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Plan for my talk

1. Introduction to (Projective) Finsler geometry

2. Main theorem and proof

Main theorem: Every (fiber-global, C∞) Finsler metric F on a two dimen-
sional manifold with dim p = 3 is locally projectively related to

I either a Randers metric F =
√
g + β with p(F ) = iso(g)

I or to a Riemannian metric.

3. What I want to do next
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What is a Finsler metric?

Setting:
I M smooth manifold with local coordinates (x i )

I TM tangent bundle with local but fiber global coordinates (x i , ξj )

I All objects are assumed C∞ and defined locally on M, but fiber global.

Definition: A Finsler metric is a smooth collection of norms for each TxM.
More explicitly a function F : TM → R≥0 with properties

(a) (Regularity) F is C∞ on TM\0 :=
⋃

x∈M TxM\{0}

(b) (Homogenity) F (λξ) = λF (ξ) for all λ > 0 and ξ ∈ TM

(c) (Strict convexity) gij (x , ξ) :=
∂2( 1

2
F2)

∂ξi∂ξj
(x , ξ) is positive definite ∀(x, ξ) ∈ TM\0

I F measures length of vectors and length of curves L(c) =
∫ 1

0
F (ċ(t))dt.

I Hence induces a system of geodesics - we will study F only by its geodesics.

Bernhard Riemann Paul Finsler Ludwig Berwald
Habilitationsvortrag Studied variational problems Riemann and

(1854) for arbitrary metrics (1918) Berwald curvature (1926)
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F (ċ(t))dt.

I Hence induces a system of geodesics - we will study F only by its geodesics.

Bernhard Riemann Paul Finsler Ludwig Berwald
Habilitationsvortrag Studied variational problems Riemann and

(1854) for arbitrary metrics (1918) Berwald curvature (1926)

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 3/ 29



What is a Finsler metric?

Setting:
I M smooth manifold with local coordinates (x i )

I TM tangent bundle with local but fiber global coordinates (x i , ξj )

I All objects are assumed C∞ and defined locally on M, but fiber global.

Definition: A Finsler metric is a smooth collection of norms for each TxM.
More explicitly a function F : TM → R≥0 with properties

(a) (Regularity) F is C∞ on TM\0 :=
⋃

x∈M TxM\{0}

(b) (Homogenity) F (λξ) = λF (ξ) for all λ > 0 and ξ ∈ TM

(c) (Strict convexity) gij (x , ξ) :=
∂2( 1

2
F 2)

∂ξi∂ξj
(x , ξ) is positive definite ∀(x, ξ) ∈ TM\0

I F measures length of vectors and length of curves L(c) =
∫ 1

0
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The fundamental form gij

Definition: A Finsler metric is a function F : TM → R≥0 with properties

(a) (Regularity) F is C∞ on TM\0 :=
⋃

x∈M TxM\{0}

(b) (Homogenity) F (λξ) = λF (ξ) for all λ > 0 and ξ ∈ TM

(c) (Strict convexity) gij (x , ξ) :=
∂2( 1

2
F 2)

∂ξi∂ξj
(x , ξ) is positive definite ∀(x, ξ) ∈ TM\0

The matrix g = (gij) = (
∂2( 1

2
F 2)

∂ξi∂ξj
) is called fundamental form.

I For each (x , ξ), it is g(x , ξ) an inner product on TxM.

I Notation for the inverse matrix g−1(x , ξ) = (g ij(x , ξ))

In Finsler geometry, all objects are homogenuous in ξ.

I Euler theorem: If f (ξ) is k-homogeneous, then

{
fξi (ξ) is (k − 1)-homogeneous

fξi (ξ)ξi = k · f (ξ)
.

⇒ gij(x , ξ) = gij(x , λξ) for λ > 0

⇒ gij(x , ξ)ξiξj = F 2(x , ξ) (recover F from g)
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Finsler geometry generalizes Riemannian geometry

Definition: A Finsler metric is a function F : TM → R≥0 with properties

(a) (Regularity) F is C∞ on TM\0 :=
⋃

x∈M TxM\{0}

(b) (Homogenity) F (λξ) = λF (ξ) for all λ > 0 and ξ ∈ TM

(c) (Strict convexity) gij (x , ξ) :=
∂2( 1

2
F 2)

∂ξi∂ξj
(x , ξ) is positive definite ∀(x, ξ) ∈ TM\0

Famous example: Riemannian metrics

F (x , ξ) =
√

gij(x)ξiξj (gij(x)) positive definite matrix

I Fundmantal form gij(x , ξ) = gij(x)

I The norm on TxM is induced by a inner product.

