Rota-Baxter operators

Gubarev Vsevolod
University of Vienna

Ostrava Seminar on Mathematical Physics

Ostrava, 23.10.2018

Content

- Definition of Rota-Baxter operators
- Properties of Rota-Baxter operators
- Postalgebras and post-Lie algebra structures

Rota-Baxter operator

Definition 1

Let A be an algebra, R be a linear map on A
R is called Rota-Baxter operator (RB-operator) if for all $x, y \in A$

$$
R(x) R(y)=R(R(x) y+x R(y)+\lambda x y)
$$

where $\lambda \in F$ is a fixed scalar from the ground field (weight of R)
A is called Rota-Baxter algebra (RB-algebra)
The operators 0 and $-\lambda$ id are called trivial RB-operators
G. Baxter, 1960
G.-C. Rota, P. Cartier, 1960-70s
A.A. Belavin, V.G. Drinfel'd, 1982, M.A. Semenov-Tyan-Shanskii, 1983: connection with Yang-Baxter equation
Li Guo, 2012, An Introduction to Rota-Baxter Algebra (monograph)

Examples of Rota-Baxter operators

Example 1

A : an algebra of continuous functions on \mathbb{R},
$\Rightarrow \quad R(f)(x)=\int_{0}^{x} f(t) d t$ is an RB-operator of weight 0

Example 2

A: the polynomial algebra $F[x]$

$$
\Rightarrow \quad R\left(x^{n}\right)=\frac{x^{n+1}}{n+1} \text { is an RB-operator of weight } 0
$$

Example 3

A: algebra, d : invertible derivation on $A(d(x y)=d(x) y+x d(y))$ $\Rightarrow \quad d^{-1}$ is an RB-operator of weight 0

Example 4

Let A be an associative algebra, a is an idempotent $\Rightarrow l_{a}: x \rightarrow a x$ is an RB-operator of weight -1

Examples of Rota-Baxter operators (cont.)

Example 5

$A: \mathbb{Z}_{2}$-graded algebra $A=A_{0} \oplus A_{1}$ with abelian odd part
$\Rightarrow R: A_{0} \rightarrow A_{1} \rightarrow(0)$ is an RB -operator of weight 0

Example 6

$A=A_{1} \dot{+} A_{2}$: a direct sum (as vector space) of subalgebras

$$
R\left(x_{1}+x_{2}\right)=-\lambda x_{2}, \quad x_{1} \in A_{1}, x_{2} \in A_{2},
$$

is an RB-operator of weight λ (splitting RB-operator)
R : an RB-operator of weight $\lambda \neq 0$
$\Rightarrow \quad \lambda^{-1} R$ is an RB-operator of weight 1
A : an algebra, R : an RB-operator on A, ψ : (anti)automorphism of A $\Rightarrow \quad \psi^{-1} R \psi$ is an RB-operator on A of the same weight

Classical Yang-Baxter equation

Let \mathfrak{g} be a semisimple f.d. Lie algebra over \mathbb{C}. For $r=\sum a_{i} \otimes b_{i} \in \mathfrak{g} \otimes \mathfrak{g}$, introduce CYBE as

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0,
$$

where $r_{12}=\sum a_{i} \otimes b_{i} \otimes 1 \in(U(\mathfrak{g}))^{\otimes 3}, r_{13}=\sum a_{i} \otimes 1 \otimes b_{i}$ and $r_{23}=\ldots$

J.B. McGuire, C.N. Yang, R.J. Baxter, A.B. Zamolodchikov, L.D. Faddeev

Let r be a skew-symmetric $\left(\sum a_{i} \otimes b_{i}=-\sum b_{i} \otimes a_{i}\right)$ solution of CYBE A linear map $R: \mathfrak{g} \rightarrow \mathfrak{g}$ defined as $R(x)=\sum\left\langle a_{i}, x\right\rangle b_{i}$ is an RB-operator on \mathfrak{g} of weight $0 \quad(\langle\cdot, \cdot\rangle=$ Killing form on $\mathfrak{g})$ [M. Goncharov, 2017]: similar for nonzero weight and simple f.d. Lie algebra

