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Our goal in a nutshell
Construct periodic media with prescribed spectral properties
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Introduction

The problem we are going to study re-
lates to the spectral theory of elliptic
self-adjoint differential operators with
periodic coefficients in unbounded
domains with some periodic struc-
ture.
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The problem we are going to study re-
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lates to the spectral theory of elliptic
self-adjoint differential operators with

P periodic coefficients in unbounded
domains with some periodic struc-
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- o o - It is known that the spectra of such

- e o o operators have a band structure, i.e.

) e ) e the spectrum is a locally finite union

of compact intervals called bands.

The interval (a, b) is called a gap in the spectrum o(A) of the
operator A if

(a,b)No(A)=@and a,b € o(A).
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Introduction

Example: Periodic Schrédinger operator on the line

We consider the following operator acting in L2(R):
Au=—u" + Vu, dom(A)=H3(R).
The potential V € C(R) satisfies V(x + 1) = V(x), Vx.
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Introduction

Example: Periodic Schrédinger operator on the line

We consider the following operator acting in L2(R):
Au=-u"+ Wu, dom(A) = H3(R).

The potential V € C(R) satisfies V(x + 1) = V(x), Vx.

To describe o(A) we inspect auxiliary operators Ay, 6 € [0, 2x]:

Ag acts in L2(0,1), Agu=—-u" + W,
dom(Ag) = {u e H3(0,1) : u(1) = u(0)e”, u'(1) = u'(0)e"}.
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Example: Periodic Schrédinger operator on the line

We consider the following operator acting in L2(R):
Au=-u"+ Wu, dom(A) = H3(R).

The potential V € C(R) satisfies V(x + 1) = V(x), Vx.

To describe o(A) we inspect auxiliary operators Ay, 6 € [0, 2x]:

Ag acts in L2(0,1), Agu=-u" + W,
dom(Ay) = {U € H2(0 1): u(1) = U(o)eiﬁ’ v(1) = U,(O)eig}. J

o(Ag) = {Ak(6), k € N}, 4(6) " co.

k—o0
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Example: Periodic Schrédinger operator on the line

We consider the following operator acting in L2(R):
Au=-u"+ Wu, dom(A) = H3(R).

The potential V € C(R) satisfies V(x + 1) = V(x), Vx.

To describe o(A) we inspect auxiliary operators Ay, 6 € [0, 2x]:

Ag acts in L2(0,1), Agu=-u" + W,
dom(Ay) = {U € H2(0 1): u(1) = U(o)eiﬁ’ v(1) = U,(O)eig}. J

o(Ag) = {Ak(6), k € N}, 4(6) " co.

k—o0

@ For fixed k, the function A (9) is continuous.
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Example: Periodic Schrédinger operator on the line
We consider the following operator acting in L2(R):
Au=—u" + Vu, dom(A)=H3(R).
The potential V € C(R) satisfies V(x + 1) = V(x), Vx.
To describe o(A) we inspect auxiliary operators Ay, 6 € [0, 2x]:

Ag acts in L2(0,1), Agu=-u" + W,
dom(Ay) = {U € H2(0 1): u(1) = U(o)eiﬁ’ v(1) = U,(O)eig}. J

o(Ag) = {Ak(6), k € N}, 4(6) " co.

k—o0

@ For fixed k, the function A (9) is continuous.
@ The range of the function A4 () is a compact interval.
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Introduction

Example: Periodic Schrédinger operator on the line

We consider the following operator acting in L2(R):
Au=-u"+ Wu, dom(A) = H3(R).

The potential V € C(R) satisfies V(x + 1) = V(x), Vx.

To describe o(A) we inspect auxiliary operators Ay, 6 € [0, 2x]:

Ag acts in L2(0,1), Agu=—-u" + W,
dom(Ag) = {u e H3(0,1) : u(1) = u(0)e”, u'(1) = u'(0)e"}.

A
By
i
sz/ﬂz 0
Bl —  — 40
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Introduction

Example: Periodic Schrédinger operator on the line

We consider the following operator acting in L2(R):
Au=-u"+ Wu, dom(A) = H3(R).

