Smilansky-Solomyak model with a δ^{\prime}-interaction

Jiří Lipovský
University of Hradec Králové, Faculty of Science
jiri.lipovsky@uhk.cz
joint work with P. Exner

Ostrava, April 6, 2018

$\}$
Univerzita Hradec Králové Přírodovědecká fakulta

Smilansky-Solomyak model

- the usual way of constructing time-irreversible system is to couple the Hamiltonian with the bath of infinite degrees of freedom
- but infinitely many degrees of freedom are not necessary
- Uzy Smilansky proposed the model consisting of a quantum graph coupled with harmonic oscillators (a harmonic oscillator) and showed that if coupling is large enough, this system exhibits irreversible behaviour
- simplest model: Schrödinger operator on a line coupled with a δ condition with a harmonic oscillator - largely studied
- our model: Schrödinger operator on a line coupled with a δ^{\prime} condition with a harmonic oscillator

Original Smilansky model

- the Hamiltonian formally written as

$$
\mathbf{H}_{\alpha}=-\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}\right)+\alpha y \delta(x)
$$

- precisely defined as a differential operator in $L^{2}\left(\mathbb{R}^{2}\right)$

$$
\mathbf{H}_{\alpha} \Psi=-\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{1}{2}\left(-\frac{\partial^{2} \psi}{\partial y^{2}}+y^{2} \Psi\right)
$$

with the domain consisting of functions satisfying

$$
\frac{\partial \Psi}{\partial x}(0+, y)-\frac{\partial \Psi}{\partial x}(0-, y)=\alpha y \Psi(0, y) \quad \text { for } \quad y \in \mathbb{R}
$$

- swap $\alpha \rightarrow-\alpha$ is equivalent to the change $y \rightarrow-y$ and hence it does not influence the spectrum, we can assume only $\alpha>0$

Spectral properties of the original Smilansky model

- the continuous spectrum covers the interval $(1 / 2, \infty)$ for $\alpha<\sqrt{2}$, covers the interval $(0, \infty)$ if $\alpha=\sqrt{2}$ and the whole real axis if $\alpha>\sqrt{2}$
- for $\alpha \in(0, \sqrt{2})$ the discrete spectrum is nonempty, simple and is contained in $(0,1 / 2)$; for $\alpha>\sqrt{2}$ the point spectrum is empty
- the number of eigenvalues increases as $\alpha \rightarrow \sqrt{2}$:

$$
N\left(\frac{1}{2}, \mathbf{H}_{\alpha}\right) \sim \frac{1}{4} \sqrt{\frac{1}{\sqrt{2}(\sqrt{2}-\alpha)}}
$$

- for α large enough there is only one eigenvalue which behaves as

$$
\varepsilon_{1}(\alpha)=\frac{1}{2}-\frac{\alpha^{4}}{64}+\mathcal{O}\left(\alpha^{5}\right)
$$

Smilansky model with δ^{\prime}-interaction

- the Hamiltonian formally written as

$$
\mathbf{H}_{\beta}=-\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2}\left(-\frac{\partial^{2}}{\partial y^{2}}+y^{2}\right)+\frac{\beta}{y} \delta^{\prime}(x)
$$

- precisely defined as a differential operator in $L^{2}\left(\mathbb{R}^{2}\right)$

$$
\mathbf{H}_{\beta} \Psi(x, y)=-\frac{\partial^{2} \Psi}{\partial x^{2}}(x, y)+\frac{1}{2}\left(-\frac{\partial^{2} \Psi}{\partial y^{2}}(x, y)+y^{2} \Psi(x, y)\right)
$$

with the domain consisting of functions in

$$
\begin{gather*}
\Psi \in H^{2}((0, \infty) \times \mathbb{R}) \oplus H^{2}((-\infty, 0) \times \mathbb{R}) \text { satisfying } \\
\Psi(0+, y)-\Psi(0-, y)=\frac{\beta}{y} \frac{\partial \Psi}{\partial x}(0+, y), \tag{1}\\
\frac{\partial \Psi}{\partial x}(0+, y)=\frac{\partial \Psi}{\partial x}(0-, y) . \tag{2}
\end{gather*}
$$

- again, swap $\beta \rightarrow-\beta$ is equivalent to the change $y \rightarrow-y$ and hence it does not influence the spectrum, we can assume only $\beta>0$

Spectral properties of the Smilansky model with δ^{\prime}

Theorem 1 (absolutely continuous spectrum of the operators \mathbf{H}_{0} and \mathbf{H}_{β})