How to visualize Finsler metrics? By its indicatrices Ωx = {ξ ∈ TxM | F (ξ) = 1}.
I F Riemannian ⇒ Every Ωx is an ellipse symmetric wrt. the origin.
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Motivational example: Windy surfaces and Randers metrics

Take a surface with Riemannian metric g and a wind vector field W .

I Without wind, in an infinitesimal time unit one can move from x to
Sx = {ξ ∈ TxM | gx(ξ, ξ) = 1}.

I With the wind W , in an infinitesimal time unit one can move from x to Sx + Wx .

I Fact: There is a Finsler metric with indicatrix Ωx = Sx + Wx . (Zermelo navigation)

First non-Riemannian example: Randers metrics

F (x , ξ) =
√

gij(x)ξiξj︸ ︷︷ ︸
Riemannian metric

√
g

+ βi (x)ξi︸ ︷︷ ︸
1-form β=βi (x)dx i

I Indicatrices Ωx in each TxM are shifted ellipses (as in the wind example)

I F (x , ξ) = F (x ,−ξ) if and only if β = 0

I If β is small (g ijβiβj < 1), then Ωx encloses the origin and F is a Finsler metric.
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I Fact: There is a Finsler metric with indicatrix Ωx = Sx + Wx . (Zermelo navigation)

First non-Riemannian example: Randers metrics

F (x , ξ) =
√

gij(x)ξiξj︸ ︷︷ ︸
Riemannian metric

√
g

+ βi (x)ξi︸ ︷︷ ︸
1-form β=βi (x)dx i

I Indicatrices Ωx in each TxM are shifted ellipses (as in the wind example)

I F (x , ξ) = F (x ,−ξ) if and only if β = 0

I If β is small (g ijβiβj < 1), then Ωx encloses the origin and F is a Finsler metric.
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General Finsler metrics can be very complicated

Definition: A Finsler metric is a function F : TM → R≥0 with properties

(a) (Regularity) F is C∞ on TM\0 :=
⋃

x∈M TxM\{0}

(b) (Homogenity) F (λξ) = λF (ξ) for all λ > 0 and ξ ∈ TM

(c) (Strict convexity) gij (x , ξ) :=
∂2( 1

2
F 2)

∂ξi∂ξj
(x , ξ) is positive definite ∀(x, ξ) ∈ TM\0

Property (c) ⇔ Indicatrices Ωx enclose a strictly convex body

I For a general Finsler metric, Ωx can be any strictly convex body

I Riemannian and Randers metrics are rather easy Finsler metrics
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Euler-Lagrange equations and Finsler Geodesics

Euler-Lagrange equation: For a Lagrangian L : TM → R the extremals of the
functional

∫ 1

0
L(ċ(t))dt are the solutions c(t) of the ODEs

Ei (L) :=
∂L

∂x i
− d

dt

(
∂L

∂ξi

)
= 0.

Definition: Geodesics of a Finsler metric F are the solutions of Ei (
1
2
F 2) = 0

I ( F 2

2
)x i − ( F 2

2
)ξi x j ċ

j − ( F2

2
)ξiξj c̈

j = 0
gmj

⇔ c̈m + 2 gmj

4

(
2
∂gjk
∂x l
− ∂gkl

∂x j

)
ċk ċ l = 0

Definition: A spray is a vector field S on TM\0 of the form

S |(x,ξ) = ξi∂x i − 2G i (x , ξ)∂ξi with ∀λ > 0 : G i (x, λξ) = λ
2G i (x, ξ).

I (Projections of) Integral curves
1-to-1↔ Solutions of c̈ + 2G i (c, ċ) = 0.

I For initial value (x , ξ) ∈ TM\0 there is a unique integral curve c
... and the curve for initial value (x , λξ) is the curve c(λt) for λ > 0.