The potential V € C(R) satisfies V(x + 1) = V(x), Vx.

To describe o(A) we inspect auxiliary operators Ay, 6 € [0, 2x]:

Ag acts in L2(0,1), Agu=—-u" + W,
dom(Ag) = {u e H3(0,1) : u(1) = u(0)e”, u'(1) = u'(0)e"}.

4 YOI Floquet-Bloch decomposition
B, -
By —————— A58 _
. e o(A) = | B,
ZM k=1

81!)/——\2/119(9) where By = {Ax(6), 6 € [0, 2n]}.
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In general the presence of gaps in the spectrum is not guaranteed,
e.g. O'(—ARH) = [0,00)
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Introduction

In general the presence of gaps in the spectrum is not guaranteed,
e.g. O'(—ARH) = [0,00)

Example: periodic waveguides with gaps

Post (2003); Pankrashkin (2010); Nazarov (2009, 2010); Nazarov—Ruotsalainen—Taskinen (2010); Borisov (2015)

We denote by Aq the Laplacian in the domain Q2 c R" subject to
Neumann or Dirichlet boundary conditions.
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In general the presence of gaps in the spectrum is not guaranteed,
e.g. O'(—ARH) = [0,00)

Example: periodic waveguides with gaps

Post (2003); Pankrashkin (2010); Nazarov (2009, 2010); Nazarov—Ruotsalainen—Taskinen (2010); Borisov (2015)

We denote by Aq the Laplacian in the domain Q2 c R" subject to
Neumann or Dirichlet boundary conditions.

> 0(Aq)
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Introduction

In general the presence of gaps in the spectrum is not guaranteed,
e.g. O'(—ARH) = [0,00)

Example: periodic waveguides with gaps

Post (2003); Pankrashkin (2010); Nazarov (2009, 2010); Nazarov—Ruotsalainen—Taskinen (2010); Borisov (2015)

We denote by Aq the Laplacian in the domain Q2 c R" subject to
Neumann or Dirichlet boundary conditions.

QS

> U'(ﬂQs)
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Introduction

Problem 1

For a given class # of periodic differential operators, construct an
operator A € # with at least one gap in the spectrum
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Introduction

Problem 1

For a given class # of periodic differential operators, construct an
operator A € # with at least one gap in the spectrum

The class ¥ may consist of

periodic Schrédinger operators, —A + V

@ periodic elliptic operators, —div(a(x)V)

@ Laplace-Beltrami operators on periodic manifolds

@ Laplacians acting in domains with periodic geometry
°

o

periodic Maxwell operators
...and so on and so forth

Andrii Khrabustovskyi Periodic Schradinger operators with ¢ -potentials



Introduction

Problem 1

For a given class # of periodic differential operators, construct an
operator A € # with at least one gap in the spectrum

The class ¥ may consist of

periodic Schrédinger operators, —A + V

periodic elliptic operators, —div(a(x)V)
Laplace-Beltrami operators on periodic manifolds
Laplacians acting in domains with periodic geometry
periodic Maxwell operators

...and so on and so forth

R. Hempel, O. Post, Spectral gaps for periodic elliptic operators with high
contrast: an overview
Progress in analysis, Vol. 1, I, 577587, World Sci. Publ., 2003.

P. Kuchment, The mathematics of photonic crystals

Ch. 7 in “Mathematical modeling in optical science”, 207-272, Frontiers Appl. Math.,
22, SIAM, Philadelphia, PA, 2001.
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Introduction

Possible applications: photonic crystals

Photonic crystals are periodic nanostructures that have been
attracting much attention in recent years. Their characteristic
feature is that the electromagnetic waves of certain frequencies fail
to propagate in them, which is caused by gaps in the spectrum of
the corresponding Maxwell operators (or related scalar operators).

