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Smilansky-Solomyak model

@ the usual way of constructing time-irreversible system is to
couple the Hamiltonian with the bath of infinite degrees of
freedom

@ but infinitely many degrees of freedom are not necessary

@ Uzy Smilansky proposed the model consisting of a quantum
graph coupled with harmonic oscillators (a harmonic
oscillator) and showed that if coupling is large enough, this
system exhibits irreversible behaviour

@ simplest model: Schrédinger operator on a line coupled with a
0 condition with a harmonic oscillator — largely studied

@ our model: Schrodinger operator on a line coupled with a ¢’
condition with a harmonic oscillator



Original Smilansky model

@ the Hamiltonian formally written as

2 (-2

52 T ) + ayd(x),

e precisely defined as a differential operator in L2(R?)

PV 1 v,
HoW =25 + 5 (ay2 +y w> :

with the domain consisting of functions satisfying

oV oV
g(oﬂhy) - 5(0—,)/) =ayV¥(0,y) for ycR.

@ swap a — —a is equivalent to the change y — —y and hence
it does not influence the spectrum, we can assume only v > 0



Spectral properties of the original Smilansky model

@ the continuous spectrum covers the interval (1/2,00) for
o < /2, covers the interval (0, 00) if & = v/2 and the whole
real axis if a > /2

e for a € (0, ﬂ) the discrete spectrum is nonempty, simple and
is contained in (0,1/2); for o > /2 the point spectrum is
empty

o the number of eigenvalues increases as av — v/2:

1 1 1
4\ V2(v2-a)

o for « large enough there is only one eigenvalue which behaves

as A
_1 a 5
51(a)—2 64+(’)(a)



Smilansky model with ¢’-interaction

@ the Hamiltonian formally written as

92 1 9?2
Hp=———+2 <—+y2> +€5’(X),

ox2 2\ 0y?
e precisely defined as a differential operator in L2(R?)
o0’V 1/ 0%v )
HﬁW(X,y) = _W(Xay) =+ 5 <_ay2(X7y) +y W(va)>

with the domain consisting of functions in
VW € H2((0,00) x R) @ H?((—0o0,0) x R) satisfying

V(0+.y) - ¥(0-y) = D 0+.). 1)
Y 0t.9) = 2 (0-). ©)

@ again, swap 8 — —pf is equivalent to the change y — —y and
hence it does not influence the spectrum, we can assume only
6>0



Spectral properties of the Smilansky model with ¢’

Theorem 1 (absolutely continuous spectrum of the operators Hy
and Hg)

The spectrum of operator Hg is purely absolutely continuous,
o(Ho) = [, 00) with mae(E,Ho) = 2n for E € (n— 3, n+ 3),
neN.

For B > 2+/2 the absolutely continuous spectrum of H g coincides
with the spectrum of Hy. For 8 < 2v/2 there is a new branch of
continuous spectrum added to the spectrum of Hy. For 3 = 2/2

we have o(Hg) = [0, 00) and for B < 2+/2 the spectrum covers the
whole real line.

@ m,. denote the multiplicity function of the absolutely
continuous spectra



Theorem 2 (discrete spectrum of the operator Hg for

B € (2v2,0))

Assume f3 € (21/2,00), then the discrete spectrum of Hg is

nonempty and lies in the interval (0,%). The number of
eigenvalues is approximately given by

as B —2V2+ .

W

Theorem 3 (discrete spectrum of the operator Hg for large 3)

For large enough [ there is a single eigenvalue which
asymptotically behaves as

/\1:;—;'4+(’)(55).



The quadratic form

e the quadratic form ag[V] = ap[V] + %b[\ll]

L

blw] = /R y W0+, y) — W(0—, y)? dy

ov

v 1]ov
ox

2| dy

* 1

ao[\U] + 5

y2|‘|’|2> dxdy ,

is associated with the operator Hg. The domain D = dom ag
of the form ag is

D = {W¥ € H'((0,00) x R) & H'((—00,0) x R);ao[V¥] < oo}



Bound on the quadratic form

Theorem 4
If B> 2+/2 it holds

1 2V/2
ag[V] > 5 (1 - 5) [wi?.

Lemma 5

For complex numbers c, d it holds 2|Re (cd)| < |c|? + |d|?.



Lemma 6

It holds

(% (0+)1* + [(0-) ) < /R (' ()P + 2| (x)?) dx
Vep € HY((0,00)) @ H((—0,0)), ~ >0,

with the equality attained on the subspace generated by

SENX _six

¢~V(X) = \/Z )

v>0.



Proof of Lemma 6.