Definition: Geodesic spray G i (x , ξ) = g ij

4

(
2
∂gjk
∂x l
− ∂gkl

∂x j

)
ξkξl

I Curves are exactly geodesics of F
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Ei (F ) vs. Ei (
1
2F

2)

Why don’t we define geodesics as the solutions of Ei (F ) = 0?

I Main difference: F 1-homogeneous, F 2

2
2-homogeneous (in ξ)

I Does not define a spray, since the Hessian of F is singular: ∂2F
∂ξi∂ξj

(x , ξ)ξi = 0

I No distinguished parametrization:
c(t) solution of Ei (F ) = 0 ⇒ c(ϕ(s)) with ϕ′ > 0 is solution of Ei (F ) = 0

However:

I Solutions of Ei (
1
2
F 2) = 0 are exactly the reparametrizations to F -arc length of

solutions of Ei (F ) = 0

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 9/ 29



Ei (F ) vs. Ei (
1
2F

2)

Why don’t we define geodesics as the solutions of Ei (F ) = 0?

I Main difference: F 1-homogeneous, F 2

2
2-homogeneous (in ξ)

I Does not define a spray, since the Hessian of F is singular: ∂2F
∂ξi∂ξj

(x , ξ)ξi = 0

I No distinguished parametrization:
c(t) solution of Ei (F ) = 0 ⇒ c(ϕ(s)) with ϕ′ > 0 is solution of Ei (F ) = 0

However:

I Solutions of Ei (
1
2
F 2) = 0 are exactly the reparametrizations to F -arc length of

solutions of Ei (F ) = 0

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 9/ 29



Ei (F ) vs. Ei (
1
2F

2)

Why don’t we define geodesics as the solutions of Ei (F ) = 0?

I Main difference: F 1-homogeneous, F 2

2
2-homogeneous (in ξ)

I Does not define a spray, since the Hessian of F is singular: ∂2F
∂ξi∂ξj

(x , ξ)ξi = 0

I No distinguished parametrization:
c(t) solution of Ei (F ) = 0 ⇒ c(ϕ(s)) with ϕ′ > 0 is solution of Ei (F ) = 0

However:

I Solutions of Ei (
1
2
F 2) = 0 are exactly the reparametrizations to F -arc length of

solutions of Ei (F ) = 0

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 9/ 29



Ei (F ) vs. Ei (
1
2F

2)

Why don’t we define geodesics as the solutions of Ei (F ) = 0?

I Main difference: F 1-homogeneous, F 2

2
2-homogeneous (in ξ)

I Does not define a spray, since the Hessian of F is singular: ∂2F
∂ξi∂ξj

(x , ξ)ξi = 0

I No distinguished parametrization:
c(t) solution of Ei (F ) = 0 ⇒ c(ϕ(s)) with ϕ′ > 0 is solution of Ei (F ) = 0

However:

I Solutions of Ei (
1
2
F 2) = 0 are exactly the reparametrizations to F -arc length of

solutions of Ei (F ) = 0

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 9/ 29



Ei (F ) vs. Ei (
1
2F

2)

Why don’t we define geodesics as the solutions of Ei (F ) = 0?

I Main difference: F 1-homogeneous, F 2

2
2-homogeneous (in ξ)

I Does not define a spray, since the Hessian of F is singular: ∂2F
∂ξi∂ξj

(x , ξ)ξi = 0

I No distinguished parametrization:
c(t) solution of Ei (F ) = 0 ⇒ c(ϕ(s)) with ϕ′ > 0 is solution of Ei (F ) = 0

However:

I Solutions of Ei (
1
2
F 2) = 0 are exactly the reparametrizations to F -arc length of

solutions of Ei (F ) = 0

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 9/ 29



Projectively related sprays and path structures

Definition: Two sprays are projectively related if (the projections to M of) their
curves coincide as oriented point sets.

To quotient by this equivalence relation, we go

I from sprays (vector fields on TM)

I to path structures (1-dim. distributions on the unit sphere bundle SM).

Consider SxM = (TxM\0)/R+ with projection π : TM\0→ SM.

I ` ∈ SxM is an oriented direction/ray on M

Definition: The path structure P(S) of a spray S is the family ` ∈ SM

P` :=
〈
dπ(x,ξ)(S(x,ξ)) | (x , ξ) ∈ π−1(`)

〉
⊆ T`(SM).