Example 7

Up to conjugation and scalar multiple unique skew-symmetric solution of CYBE on $\operatorname{sl}_{2}(\mathbb{C})$ is $e \otimes h-h \otimes e$. It corresponds to the RB-operator $R(e)=0, R(f)=4 h, R(h)=-8 e$

Associative Yang-Baxter equation

Let A be an associative algebra, $r=\sum a_{i} \otimes b_{i} \in A \otimes A$ Associative Yang-Baxter equation [V.N. Zhelyabin, 1998]:

$$
r_{13} r_{12}-r_{12} r_{23}+r_{23} r_{13}=0
$$

Let r be a solution of AYBE. A linear map $P_{r}: A \rightarrow A$ defined as $P_{r}(x)=\sum a_{i} x b_{i}$ is an RB-operator on A of weight 0 ([M. Aguiar, 2000]) $M_{n}(\mathbb{C})$: r - solution of AYBE $\Longleftrightarrow P_{r}-$ RB-operator of weight 0 (V.G., P. Kolesnikov)

Example 8 [M. Aguiar, 2000]

Up to conjugation, transpose and scalar multiple all nonzero solutions of AYBE on $M_{2}(\mathbb{C})$ are
(a) $\left(e_{11}+e_{22}\right) \otimes e_{12}$,
(b) $e_{12} \otimes e_{12}$,
(c) $e_{22} \otimes e_{12}$,
(d) $e_{11} \otimes e_{12}-e_{12} \otimes e_{11}$
[V.V. Sokolov, 2013]: classification of all skew-symmetric solutions of AYBE on $M_{3}(\mathbb{C})$ (8 cases)

Modified Yang-Baxter equation

Let A be an algebra, R a linear map on A, introduce MYBE [M.A. Semenov-Tyan-Shansky, 1983]

$$
R(x) R(y)-R(R(x) y+x R(y))=-x y
$$

R is a solution of MYBE $\Longleftrightarrow R+$ id is an RB-operator of the weight -2

Connection with: Hamiltonian systems, quantum groups, Poisson structures (algebra, double algebra, Lie group)

RB-operators: classification

Classification of all RB-operators on:

- $\mathrm{sl}_{2}(\mathbb{C})$ (nonzero weight) Y. Pan, Q. Liu, C. Bai, L. Guo, 2012
- $\operatorname{sl}_{2}(\mathbb{C})$ (weight zero) J. Pei, C. Bai, and L. Guo, 2014 (see also P. Kolesnikov, 2015)
- $M_{2}(\mathbb{C})$ (weight zero) X. Tang, Y. Zhang, and Q. Sun, 2014
- $\mathrm{sl}_{3}(\mathbb{C})$ (nonzero weight)
- Witt and Virasoro algebras (partly)
- $k[x]$ (partly)
E. Konovalova, 2008
X. Gao et al., 2016
H. Yu, 2016
X. Li, D. Hou, and C. Bai, 2007, RB-operators on pre-Lie algebras:
a) It is hard and less practicable to extend what we have done in section 5 and 6 [Classification of all RB-operators of weight zero on pre-Lie algebras of dimension 2 and 3 (partly)] to other cases since the Rota-Baxter relation involves the nonlinear quadratic equations.
b) Whether we can give a meaningful "classification rules" so that the classification of Rota-Baxter operators can be more "interesting"?