The spectrum of operator \mathbf{H}_{0} is purely absolutely continuous, $\sigma\left(\mathbf{H}_{0}\right)=\left[\frac{1}{2}, \infty\right)$ with $\mathfrak{m}_{\mathrm{ac}}\left(E, \mathbf{H}_{0}\right)=2 n$ for $E \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, $n \in \mathbb{N}$.
For $\beta>2 \sqrt{2}$ the absolutely continuous spectrum of \mathbf{H}_{β} coincides with the spectrum of \mathbf{H}_{0}. For $\beta \leq 2 \sqrt{2}$ there is a new branch of continuous spectrum added to the spectrum of \mathbf{H}_{0}. For $\beta=2 \sqrt{2}$ we have $\sigma\left(\mathbf{H}_{\beta}\right)=[0, \infty)$ and for $\beta<2 \sqrt{2}$ the spectrum covers the whole real line.

- $\mathfrak{m}_{\mathrm{ac}}$ denote the multiplicity function of the absolutely continuous spectra

Theorem 2 (discrete spectrum of the operator \mathbf{H}_{β} for $\beta \in(2 \sqrt{2}, \infty))$

Assume $\beta \in(2 \sqrt{2}, \infty)$, then the discrete spectrum of \mathbf{H}_{β} is nonempty and lies in the interval $\left(0, \frac{1}{2}\right)$. The number of eigenvalues is approximately given by

$$
\frac{1}{4 \sqrt{2\left(\frac{\beta}{2 \sqrt{2}}-1\right)}} \text { as } \beta \rightarrow 2 \sqrt{2}+.
$$

Theorem 3 (discrete spectrum of the operator \mathbf{H}_{β} for large β)
For large enough β there is a single eigenvalue which asymptotically behaves as

$$
\Lambda_{1}=\frac{1}{2}-\frac{4}{\beta^{4}}+\mathcal{O}\left(\beta^{-5}\right) .
$$

The quadratic form

- the quadratic form $\mathbf{a}_{\beta}[\Psi]=\mathbf{a}_{0}[\Psi]+\frac{1}{\beta} \mathbf{b}[\Psi]$

$$
\begin{aligned}
\mathbf{a}_{0}[\Psi] & =\int_{\mathbb{R}^{2}}\left(\left|\frac{\partial \Psi}{\partial x}\right|^{2}+\frac{1}{2}\left|\frac{\partial \Psi}{\partial y}\right|^{2}+\frac{1}{2} y^{2}|\Psi|^{2}\right) \mathrm{d} x \mathrm{~d} y \\
\mathbf{b}[\Psi] & =\int_{\mathbb{R}} y|\Psi(0+, y)-\Psi(0-, y)|^{2} \mathrm{~d} y
\end{aligned}
$$

is associated with the operator \mathbf{H}_{β}. The domain $D=\operatorname{dom} \mathbf{a}_{0}$ of the form \mathbf{a}_{0} is

$$
D=\left\{\Psi \in H^{1}((0, \infty) \times \mathbb{R}) \oplus H^{1}((-\infty, 0) \times \mathbb{R}) ; \mathbf{a}_{0}[\Psi]<\infty\right\}
$$

Bound on the quadratic form

Theorem 4
If $\beta \geq 2 \sqrt{2}$ it holds

$$
\mathbf{a}_{\beta}[\Psi] \geq \frac{1}{2}\left(1-\frac{2 \sqrt{2}}{\beta}\right)\|\Psi\|^{2} .
$$

Lemma 5

For complex numbers c, d it holds $2|\operatorname{Re}(\bar{c} d)| \leq|c|^{2}+|d|^{2}$.

Lemma 6

It holds

$$
\begin{array}{r}
\gamma\left(|\psi(0+)|^{2}+|\psi(0-)|^{2}\right) \leq \int_{\mathbb{R}}\left(\left|\psi^{\prime}(x)\right|^{2}+\gamma^{2}|\psi(x)|^{2}\right) \mathrm{d} x \\
\forall \psi \in H^{1}((0, \infty)) \oplus H^{1}((-\infty, 0)), \quad \gamma>0
\end{array}
$$

with the equality attained on the subspace generated by

$$
\begin{equation*}
\tilde{\psi}_{\gamma}(x)=\frac{\operatorname{sgn} x}{\sqrt{2 \gamma}} \mathrm{e}^{-\gamma|x|}, \quad \gamma>0 . \tag{3}
\end{equation*}
$$

Proof of Lemma 6.