A path structure is just collection of unparametrized curves on M, s.t. for each point
and direction there is exactly one.
Its curves (whose lift to SM is tangent to P) are oriented reparametr. of curves of S .

Lemma: Two sprays S , S̃ are projectively related,

1. if and only if S̃ = S − 2hV, for some h : TM → R and V = ξi∂ξi

2. if and only if P̃ = P.
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curves coincide as oriented point sets.

To quotient by this equivalence relation, we go

I from sprays (vector fields on TM)

I to path structures (1-dim. distributions on the unit sphere bundle SM).

Consider SxM = (TxM\0)/R+ with projection π : TM\0→ SM.

I ` ∈ SxM is an oriented direction/ray on M

Definition: The path structure P(S) of a spray S is the family ` ∈ SM

P` :=
〈
dπ(x,ξ)(S(x,ξ)) | (x , ξ) ∈ π−1(`)

〉

⊆ T`(SM).

A path structure is just collection of unparametrized curves on M, s.t. for each point
and direction there is exactly one.
Its curves (whose lift to SM is tangent to P) are oriented reparametr. of curves of S .
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Path structures in microlocal coordinates for dimM = 2

Definition: The path structure P(S) of a spray S is the family ` ∈ SM

P` :=
〈
dπ(x,ξ)(S(x,ξ)) | (x , ξ) ∈ π−1(`)

〉
⊆ T`(SM).

Let dimM = 2 and (x , y) local coordinates on M, (x , y , u, v) on TM.

We use two charts (x , y , z) for SM:

U+ = {[(x , y , u, v)] ∈ SM | u > 0}
U− = {[(x , y , u, v)] ∈ SM | u < 0}

ϕ+ : U+ → R3

ϕ− : U− → R3

(x , y , u, v) 7→ (x , y , v
u

)

I U+ and U− cover SM up to vertical directions
I By continuity knowing P in the two charts is the same as knowing P on SM
I In U+ coordinates, every path structure P is of the form

P(x,y,z) = 〈∂x + z∂y + f+(x , y , z)∂z〉 .

I Then the curves with ẋ > 0 of P parametrized by x are given by

y ′′ = f+(x , y , y ′)

I Path structure P ←→ Two ODEs y ′′ = f±(x , y , y ′)
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Affine/Projective symmetries of a spray

Definition/Lemma: Let S be a spray and X ∈ X(M) a vector field.
I X is an affine symmetry if its flow maps parametrized curves of S to such.
⇔ LXS = 0

I X is an projective symmetry if its flow maps unparametrized curves to such.
⇔ LXS = f · V, where V = ξi∂ξi
⇔ LXP ⊆ P, i.e. for all Z ∈ X(SM) with Z` ∈ P` we have LXZ ∈ P:

Lemma: The set of

{
affine
projective

symmetries forms a Lie algebra

{
s(S)
p(S)

.

I Clearly s(S) ⊆ p(S).
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Example (Circles of radius 1)

On R2 consider the spray S(x,y,u,v) = u∂x + v∂y +
√
u2 + v 2 (v∂u − u∂v ).

In microlocal coordinates its path structure P is given by

(U+) y ′′ = −
(

(y ′)2 + 1
)3/2

(U−) y ′′ =
(

(y ′)2 + 1
)3/2

The general solution is y(x) = ∓
√

1− (x − a)2 + b, i.e. negative oriented circles.

Projective symmetry algebra: p = R2 + so(2) = 〈∂x , ∂y ,−y∂x + x∂y 〉
I Lift of a vector field to SM in U+ coordinates

X̌ = a∂x + b∂y + c∂z with c = bx + (by − ax )z − ay z
2

I In U+, P = 〈Z〉 = 〈∂x + z∂y + f (x , y , z)〉 with f (x , y , z) = −(z2 + 1)3/2

I X ∈ p⇔ [X̌ ,Z ] = λZ ⇔ afx + bfy + cfz = (cz − ax − zay )f + cx + zcy

Hence this is a path structure with dim p = 3.

I Is it the geodesic structure of some Finsler function?
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Example (Circles of radius 1)

On R2 consider the spray S(x,y,u,v) = u∂x + v∂y +
√
u2 + v 2 (v∂u − u∂v ).

