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Our goal in a nutshell
Construct periodic media with prescribed spectral properties
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The problem we are going to study re-
lates to the spectral theory of elliptic
self-adjoint differential operators with
periodic coefficients in unbounded
domains with some periodic struc-
ture.

It is known that the spectra of such
operators have a band structure, i.e.
the spectrum is a locally finite union
of compact intervals called bands.

The interval (a, b) is called a gap in the spectrum σ(A) of the
operator A if

(a, b) ∩ σ(A) = ∅ and a, b ∈ σ(A).
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Example: Periodic Schrödinger operator on the line

We consider the following operator acting in L2(R):

Au = −u′′ + Vu, dom(A) = H2(R).

The potential V ∈ C(R) satisfies V(x + 1) = V(x), ∀x.

To describe σ(A) we inspect auxiliary operators Aθ, θ ∈ [0, 2π]:

Aθ acts in L2(0, 1), Aθu = −u′′ + Vu,

dom(Aθ) =
{
u ∈ H2(0, 1) : u(1) = u(0)e iθ, u′(1) = u′(0)e iθ

}
.

Floquet-Bloch decomposition

σ(A) =
∞⋃

k=1

Bk ,

where Bk =
{
λk (θ), θ ∈ [0, 2π]

}
.
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In general the presence of gaps in the spectrum is not guaranteed,
e.g. σ(−∆Rn ) = [0,∞).
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Example: periodic waveguides with gaps
Post (2003); Pankrashkin (2010); Nazarov (2009, 2010); Nazarov–Ruotsalainen–Taskinen (2010); Borisov (2015)

We denote by AΩ the Laplacian in the domain Ω ⊂ Rn subject to
Neumann or Dirichlet boundary conditions.
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Problem 1
For a given class P of periodic differential operators, construct an
operator A ∈ P with at least one gap in the spectrum

The class P may consist of

periodic Schrödinger operators, −∆ + V
periodic elliptic operators, −div(a(x)∇)
Laplace-Beltrami operators on periodic manifolds
Laplacians acting in domains with periodic geometry
periodic Maxwell operators
...and so on and so forth
R. Hempel, O. Post, Spectral gaps for periodic elliptic operators with high
contrast: an overview
Progress in analysis, Vol. I, II, 577587, World Sci. Publ., 2003.

P. Kuchment, The mathematics of photonic crystals
Ch. 7 in “Mathematical modeling in optical science”, 207–272, Frontiers Appl. Math.,
22, SIAM, Philadelphia, PA, 2001.
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Possible applications: photonic crystals

Photonic crystals are periodic nanostructures that have been
attracting much attention in recent years. Their characteristic
feature is that the electromagnetic waves of certain frequencies fail
to propagate in them, which is caused by gaps in the spectrum of
the corresponding Maxwell operators (or related scalar operators).

Figure 1: Opal – an example of natural photonic crystal (photo: https://en.wikipedia.org/wiki/Opal).

Figure 2: The dielectric constant equals 1 on the vertical columns, and it equals� 1 in the rest of the media.

W. Dörfler, A. Lechleiter, M. Plum, G. Schneider, C. Wieners,
Photonic Crystals. Mathematical Analysis and Numerical Approximation,
Springer, Berlin, 2011.
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

Problem 2
For a given class P of periodic differential operators, construct an
operator A ∈ P having gaps which are close (in some natural
sense) to predefined intervals

Laplace-Beltrami operators on periodic Riemannian manifolds
[A. K., J. Differ. Equations 252(3) (2012)]

Scalar elliptic operators in divergence form
[A. K., Asympt. Analysis 82(1-2) (2013)]

Laplacians posed in noncompact periodic domains
[A. K., J. Math. Phys. 55(12) (2014)]

Periodic quantum graphs
[D. Barseghyan, A. K., J. Phys. A 48(25) (2015)]

Periodic Schrödinger operators with singular potentials
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

m ∈ N

Y := (0, 1)n, n ≥ 2

Bj , j = 1, . . . ,m be domains satisfying

Bj1 ∩ Bj2 = ∅,
m⋃

j=1

Bj ⊂ Y

B0 := Y \
m⋃

j=1
Bj

ε > 0 - a small parameter

Sε
ij := ε(∂Bj + i), i ∈ Zn, j = 1, . . . ,m

Sε
ij
��

� -ε
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

By Aε we denote the operator acting in the space L2(Rn),
Aεu = −∆u

u ∈ dom(Aε) satisfies the following interface conditions on Sε
ij :(

∂u
∂n

)+

ij
=

(
∂u
∂n

)−
ij
, qjε

−1
(
∂u
∂n

)±
ij

+
(
(u)−ij − (u)+

ij

)
= 0, (∗)

where qj > 0.
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

For j = 1, . . . ,m we set:

aj := q−1
j |∂Bj ||Bj |

−1.