List of varieties and algebras

Associative algebras: $(x, y, z):=(x y) z-x(y z)=0$

- Matrix algebra $M_{n}(F)$ of order n
- Grassmann algebra: $\mathrm{Gr}_{n}=\mathrm{As}\left\langle 1, e_{1}, \ldots, e_{n} \mid e_{i} e_{j}=-e_{j} e_{i}\right\rangle$

Alternative algebras: $(x, x, z)=0$ and $(x, y, y)=0$

- octonion algebra
- the matrix Cayley-Dickson algebra $C(F)=M_{2}(F) \oplus v M_{2}(F)$,

$$
a(v b)=v(\bar{a} b), \quad(v b) a=v(a b), \quad(v a)(v b)=b \bar{a}, \quad a, b \in M_{2}(F)
$$

Jordan algebras: $x y=y x$ and $\left(x^{2}, y, x\right)=0$

- a Jordan algebra $J(f)=F \cdot 1 \oplus V$ of a nondegenerate bilinear symmetric form f acting on V,

$$
(\alpha \cdot 1+v)(\beta \cdot 1+u)=(\alpha \beta+f(v, u)) \cdot 1+(\alpha u+\beta v)
$$

- 27-dimensional Albert algebra $J=H_{3}(C(F)), A \circ B=A B+B A$

Properties of RB-operators of nonzero weight

Theorem 1 [P. Benito, 2010]

All RB-operators on a quadratic division algebra are trivial (0 or $-\lambda$ id)
A is called algebraic if any element generates in A a f.d. subalgebra A is called power-associative if any element generates in A an associative subalgebra

Theorem 2

Given an algebraic power-associative algebra A without zero divisors and RB-operator R of weight zero on A, we have $R=0$

Theorem 3

All RB-operators of nonzero weight on
a) odd dimensional simple Jordan algebra of a bilinear form,
b) the Grassmann algebra are splitting

RB-operators on matrix algebra of nonzero weight

An RB-operator R on $M_{n}(\mathbb{C})$ of nonzero weight is called diagonal, if $\psi^{-1} R \psi\left(D_{n}\right) \subseteq D_{n}$ for some $\psi \in \operatorname{Aut}\left(M_{n}(\mathbb{C})\right)$

Theorem 4

For identity matrix I_{n}, there exists $\psi \in \operatorname{Aut}\left(M_{n}(\mathbb{C})\right)$ s.t. $\psi^{-1} R \psi\left(I_{n}\right) \in D_{n}$

Corollary

All RB-operators of nonzero weight on $M_{2}(\mathbb{C})$ and $M_{3}(\mathbb{C})$ are diagonal

Question 1. Are all RB-operators on $M_{n}(\mathbb{C})$ of nonzero weight diagonal? Question 2. To classify all diagonal RB-operators on $M_{n}(\mathbb{C})$

Properties of RB-operators of weight zero

Lemma 1

A: unital power-associative algebra, R : RB-operator on A of weight 0 F: field of characteristic zero. Also, $(R(1))^{k}=0$
a) If A is associative (alternative), then $R^{2 k}=0$
b) If A is Jordan, then $R^{3 k-1}=0$

Theorem 5

Let A be unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero. There exists N s.t. $R^{N}=0$ for any RB-operator R on A of weight zero
A : algebra, define rb-index of A as

$$
\operatorname{rb}(A)=\min \left\{n \in \mathbb{N} \mid R^{n}=0 \text { for any RB-operator of weight } 0 \text { on } A\right\}
$$

rb-index

- $C(F)$: Cayley-Dickson matrix algebra $\Rightarrow \operatorname{rb}(C(F))=3$
- $J(f)$: a Jordan algebra of a bilinear form $\Rightarrow \operatorname{rb}(J(f)) \leq 3 \checkmark$ Moreover, if F is an algebraically closed field with char $F \neq 2$, then $\operatorname{rb}(J(f))= \begin{cases}2, & \operatorname{dim}(J(f))=3 \\ 3, & \operatorname{dim}(J(f))>3\end{cases}$
(for simple $J(f)$)
- A: Albert algebra over algebraically closed $F \Rightarrow 5 \leq \operatorname{rb}(A) \leq 8$?
- $\mathrm{Gr}_{n}=\left\langle 1, e_{1}, \ldots, e_{n}\right\rangle_{\text {alg }}:$ Grassmann algebra $\Rightarrow \operatorname{rb}\left(\mathrm{Gr}_{n}\right) \leq n+1$?