In microlocal coordinates its path structure P is given by

(U+) y ′′ = −
(

(y ′)2 + 1
)3/2

(U−) y ′′ =
(

(y ′)2 + 1
)3/2

The general solution is y(x) = ∓
√

1− (x − a)2 + b, i.e. negative oriented circles.
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Projective Finsler Geometry and Lie Problem

Definition: Let F , F̃ be Finsler metrics.

1. F and F̃ are projectively related, if their geodesic sprays S , S̃ are, i.e. if P = P̃.

2. The

{
affine
projective

symmetry algebra

{
s(F )
p(F )

is the one of the geodesic spray.

3. X ∈ X(M) is a Killing vector field if LXF = 0.
They form a Lie algebra iso(F ).

Problem (Sophus Lie 1882):
Describe (Finsler) metrics F on surfaces with dim p(F ) ≥ 2.

Fact (Cartan/Tresse): If dim p > 3, then dim p = 8 and F is projectively flat.
I i.e. there are local coordinates where all unparametrized geodesics are straight.
I Projectively flat metrics were studied a lot, next one should consider dim p = 3

Main theorem: Every (fiber-global, C∞) Finsler metric F on a two dimensional
manifold with dim p = 3 is locally projectively related to

I either a Randers metric F =
√
g + β with p(F ) = iso(g)

I or to a Riemannian metric.
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Plan for my talk

1. Introduction to (Projective) Finsler geometry

2. Main theorem and proof

Main theorem: Every (fiber-global, C∞) Finsler metric F on a two dimen-
sional manifold with dim p = 3 is locally projectively related to

I either a Randers metric F =
√
g + β with p(F ) = iso(g)

I or to a Riemannian metric.

3. What I want to do next
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Idea of the proof

For a Finsler metric F we have

F Finsler metric
↓

S(F ) geodesic spray
↓

P(F ) geodesic (path) structure
↓

p(F ) projective symmetry algebra

To proof the theorem, we go backwards. In R2, locally, up to coordinate change...

Step 1. Find all possible 3-dimensional algebras of vector fields.

Step 2. Find for them all possible path structures.

Step 3. For each path structure, find a Finsler metric.

Then if F is Finsler metric with dim p = 3, there are coordinates where

I p is as in Step 1

I hence P is as in Step 2

I hence F is projectively related to a metric from Step 3.
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Step 1: List of 3-dimensional algebras of vector fields.

Let g, g̃ be Lie algebras of vector fields on Rn.
The isotropy subalgebra in a point p ∈ Rn is gp := {X ∈ g | Xp = 0}.
We call g transitive at p, if {Xp | X ∈ g} has full dimension n.

Fact: Suppose g, g̃ are transitive at 0. Then g and g̃ differ by a coordinate change
around 0 if and only if there is a Lie algebra isomorphism g → g̃ mapping g0 to g̃0.

I Make a list of pairs (g, h) of three dimensional Lie algebras g with one
dimensional subalgebra h.

I 16 non-isomorphic pairs (two with parameter)

I If [g, h] ⊆ h, the pair (g,h) can not be realized as a vector field algebra.
I Realize the remaining pairs.

I 10 algebras of vector fields (two with parameter)

Result: For every vector field algebra g around a transitive point there are coordinates
where g is as in one of the 10 cases.

I One example case: g = 〈∂x , ∂y ,−y∂x + x∂y 〉, g0 = 〈−y∂x + x∂y 〉
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Step 2: List of path structures with dim p = 3

I Assume P with dim p = 3. If p is transitive in a point x ∈ M, we can assume
that p = 〈X1,X2,X3〉 is from the constructed list by a coordinate change.

I Microlocal PDEs in U+ on P = 〈Z〉 = 〈∂x + z∂y + f (x , y , z)〉
I Lifts to SM X̌i = ai∂x + bi∂y + ci∂z

I X ∈ p⇔ [X̌ ,Z ] = λZ ⇔ afx + bfy + cfz = (cz − ax − zay )f + cx + zcy

I If

a1 b1 c1

a2 b2 c2

a3 b3 c3

 is regular, f and P are determined by a initial value f (x0, y0, z0).