@ we have

0 0
0< / () = ()P dx = / (/G + 721 ()[2) dx

o [ @000 + v09500)
=/_Zo(|w'(x)|2+ﬂw( )I2) dx = AU (x) P10,
and therefore
/ ;(W(x)ﬁ + 77 [$(x)[?) dx > yleb(0-) .

e similarly, 0 < [ |[v/( )+'yz/1(x)\2dx implies

Jo (' ()P +221(x)[?) dx > v]3(0+)[?, and combining
both inequalities one obtains the result.
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Proof of Theorem 4.

@ we use separation of variables and the expansion of W in the
harmonic oscillator basis, i.e. Hermite functions in the variable
y normalized in L2(R)

"U(Xv)/) = Z Ql)n(X)Xn(y)v (4)

neNp
@ we insert this into the form ag
1
aol¥] = 3 [ (1660R + (4 ) l0a0)7) ax )
neNp

@ we use twice expansion (4) and the relation

Vn+1Xn+1(Y)_\@YXn(y)+ﬁXn—l(Y):Oa HEN()(,)
6



Proof of Theorem 4 (continued).

@ we obtain

b[w:\g /R S S @m0+ — Fm(0-))Tm(y)

meNy neNg

(6n(0) = 6n(0-)) [V F Txnsa () + Vixn a(y)] dy
= =5 X [na(04) = Fra(0-) VAT L

neNp

+ (Pn-1(0+) = Pn-1(0=))Vn)(n(0+) — ¥a(0-)) =
— 23" VRe [(@n(0+)~Fn(0-)) (Ya-1(0+)~tn-1(0-)]
ﬂ neN
()

@ we employed the Hermite functions orthonormality here and in
the last line we have changed the summation index,
n+ 1 — n, in the first part of the sum



Proof of Theorem 4 (continued).

o it follows from Lemma 5 that

b[v]] < % S VA(n(0+) — a(0-) P+

neN

+ [1Pn—1(04) — Pn_1(0-)]?).

@ changing the summation index in the second part of the sum
we get

V]| < — > (Va+ v+ 1)a(0+) — 1n(0-)P

neNp

\f

il

< 3 V2n + 1¢n(0+) — $n(0-)P2

nENp

where we have used the inequality

Vn+vn+1</22n+1)




Proof of Theorem 4 (continued).

@ using subsequently Lemmata 5 and 6 we obtain

V]| <2v2 ) 4 /n+ |wn (0 + [¢n(0-)I%)

neNp

<2V Y [ (W0oR+ (n+ 5 ) om0 ax

neNp

= 2\630[\”] 0

o we use ag[W] > 1||W||2, which follows from (5)

@ we obtain

as[V] = ao[V] + ;b[\ll] > (1 - 2?) a0[V]

1 2{ »
1——— | IV,
=3
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Construction of the Jacobi operator

@ we will rephrase the problem with using certain Jacobi
operator

@ we substitute to eq. (1) the Ansatz (4) for W, multiply the
equation by Y\ m(y), integrate with respect to y over R. and
use the orthonormality

Z/Xm Y(¥n(0+) = ¥n(0—))xaly) dy =

neNp
=8 / 8% m(¥)xn(y) dy

neNy




e relation (6) then yields the condition

5201 = X 5 [ (n(04) = 000-)n(y)

neNp

(VAT Txma ) + Ve 1(v)) dy

_ \\/g(@z)ml(ojt) — Ym-1(0-))

+T(wm+l(0+) —¥m1(0-)),  (8)

@ on the other hand, the condition (2) implies

Db o\ O
20(0+) = 2 2(0-) (9)
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consider now the eigenvalue problem for the operator Hg,
which is equivalent to the set of equations

—¢Z(x)+(n+%_/\)¢n(x):0’ x=0, neNo (10)

under the matching conditions (8) and (9), for
én | Ry € H?(R) where A is the sought eigenvalue.

we define (,(A) = /n+ % — A taking the branch of the

square root which is analytic in C\[n + 3, 00) and for
number A from this set it holds

Re(n(A) >0, Im¢,(A)-ImA<O.
solutions to the equation (10) in L2(R4) are

Dn(x,N\) = ki(A) e Mx x>0,
Dn(x, ) = ka(N) eM* | x <0,

where from (9) we have ki(A) = —ka(A)



we use the normalization ¢,(x,A) = Cyna(x, \) with
Ma(x, A) == £ (n+ 5)V e e Ry
hence
$n(0-4,A) — ¢n(0—, A) = 2C, (n+ 1),

