☞: few conservation laws.

Features and problems of the equation

res: peakon and multi-peakon solutions.

☞: few conservation laws.

- res: peakon and multi-peakon solutions.
- ☞: few conservation laws.
- Is: other weak travelling wave solutions:

- res: peakon and multi-peakon solutions.
- ☞: few conservation laws.
- Isother weak travelling wave solutions: Kinks.

- res: peakon and multi-peakon solutions.
- ☞: few conservation laws.
- es: other weak travelling wave solutions:Kinks.

Kink solution: $u(x, t) = \sum_{j=1}^{N} c_j \operatorname{sign}(x - q_j(t))(e^{-|x - q_j(t)|} - 1).$

Kink solution: $u(x, t) = \sum_{j=1}^{N} c_j \operatorname{sign}(x - q_j(t))(e^{-|x - q_j(t)|} - 1).$

• c_i are constants;

Kink solution: $u(x, t) = \sum_{j=1}^{N} c_j \operatorname{sign}(x - q_j(t))(e^{-|x - q_j(t)|} - 1).$

- *c_j* are constants;
- The functions q_j , evolve according to the dynamical system

Kink solution: $u(x, t) = \sum_{j=1}^{N} c_j \operatorname{sign}(x - q_j(t))(e^{-|x - q_j(t)|} - 1).$

- *c_j* are constants;
- The functions q_j , evolve according to the dynamical system

$$q'_{j} = -\left(\sum_{j=1}^{N} c_{j} \operatorname{sign}(q_{j} - q_{i})(e^{-|q_{j} - q_{i}|} - 1)\right)^{p}, \quad 1 \leq j \leq N.$$

• Example of 2-kink solutions with *p* = 1 (B. Xia and Z. Qiao, Physics Letters A, 377(2013)2340–2342)

Kink solution: $u(x, t) = \sum_{j=1}^{N} c_j \operatorname{sign}(x - q_j(t))(e^{-|x - q_j(t)|} - 1).$

- *c_j* are constants;
- The functions q_j , evolve according to the dynamical system

$$q'_{j} = -\left(\sum_{j=1}^{N} c_{j} \operatorname{sign}(q_{j} - q_{i})(e^{-|q_{j} - q_{i}|} - 1)\right)^{p}, \quad 1 \leq j \leq N.$$

• Example of 2-kink solutions with *p* = 1 (B. Xia and Z. Qiao, Physics Letters A, 377(2013)2340–2342)

$$u(x,t) = \operatorname{sign}(x - \frac{1}{2}) \ln (e^{2t} + 1)(e^{-|x - \frac{1}{2}\ln(e^{2t} + 1)|} - 1)$$

+sign(x + $\frac{1}{2}$) ln (e^{2t} + 1)(e^{-|x + \frac{1}{2}\ln(e^{2t} + 1)|} - 1)}

• For p > 1 we hope to report some results soon!

Simulation of the solution

Simulation of the solution

Thank you! 🙂