Theorem 7

Let F be a field of characteristic 0 , then $\operatorname{rb}\left(M_{n}(F)\right)=2 n-1$

Conjecture 1

Let A be a semisimple finite-dimensional associative (alternative) algebra over \mathbb{C}. If $A=A_{1} \oplus \ldots \oplus A_{k}$ for simple A_{i}, then $\operatorname{rb}(A)=\max _{i=1, \ldots, k}\left\{\operatorname{rb}\left(A_{i}\right)\right\}$

Postalgebras

Post-Lie algebra [B. Vallette, 2008]: the bracket [,] is Lie and

$$
\begin{gathered}
(x \cdot y) \cdot z-x \cdot(y \cdot z)-(y \cdot x) \cdot z+y \cdot(x \cdot z)=[y, x] \cdot z, \\
x \cdot[y, z]=[x \cdot y, z]+[y, x \cdot z] .
\end{gathered}
$$

Postassociative algebra (dendriform trialgebra) [J.-L. Loday, 2004]: $\cdot \in$ As

$$
\begin{gathered}
(x \prec y) \prec z=x \prec(y \succ z+y \prec z+y \cdot z), \\
x \succ(y \succ z)=(x \succ y+x \prec y+x \cdot y) \succ z, \\
x \succ(y \cdot z)=(x \succ y) \cdot z, \quad(x \prec y) \cdot z=x \cdot(y \succ z), \\
(x \cdot y) \prec z=x \cdot(y \prec z), \quad(x \succ y) \prec z=x \succ(y \prec z) .
\end{gathered}
$$

For any variety: [C. Bai et al, 2013; V.G., P. Kolesnikov, 2013]

$$
\text { postVar }=\text { postLie } \bullet \text { Var }
$$

Embedding of postalgebras into RB-algebras

Theorem 8 [K. Ebrahimi-Fard, 02'; J.-L. Loday, 07'; C. Bai et al, 13']

A: a Rota—Baxter algebra of a variety Var and weight 1 With respect to the operations

$$
x \succ y=R(x) y, \quad x \prec y=x R(y), \quad x \cdot y=x y
$$

A is a post-Var-algebra
E.g., in associative case: $\quad R(x) y R(z)=(x \succ y) \prec z=x \succ(y \prec z)$

$$
\begin{gathered}
R(x) R(y) z=R(R(x) y+x R(y)+x y) z \\
x \succ(y \succ z)=(x \succ y+x \prec y+x \cdot y) \succ z
\end{gathered}
$$

Theorem 9 [V.G., P. Kolesnikov, 2013]

Any post-Var-algebra could be injectively embedded into its universal enveloping RB-algebra of the variety Var and weight 1

Universal enveloping Rota-Baxter algebras of postalgebras were constructed in associative, commutative, and Lie cases (V.G., 2017)

Post-Lie algebra structures

Definition is due to [D. Burde et al., 2012] (equivalent to post-Lie algebra)
$\mathfrak{g}=\langle V,[]$,$\rangle and \mathfrak{n}=\langle V,\{\}$,$\rangle : Lie brackets on a vector space V$
A post-Lie algebra structure on $(\mathfrak{g}, \mathfrak{n})$ is a bilinear product $x \cdot y$ satisfying

$$
\begin{align*}
{[x, y] } & =x \cdot y-y \cdot x+\{x, y\} \tag{1}\\
{[x, y] \cdot z } & =x \cdot(y \cdot z)-y \cdot(x \cdot z) \tag{2}\\
x \cdot\{y, z\} & =\{x \cdot y, z\}+\{y, x \cdot z\} \tag{3}
\end{align*}
$$