N =G+ DG,

substituting from here to eq. (8) we obtain the relation

(n+1)Y2 (n+ )Y Coox +2u (n+ 1)V G(NCo +
402 (n-H)Y*C =0, neNy (12)

with p = 2\’%

this equation defines the same Jacobi operator J (A, 1) as for
d-condition, only our parameter u differs



Absolutely continuous spectrum of Hp

@ one can represent the resolvent using the Krein formula with
the obtained Jacobi operator

@ one can proceed similarly to the known case of d-condition
and prove the following theorems



Theorem 7 (absolutely continuous spectrum of Hg)

Tac(Hp) = 0ac(Ho) U dac(Jo(8/(2V2))),
mac(Ea Hﬁ) = maC(Ea H0)+mHC(E7 \70(6/(2\/5)))
where
Jo(p) := DS+ S8*D + 21y

with

D,S : (*(No) —~ £*(No),

D{wp} : {ro,n,...} = {wr,wir,...},
D :=D(dy), Yo:=D{n+1/2},
S:{rn,n,...} = {0,r0,r1,...},

dn = n*/?(n+ %)1/4(n — %)1/4.



Theorem 8 (spectrum of Jp)

(o) = (~o0,00) for p<1,
o(F(1)) = [0,0),

Oac(Jo(p)) = 0 for pu>1,

mac(E, Jo(p)) = 1 ae.on o(Jo(n)).

@ since we have p = % these two theorem in combination

with the well-known spectrum of Hg prove the claim of
Theorem 1



Discrete spectrum of Hpg

Proof of Theorem 3.

o first we check that the spectrum on (—oc, 1) is non-empty
using a variational argument

@ the idea is to construct an element W* € D such that
agwe] < 3[we|?

@ consider functions g, 11 satisfying the conditions
Yo(0+) — ¢o(0—) =-C <0,  ¢1(0+) —¢1(0—) =1,

and such that V = {4,%1,0,0,...} € D

@ we scale the first one, 95(x) := 1o(ex), and put
Ve = {9§,91,0,0,...} which belongs again to D



Proof of Theorem 3 (continued).
e from (5) and (7) we have

(vl = 51V = [ (105 COP + iaP+

HULOOR) dx— Y2c =

g
= /R (elo ()1 + 1 () + 1 (x)]?) dx — \fc

@ choosing £ small enough and C large enough one can achieve
that the right-hand side of the last equation is negative, which
means that the spectrum below % is nonempty for any 5 >0



Proof of Theorem 3 (continued).

@ one can proof that N_(3,Hg) = Ny (u, Jo) or
N_(3,Hg) = Ny(u, Jo) + 1, where N_ (N is the number of
eigenvalues below (above) certain value)

@ using the fact on the previous slide, and the fact that the
eigenvalues of Jy have a single accumulation point at 1 (and
consequently, there is a p such that there are no eigenvalues
of Jo larger than u) we find that for 3 large enough the
operator Hg has exactly one simple eigenvalue.

@ the asymptotic expansion of this eigenvalue A; can be found
by an argument similar to the original Smilansky model



Proof of Theorem 3 (continued).

@ the system of equations (12) can be after substitution
Qn=(n+ %)1/4@7 rewritten as

Qi +2uy/53 —MQ = 0, (13)

(n -+ 1)1/2Qn+1 aF 2#Cn(/\1)Qn + nl/anfl = 0,
neN. (14)

o we normalize || Q|| := >-°2, |@,|> = 1, using then
Vn<a/n+3 =N =C(A)and Vn+ 1<\ /2(n+ 5 — Ay)
we obtain from (14) the estimate

1

1
Qn| < 5-[Qn-1| +
‘ ”‘ 2“ n \ﬁ/ﬁ

|Qn+1| . (15)



Proof of Theorem 3 (continued).

@ in the analogy with Lemma 5 we have
1 1
2 2 2
|Qn| S 2M2’Qn—1’ s ?’Qn—i—l’ 9
@ hence
- 1 3
2
S IQiP < 2§j \2+7§j|a,,| <5z
n=1 =0 =

where we have used the mentioned normalization

@ from here it follows that

e ) 1/2
|Qo| = (Z|Qn|2 - Z\in2> 1102 . (16)
n=0 n=1

@ without loss of generality we may suppose that @ is positive



Proof of Theorem 3 (continued).

e from (15) with n = 2 with the use of the normalization we

obtain
|Qa| < 7+i = szO(u_l) :
V2u
o furthermore, from (14) and (16) we get
Q= 2i +0(p?) .
,u
e from (13) we obtain
(% — /\1)1/2 = —21?(1?0 = —ﬁ + O (u‘3), or equivalently
3~ M= e+ O W) = 5 +0(67).

which concludes the proof.
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