I Sort out cases with dim p = 8 and not fiber global extandable.

I Five cases remain, two with parameter:

Theorem: If P is a fiber global path structure with dim p = 3, then there are
local coordinates where P is one of the following:

(P1) Circles of radius 1 in R2 p = R2 + so(2)
(P2) ’Circles’ of radius R︸ ︷︷ ︸

will be explained later

in S2 p = so(3)

(P3) ’Circles’ of radius R in H2 p = sl(2)
(P4) Origin centered ellipses with area 1 in R2 p = sl(2)
(P5) Origin centered hyperbolas with ’fixed area’ in R2 p = sl(2)
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Finsler Metrization of Path Structures

General question (Projective Finsler Metrization):
Given a path structure P,

I is there a Finsler metric whose geodesic structure is P?

I how can one describe all such Finsler metrics?

In dimM ≥ 3 exist path structures that are not even microlocally metrizable.

In dimM = 2, it is not clear weither every path structure is locally metrizable.

I Every reversible path structure is locally metrizable. (Alvarez-Pavia/Berck)

I Every path structure is microlocally metrizable. (Sonin/Darboux/Matsumoto)

I If dim p > 3, then P is projectively flat and locally metrizable.

I If dim p = 3, then P is locally metrizable (Main theorem).

I Expectation: In dimension two, every path structure is locally metrizable.

I We will see that the circle example is not globally metrizable.
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Step 3: Metrization of the path structures (P4) and (P5)

(P4) Origin centered ellipses with area 1 in R2 p = sl(2)
(P5) Origin centered hyperbolas with ’fixed area’ in R2 p = sl(2)

(P4) and (P5) are reversible and the not vertical curves are given by

(P4) y ′′ = (xy ′ − y)3 (P5) y ′′ = −(xy ′ − y)3

Hence they could be Riemannian. Indeed, with techniques from

I R. Bryant, G. Manno, V. Matveev, A solution of a problem of Sophus Lie:
normal forms of two-dimensional metrics admitting two projective vector fields

one can find Riemannian metrics for both cases.

After a coordinate change, the following metrics have this path structures:

(F4)
√

e3xdx2 + exdy 2 (F5)

√
1

1− e−y
dx2 +

e3y

(1− ey )2
dy 2
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Step 3: Metrize (P1),(P2),(P3) / Magnetic geodesics

I Take Riemannian metric g and a volume form Ω.

I The Lorentz force is the bundle map J : TM → TM with Ω(u, v) = g(u, Jv).

I The magnetic geodesics are the solutions of ∇ċ ċ
(∗)
= J(ċ).

I Magnetic geodesics are parametrized by g -arc length.

I In local coordinates Ω = k
√

det g

(
0 1
−1 0

)
and J = g−1Ω.

Construct a Finsler metric, whose geodesics are the magnetic geodesics with g ≡ 1.

I Choose a 1-form β s.t. dβ = Ω.

I Then Ei (g + 2β) = 0 is equivalent to equation (∗).
I Now consider the Randers metric F =

√
g + β.

I Every solution of (∗) with g(ċ, ċ) = 1 is a solution of Ei (F ) = 0. Hence every such
curve is a geodesic of F =

√
g + β after reparametrization to F -arc length.

I In coordinates β = βidx
i . If g ijβiβj < 1, then F is a Finsler metric.

I Every Killing vector field of g is a projective symmetry of F .
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g + β after reparametrization to F -arc length.

I In coordinates β = βidx
i . If g ijβiβj < 1, then F is a Finsler metric.

I Every Killing vector field of g is a projective symmetry of F .
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Step 3: Metrize (P1),(P2),(P3) / Construction of metrizations

Choose a Riemannian metric with dim iso(g) = 3. Then dim p(F ) ≥ 3.

(P1) R2 with iso = R2 + so(2)

(P2) S2 with iso = so(3)
(P3) H2 with iso = sl(2)

This gives exactly the path structures (P1), (P2), (P3). ⇒ dim p = 3⇒ p = iso(g).

Example R2: g = Id,Ω =

(
0 k
−k 0

)
, β = adx + bdy

I Magnetic geodesics

(
ẍ
ÿ

)
(∗)
= k

(
ẏ
−ẋ

)
are for k = 1 negative oriented circles of all radii

I dβ = (bx − ay )dx ∧ dy
!