Figure 1: Opal — an example of natural photonic crystal (photo: https://en.wikipedia.org/wiki/Opal).
Figure 2: The dielectric constant equals 1 on the vertical columns, and it equals > 1 in the rest of the media.
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Introduction

Possible applications: photonic crystals

Photonic crystals are periodic nanostructures that have been
attracting much attention in recent years. Their characteristic
feature is that the electromagnetic waves of certain frequencies fail
to propagate in them, which is caused by gaps in the spectrum of
the corresponding Maxwell operators (or related scalar operators).

Figure 1: Opal — an example of natural photonic crystal (photo: https://en.wikipedia.org/wiki/Opal).
Figure 2: The dielectric constant equals 1 on the vertical columns, and it equals > 1 in the rest of the media.

W. Dorfler, A. Lechleiter, M. Plum, G. Schneider, C. Wieners,
Photonic Crystals. Mathematical Analysis and Numerical Approximation,
Springer, Berlin, 2011.




The operator A®

Convergence theorem
Main results Control of gaps endpoints

Sketch of the proof

Problem 2

For a given class # of periodic differential operators, construct an
operator A € # having gaps which are close (in some natural
sense) to predefined intervals

@ Laplace-Beltrami operators on periodic Riemannian manifolds
[A. K., J. Differ. Equations 252(3) (2012)]

@ Scalar elliptic operators in divergence form
[A. K., Asympt. Analysis 82(1-2) (2013)]

@ Laplacians posed in noncompact periodic domains
[A. K., J. Math. Phys. 55(12) (2014)]

@ Periodic quantum graphs
[D. Barseghyan, A. K., J. Phys. A 48(25) (2015)]
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The operator A®

Convergence theorem
Main results Control of gaps endpoints

Sketch of the proof

Problem 2

For a given class # of periodic differential operators, construct an
operator A € # having gaps which are close (in some natural
sense) to predefined intervals

@ Laplace-Beltrami operators on periodic Riemannian manifolds
[A. K., J. Differ. Equations 252(3) (2012)]

@ Scalar elliptic operators in divergence form
[A. K., Asympt. Analysis 82(1-2) (2013)]

@ Laplacians posed in noncompact periodic domains
[A. K., J. Math. Phys. 55(12) (2014)]

@ Periodic quantum graphs
[D. Barseghyan, A. K., J. Phys. A 48(25) (2015)]

@ Periodic Schrédinger operators with singular potentials
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Sketch of the proof
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

@ meN
e Y:=(0,1)",n>2
@ B;,j=1,...,mbe domains satisfying

m
B,nB—o. |JBcY
j=1

rii Khrabustovskyi iodic Schrodinger operators with &’



The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

@ meN
e Y:=(0,1)",n>2

@ B;,j=1,...,mbe domains satisfying
Bo
g5 -0 3
B,nB,=02, | JBcY
j=1

m __
@ By := Y\UBj
j=1
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

meN
Y:=(0,1)",n>2

Bj, j=1,...,mbe domains satisfying
Bo
"
B,nB,=02, | JBcY
j=1

m __
Bo:=Y\UB;
j:

@ &> 0 - a small parameter
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The operator A®

Convergence theorem
Main results Control of gaps endpoints
Sketch of the proof

@ meN
e Y:=(0,1)",n>2

@ B;,j=1,..., mbe domains satisfying

m
B,nB—o. |JBcY
j=1

*B=V\UB SOOGS0
@ £> 0 - asmall parameter g@ g@ 80 g@

® S :=2(0B +i),iez"j=1,...,m
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The operator A®

Convergence theorem
Main results Control of gaps endpoints

Sketch of the proof

By A° we denote the operator acting in the space L2(R"),
o Au=-Au

@ u € dom(A°?) satisfies the following interface conditions on S

(%)+ _ (%); g™ (%)i +((u)y - (u);) =0, (%

ij i
where q; > 0.
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

Forj=1,...,mwe set:
ol =N
aj 1= q [ed=7111=7

It is assumed that the numbers a; are pairwise non-equivalent. We
renumber them in the ascending order: a; < aj1,j=1,...,m+1.
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

Forj=1,...,mwe set:
B T = e
aj =g [ed=7111=7

It is assumed that the numbers a; are pairwise non-equivalent. We
renumber them in the ascending order: a; < aj1,j=1,...,m+1.