It is assumed that the numbers aj are pairwise non-equivalent. We
renumber them in the ascending order: aj < aj+1, j = 1, . . . ,m + 1.

We consider the following equation (with unknown λ ∈ C):

F (λ) = 0, where F (λ) := 1 +
1
|B0|

m∑
i=1

q−1
j |∂Bj |

λ − q−1
j |∂Bj ||Bj |

−1
.

It has exactly m roots bj satisfying (after appropriate renumbering)

aj < bj < aj+1, j = 1, . . . ,m − 1, am < bm < ∞.
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

Theorem 1
Let L > 0 be an arbitrary number. Then the spectrum of the
operator Aε in [0, L ] has the following structure for ε small enough:

σ(Aε) ∩ [0, L ] = [0, L ] \
m⋃

j=1

(
aj(ε), bj(ε)

)
,

where the endpoints of the intervals
(
aj(ε), bj(ε)

)
satisfy the

following relations as ε→ 0,

0 ≤ aj − aj(ε) = O(ε), 0 ≤ bj − bj(ε) = O(ε).
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

Let (αj , βj), j = 1, . . . ,m be arbitrary intervals satisfying

0 < α1, αj < βj < αj+1, j = 1,m − 1, αm < βm < ∞.

Theorem 2
One has

aj = αj , bj = βj , j = 1, . . . ,m

provided the domains Bj and the numbers qj satisfy

|Bj |

|B0|
=
βj − αj

αj

∏
i=1,m|i,j

(
βi − αj

αi − αj

)
, qj =

|Bj |

αj |∂Bj |
, j = 1, . . . ,m.
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The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

We denote Yε := εY (the period cell of Aε), Sε
j = ε ∂Bj .

The spectrum of Aε is a locally finite union of compact intervals:

σ(Aε) =
∞⋃

k=1

Lk (ε)

By
λN

k (ε), λD
k (ε), λ

per
k (ε), λ

antiper
k (ε)

we denote the k -th eigenvalues of the operator in L2(Yε) being
defined by

the operation −∆,
interface conditions (∗) on Sε

j ,
Neumann, Dirichlet, periodic, antiperiodic conditions on ∂Yε.

One has the following enclosures:

[λper
k (ε), λantiper

k (ε)] ⊂ Lk (ε) ⊂ [λN
k (ε), λD

k (ε)]
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Lk (ε)

By
λN

k (ε), λD
k (ε), λ

per
k (ε), λ

antiper
k (ε)

we denote the k -th eigenvalues of the operator in L2(Yε) being
defined by

the operation −∆,
interface conditions (∗) on Sε

j ,
Neumann, Dirichlet, periodic, antiperiodic conditions on ∂Yε.

One has the following enclosures:

[λper
k (ε), λantiper

k (ε)] ⊂ Lk (ε) ⊂ [λN
k (ε), λD

k (ε)]

14 / 16 Andrii Khrabustovskyi Periodic Schrödinger operators with δ′-potentials



Introduction
Main results

The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

We denote Yε := εY (the period cell of Aε), Sε
j = ε ∂Bj .

The spectrum of Aε is a locally finite union of compact intervals:

σ(Aε) =
∞⋃

k=1

Lk (ε)

By
λN

k (ε), λD
k (ε), λ

per
k (ε), λ

antiper
k (ε)

we denote the k -th eigenvalues of the operator in L2(Yε) being
defined by

the operation −∆,
interface conditions (∗) on Sε

j ,
Neumann, Dirichlet, periodic, antiperiodic conditions on ∂Yε.

One has the following enclosures:

[λper
k (ε), λantiper

k (ε)] ⊂ Lk (ε) ⊂ [λN
k (ε), λD

k (ε)]

14 / 16 Andrii Khrabustovskyi Periodic Schrödinger operators with δ′-potentials



Introduction
Main results

The operator Aε

Convergence theorem
Control of gaps endpoints
Sketch of the proof

lim
ε→0

λD
k (ε) = ak if k = 1,m; lim

ε→0
λD

m+1(ε) = ∞

lim
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antiper
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λ
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Thank you for your attention!
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