R : an RB-operator of weight 1 on a Lie algebra $\mathfrak{n}=\langle V,\{\}$, $\Rightarrow \quad x \cdot y=\{R(x), y\}$ is a PA-structure on $(\mathfrak{g}, \mathfrak{n})([$,$] is defined by (1))$

A Lie algebra L is complete if all derivations on L are inner and $Z(L)=(0)$

Statement [C. Bai, L. Guo, X. Ni, 2010]

Let \mathfrak{n} be a complete Lie algebra. Then all PA-structures on ($\mathfrak{g}, \mathfrak{n}$) are defined by RB-operators of weight 1 on \mathfrak{n}.

Known results about PA-structures

All Lie algebras are finite-dimensional over \mathbb{C}

- \mathfrak{g} is nilpotent $\Rightarrow \mathfrak{n}$ is solvable [D. Burde et al., 2012]
$\bullet \mathfrak{g}$ is semisimple $\Rightarrow \mathfrak{n}$ is not solvable [D. Burde, K. Dekimpe, 2013]
- \mathfrak{g} is simple \Rightarrow PA-structure is trivial [D. Burde, K. Dekimpe, 2016] (either $x \cdot y=0,[x, y]=\{x, y\}$ or $x \cdot y=[x, y]=-\{x, y\}$)

A Lie algebra L is perfect if $[L, L]=L$
A Lie algebra L is unimodular if all adjoint operators have trace zero
$\bullet \mathfrak{n}$ is non-nilpotent solvable $\Rightarrow \mathfrak{g}$ is not perfect [D. Burde et al., 2012]

- \mathfrak{n} is semisimple $\Rightarrow \mathfrak{g}$ is not solvable unimodular
- \mathfrak{n} is semisimple $\Rightarrow \mathfrak{g}$ can be non-nilpotent solvable both: [D. Burde, K. Dekimpe, 2013]

Homomorphic nature of RB-operators

R : an RB-operator of weight 1 on \mathfrak{n}

$$
\Rightarrow \quad x \cdot y=\{R(x), y\} \text { is a PA-structure on }(\mathfrak{g}, \mathfrak{n})
$$

Moreover, R is the RB-operator of weight 1 on \mathfrak{g}
Denote by \mathfrak{g}_{i} be the Lie algebra structure on V defined by

$$
\begin{aligned}
{[x, y]_{0} } & =\{x, y\} \\
{[x, y]_{i+1} } & =[R(x), y]_{i}+[x, R(y)]_{i}+[x, y]_{i},
\end{aligned}
$$

for all $i \geq 0$. Then R defines a PA-structure on each pair $\left(\mathfrak{g}_{i+1}, \mathfrak{g}_{i}\right)$
Both R and $R+$ id are Lie algebra homomorphisms from \mathfrak{g}_{i+1} to \mathfrak{g}_{i}
\Rightarrow we obtain a composition of homomorphisms

$$
\mathfrak{g}_{i} \xrightarrow[R+\mathrm{id}]{R} \mathfrak{g}_{i-1} \xrightarrow[R+\mathrm{id}]{R} \cdots \xrightarrow[R+\mathrm{id}]{\xrightarrow{R}} \mathfrak{g}_{0}=\mathfrak{n}
$$

New results about PA-structures

[D. Burde et al., 2012]: PA-structures with $\mathfrak{n}=\operatorname{sl}_{2}(\mathbb{C})$ exist on $(\mathfrak{g}, \mathfrak{n})$ $\Leftrightarrow \mathfrak{g} \cong \operatorname{sl}_{2}(\mathbb{C})$ or $\mathfrak{g} \cong \mathfrak{r}_{3, \lambda}(\mathbb{C}), \lambda \neq-1\left(\left[e_{1}, e_{2}\right]=e_{2},\left[e_{1}, e_{3}\right]=\lambda e_{3}\right)$
[D. Burde, V.G., 2018]: classification of all \mathfrak{g} which appear in all PA-structures with $\mathfrak{n}=\mathrm{sl}_{2}(\mathbb{C}) \oplus \operatorname{sl}_{2}(\mathbb{C})$