= kdx ∧ dy , for example β = −ky dx

I g ijβiβj = k2y2
!
< 1, hence F is a Finsler metric for |y | < 1

|k|

I Finsler metric F =
√

dx2 + dy2 − y · dx gives path structure (P1)

I (P1) is locally Finsler metrizable, but not globally ([Shen],Hopf-Rinow)
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−ẋ

)
are for k = 1 negative oriented circles of all radii

I dβ = (bx − ay )dx ∧ dy
!

= kdx ∧ dy , for example β = −ky dx

I g ijβiβj = k2y2
!
< 1, hence F is a Finsler metric for |y | < 1

|k|

I Finsler metric F =
√

dx2 + dy2 − y · dx gives path structure (P1)

I (P1) is locally Finsler metrizable, but not globally ([Shen],Hopf-Rinow)

Julius Lang (Friedrich-Schiller Universität Jena) Finsler metrics with three dimensional projective symmetry algebra 22/ 29



Step 3: Metrize (P1),(P2),(P3) / Construction of metrizations

Choose a Riemannian metric with dim iso(g) = 3. Then dim p(F ) ≥ 3.

(P1) R2 with iso = R2 + so(2)
(P2) S2 with iso = so(3)
(P3) H2 with iso = sl(2)

This gives exactly the path structures (P1), (P2), (P3). ⇒ dim p = 3⇒ p = iso(g).

Example R2: g = Id,Ω =

(
0 k
−k 0

)
, β = adx + bdy

I Magnetic geodesics

(
ẍ
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ẍ
ÿ
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ẍ
ÿ
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Summing up/End of the proof

I Let F be Finsler metric, P the geodesic structure, dim p = 3 and x ∈ M.
I Then (p, px) is isomorphic to a pair from Step 1.

I Hence in some local coordinates p is as in Step 1 and P one of (P1)-(P5).
I Thus F is projectively related to one of the constructed metrics (F1)-(F5):

Main theorem: Every (fiber-global, C∞) Finsler metric F on a two dimensional
manifold with dim p = 3 is locally projectively related to

I either a Randers metric F =
√
g + β with p(F ) = iso(g)

I or to a Riemannian metric.

In some local coordinates F is projectively related to one of:

(F1)
√

dx2 + dy 2 − ky dx

(F2)
√

dx2+dy2

(x2+y2+1)2 + C
2

(
x

(y2+1)(x2+y2+1)
+

arctan( x√
y2+1

)

(y2+1)3/2

)
dy , where C ∈ R>0

(F3)
√

1
y2 (dx2 + dy 2)− C x

y2 dy , where C ∈ R>0

(F4)
√

e3xdx2 + exdy 2

(F5)
√

1
1−e−y dx2 + e3y

(1−ey )2 dy 2
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Plan for my talk

1. Introduction to (Projective) Finsler geometry

2. Main theorem and proof

3. What I want to do next
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What I want to do next:

I Describe all Finsler metrics with dim p = 3 up to coordinate change.
I One must find all Finsler metrics, that induce the path structures (P1)-(P5).

(P1) Circles of radius 1 in R2 p = R2 + so(2)
(P2) ’Circles’ of radius R in S2 p = so(3)
(P3) ’Circles’ of radius R in H2 p = sl(2)
(P4) Origin centered ellipses with area 1 in R2 p = sl(2)
(P5) Origin centered hyperbolas with ’fixed area’ in R2 p = sl(2)

I Consider the case dim p = 2.
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How to find all Finsler metrics that induce a given path structure?

I Trivial freedom of adding a total derivative:
Let g : M → R with total derivative dg = gxdx + gydy .
⇒ Ei (dg) = 0 ⇒ F and F + dg have the same path structure 1

I Convex cone property: Let F , F̃ be Finsler metrics with path structure P.
⇒ ∀λ, µ > 0 : λF + µF̃ is a Finsler metric with path structure P.

I We can describe all Randers metrics F =
√
g + β with dim p = 3:

Fact (Shen/Yu/Matveev): Two Randers metrics F =
√
g + β and F̃ =√

g̃ + β̃ with β not closed are projectively related if and only if there is λ > 0
with g = λ2g̃ and β − λβ̃ is closed.