We consider the following equation (with unknown A € C):
q;'16Bj
q; 10818~

1 m
F(A) =0, where ¥(1) . =1+ —
(a) (4) lB()I;ﬂ_

It has exactly m roots b; satisfying (after appropriate renumbering)

aj<b<ajy,j=1,....m-1, am<by<oco.
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

Let L > 0 be an arbitrary number. Then the spectrum of the
operator A¢ in [0, L] has the following structure for € small enough:

o(A) n[o,L] = [0, L]\ | (a(e). bi(e)),
j=1

where the endpoints of the intervals (aj(s), bj(s)) satisfy the
following relations as € — 0,

0<a- aj(s) =0(g), 0< b; - bj(s) = 0(e).
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

Let (aj.3j),j = 1,..., mbe arbitrary intervals satisfying

O<ay, a<Bi<aj, j=1,m=1, am<Pm<oo.
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

Let (a).3)), j = 1,..., m be arbitrary intervals satisfying

O<ay, a<Bi<aj, j=1,m=1, am<Pm<oo.

Theorem 2
One has

a]:a/], b]:ﬁ/’ 121,,m

provided the domains B; and the numbers g; satisfy

1Bl  Bi-a Bi— a; |Bjl .
15 Pj—a l_l (; g=—\ j=1,...,m

|Bo @ o - @ @j|0B;|’

i=1,mlizj




The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

We denote Y? := ¢Y (the period cell of A°?), Sf = ¢e0B,.

i Khrabustovskyi riodic Schrodinger operators with



The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

We denote Y? := ¢Y (the period cell of A°?), Sf = ¢e0B,.
The spectrum of A? is a locally finite union of compact intervals:

(@A) = | ) Lk(e)
k=1
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

We denote Y? := ¢Y (the period cell of A°?), Sf = ¢e0B,.
The spectrum of A? is a locally finite union of compact intervals:

(@A) = | ) Lk(e)
k=1

By
W, R, . 3" (e)
we denote the k-th eigenvalues of the operator in L2( Y#) being
defined by
@ the operation —A,
@ interface conditions (x) on S¢,
@ Neumann, Dirichlet, periodic, antiperiodic conditions on dY?.
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The operator A®
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

We denote Y? := ¢Y (the period cell of A°?), Sf = ¢e0B,.
The spectrum of A? is a locally finite union of compact intervals:

= J (e
k=1

By
W, R, . 3" (e)
we denote the k-th eigenvalues of the operator in L2( Y#) being
defined by
@ the operation —A,
@ interface conditions (x) on S¢,
@ Neumann, Dirichlet, periodic, antiperiodic conditions on dY?.

One has the following enclosures:
[5%(£), 47" (8)] < Li(e) < [} (), 4 (e)]
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Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof
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The operator A®
Convergence theorem

Main results Control of gaps endpoints

Sketch of the proof

@uug-—0® *0—0® 000 L]
Iinz)/lf(e):ak ifk=1,m; ||mz,?7+1():oo
fomd
. ti . R tii
l'_%/lzn lper(s) =ax iftk=1m; l'_%/l;:ﬁer(g) —

m+2

I|m Aper( ) = bk ifk=2,m+1; @)A’rﬁz(?) =

lim () = by itk =2m+1; lim A}
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Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

0 ai b1 ao bo as b3 0o
Iin?)/lf(e):ak ifk=1,m; ||ng+1()—oo
fomd .
lim 47" (e) = a itk =T.m; lim A7 (e) = o0

I|m/lN( )=bko1  ifk=2,m+1; Ilr%/lnN,,Jrz(s):oo

I|m Aper( ) = bk ifk=2,m+1; mﬁfﬂz(?) =




The operator A*
Convergence theorem

Main results Control of gaps endpoints
Sketch of the proof

Thank you for your attention!
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