Theorem 10 [D. Burde, V.G., 2018]

Let $x \cdot y$ be a PA-structure on $(\mathfrak{g}, \mathfrak{n})$ over \mathbb{C}, where \mathfrak{n} is simple and \mathfrak{g} is semisimple. Then \mathfrak{g} is also simple, and the PA-structure is trivial

Proof of Theorem 10

STEP 1. $x \cdot y=\{R(x), y\}$ for an RB-operator R of weight 1 on \mathfrak{n} We know $\operatorname{ker}(R), \operatorname{ker}(R+\mathrm{id}) \triangleleft \mathfrak{g}$ and $\operatorname{ker}(R) \cap \operatorname{ker}(R+\mathrm{id})=(0)$ Assume $\mathfrak{g} \not \not \mathfrak{n}$, so both kernels are nonzero and

$$
\mathfrak{g}=\operatorname{ker}(R) \oplus \operatorname{ker}(R+\mathrm{id}) \oplus \mathfrak{s}
$$

STEP 2. $\mathfrak{n}=\operatorname{Im}(R)+\operatorname{Im}(R+\mathrm{id})$ since $x=R(-x)+(R+\mathrm{id})(x)$, so

$$
\operatorname{Im}(R) \cong \operatorname{ker}(R+\mathrm{id}) \oplus \mathfrak{s}, \quad \operatorname{Im}(R+\mathrm{id}) \cong \operatorname{ker}(R) \oplus \mathfrak{s}
$$

This yields a semisimple decomposition

$$
\mathfrak{n}=(\operatorname{ker}(R+\mathrm{id}) \oplus \mathfrak{s})+(\operatorname{ker}(R) \oplus \mathfrak{s})
$$

If $\mathfrak{s} \neq(0)$, both summands aren't simple, contradiction to [A. Onishchik, 69']
Step 3. $\mathfrak{s}=(0)$, then $\mathfrak{n}=\operatorname{Im}(R) \dot{+} \operatorname{Im}(R+\mathrm{id})$
[J.L. Koszul, 1977] implies that $\mathfrak{n} \cong \operatorname{Im}(R) \oplus \operatorname{Im}(R+\mathrm{id})$, but \mathfrak{n} is simple

Lemma 3 [D. Burde, V.G., 2018]

Let $\mathfrak{g}=\mathfrak{s}_{1}+\mathfrak{s}_{2}$ be the vector space sum of two complex semisimple subalgebras of \mathfrak{g}. Then \mathfrak{g} is semisimple

Theorem 11 [D. Burde, V.G., 2018]

Suppose there is a PA-structure on $(\mathfrak{g}, \mathfrak{n})$ over \mathbb{C}, where \mathfrak{g} is semisimple and \mathfrak{n} is complete. Then \mathfrak{n} must be semisimple

Theorem 12 [D. Burde, V.G., 2018]

Let $x \cdot y=\{R(x), y\}$ be a PA-structure on $(\mathfrak{g}, \mathfrak{n})$ over \mathbb{C} defined by an RB-operator R of weight 1 on \mathfrak{n}. Assume \mathfrak{n} and $\mathfrak{g}_{k}, k=\operatorname{dim}(V)$, are semisimple. Then all \mathfrak{g}_{i} are isomorphic to \mathfrak{n}

Conjecture 2. Suppose we have a PA-structure on ($\mathfrak{g}, \mathfrak{n}$) over \mathbb{C}, where \mathfrak{g} and \mathfrak{n} are semisimple. Then $\mathfrak{g} \cong \mathfrak{n}$

Thank You for Your attention!