I For each of (P1-3) we have a Randers metrization F0 =
√
g + β with β not closed.

⇒ Every other Randers metrization is of the form λF0 + dg .
I For (P4,P5) we can describe all Riemannian metrizations. If

√
g + β is a Randers

metrization, then β is closed and g a Riemannian metrization.

1F + dg might not be a Finsler metric!
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√
g + β and F̃ =√

g̃ + β̃ with β not closed are projectively related if and only if there is λ > 0
with g = λ2g̃ and β − λβ̃ is closed.

I For each of (P1-3) we have a Randers metrization F0 =
√
g + β with β not closed.

⇒ Every other Randers metrization is of the form λF0 + dg .
I For (P4,P5) we can describe all Riemannian metrizations. If

√
g + β is a Randers

metrization, then β is closed and g a Riemannian metrization.

1F + dg might not be a Finsler metric!
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How to find all Finsler metrics that induce a given path structure?

I Classical approach (Sonin/Darboux/Matsumoto) to microlocal metrization:
I In U+ coordinates, P is given as 〈∂x + z∂y + f (x , y , z)∂z 〉 ↔ y ′′ = f (x , y , y ′).
I By comparing Euler-Lagrange equations, L(x , y , z) := F (x , y , 1, z) fulfills the PDE

−Ly + Lxz + zLyz + f · Lzz = 0 (∗)

I Differentiate by z.

Then R(x , y , z) = ∂2L
∂z2 (x , y , z) must fulfill the linear first order PDE

Rx + z · Ry + f · Rz + fz · R = 0. (∗∗)
I (∗∗) can be solved microlocally and general solution for (∗) can be given implicitly.
I General F must be combination of this L and similar function for U−

I Description of all Lagragians with circle path structure (P1):
I S. Tabachnikov, Remarks on magnetic flows and magnetic billiards, Finsler metrics

and a magnetic analog of Hilbert’s fourth problem

L(x , y , r , α) = r(

∫ α+π/2

0
cos(α− φ)g(x + cosφ, y + sinφ)dφ

+ a(x , y) cosα+ b(x , y) sinα)

where g , a, b fullfil some additional property

I ...
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Finsler metrics with dim p = 2

I Because there are just two two dimensional Lie algebras, we can assume that

(A) p = 〈∂x , ∂y 〉 or (NA) p = 〈∂y , x∂x + y∂y 〉

I Any path strcture with that projective algebra is in U+ coordinates

(A) 〈∂x + z∂y + f (z)∂z〉 or (NA) 〈∂x + z∂y +
h(z)

x
∂z〉

(A) y ′′ = f (y ′) or (NA) y ′′ =
h(y ′)

x
∂z〉

I Given f (h) on U+ and U−, how can we construct at least one (fiber global) F
with this path structure?

I Can we find a path structure, that is not fiber global metrizable?
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Thank you for the attention!
Related literature:
Classification of 2nd order ODEs y ′′ = f (x, y , y ′) (essential for Step 1 & 2):

A. Tresse, Sur les invariants différentiels des groupes continus de transformations

B. Doubrov, B. Komrakov, The geometry of second-order ordinary differential equations

Magnetic Geodesics (used to metrize (P1)-(P3))

K. Burns, V. Matveev, On the rigidity of magnetic systems with the same magnetic geodesics

General Spray and Finsler geometry

Z. Shen, Differential geometry of spray and Finsler spaces

D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry

Solution of the Pseudo-Riemannian version of the Lie problem (Metrization of (P4),(P5))

R. Bryant, G. Manno, V. Matveev, A solution of a problem of Sophus Lie: normal forms of

two-dimensional metrics admitting two projective vector fields

V. Matveev, Two-dimensional metrics admitting precisely one projective vector field

Finsler Metrization of Path Structures = Projective Finsler Metrization of Sprays

J.C. Álvarez-Paiva, G. Berck Finsler surfaces with prescribed geodesics, arXiv:1002.0243

N.J. Sonin, About determining maximal and minimal properties, 1886, translation by R. Ya. Matsyuk

(Lepage Research Institute, Czech Republic)

I. Bucataru, Z. Muzsnay Projective metrizability and formal integrability
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