- we have

$$
\begin{aligned}
0 \leq \int_{-\infty}^{0} \mid \psi^{\prime}(x) & -\left.\gamma \psi(x)\right|^{2} \mathrm{~d} x=\int_{-\infty}^{0}\left(\left|\psi^{\prime}(x)\right|^{2}+\gamma^{2}|\psi(x)|^{2}\right) \mathrm{d} x \\
& -\gamma \int_{-\infty}^{0}\left(\bar{\psi}^{\prime}(x) \psi(x)+\psi^{\prime}(x) \bar{\psi}(x)\right) \mathrm{d} x \\
= & \int_{-\infty}^{0}\left(\left|\psi^{\prime}(x)\right|^{2}+\gamma^{2}|\psi(x)|^{2}\right) \mathrm{d} x-\gamma\left[|\psi(x)|^{2}\right]_{-\infty}^{0-}
\end{aligned}
$$

and therefore

$$
\int_{-\infty}^{0}\left(\left|\psi^{\prime}(x)\right|^{2}+\gamma^{2}|\psi(x)|^{2}\right) \mathrm{d} x \geq \gamma|\psi(0-)|^{2}
$$

- similarly, $0 \leq \int_{0}^{\infty}\left|\psi^{\prime}(x)+\gamma \psi(x)\right|^{2} \mathrm{~d} x$ implies $\int_{0}^{\infty}\left(\left|\psi^{\prime}(x)\right|^{2}+\gamma^{2}|\psi(x)|^{2}\right) \mathrm{d} x \geq \gamma|\psi(0+)|^{2}$, and combining both inequalities one obtains the result.

Proof of Theorem 4.

- we use separation of variables and the expansion of Ψ in the harmonic oscillator basis, i.e. Hermite functions in the variable y normalized in $L^{2}(\mathbb{R})$

$$
\begin{equation*}
\Psi(x, y)=\sum_{n \in \mathbb{N}_{0}} \psi_{n}(x) \chi_{n}(y) \tag{4}
\end{equation*}
$$

- we insert this into the form \mathbf{a}_{0}

$$
\begin{equation*}
\mathbf{a}_{0}[\Psi]=\sum_{n \in \mathbb{N}_{0}} \int_{\mathbb{R}}\left(\left|\psi_{n}^{\prime}(x)\right|^{2}+\left(n+\frac{1}{2}\right)\left|\psi_{n}(x)\right|^{2}\right) \mathrm{d} x \tag{5}
\end{equation*}
$$

- we use twice expansion (4) and the relation

$$
\begin{equation*}
\sqrt{n+1} \chi_{n+1}(y)-\sqrt{2} y \chi_{n}(y)+\sqrt{n} \chi_{n-1}(y)=0, \quad n \in \mathbb{N}_{0}, \tag{6}
\end{equation*}
$$

Proof of Theorem 4 (continued).

- we obtain

$$
\begin{align*}
& \mathbf{b}[\Psi]=\frac{1}{\sqrt{2}} \int_{\mathbb{R}} \sum_{m \in \mathbb{N}_{0}} \sum_{n \in \mathbb{N}_{0}}\left(\bar{\psi}_{m}(0+)-\bar{\psi}_{m}(0-)\right) \bar{\chi}_{m}(y) \\
& \left(\psi_{n}(0+)-\psi_{n}(0-)\right)\left[\sqrt{n+1} \chi_{n+1}(y)+\sqrt{n} \chi_{n-1}(y)\right] \mathrm{d} y \\
& =\frac{1}{\sqrt{2}} \sum_{n \in \mathbb{N}_{0}}\left[\left(\bar{\psi}_{n+1}(0+)-\bar{\psi}_{n+1}(0-)\right) \sqrt{n+1}\right. \\
& \left.\quad+\left(\bar{\psi}_{n-1}(0+)-\bar{\psi}_{n-1}(0-)\right) \sqrt{n}\right]\left(\psi_{n}(0+)-\psi_{n}(0-)\right)= \\
& =\frac{2}{\sqrt{2}} \sum_{n \in \mathbb{N}} \sqrt{n} \operatorname{Re}\left[\left(\bar{\psi}_{n}(0+)-\bar{\psi}_{n}(0-)\right)\left(\psi_{n-1}(0+)-\psi_{n-1}(0-)\right)\right] . \tag{7}
\end{align*}
$$

- we employed the Hermite functions orthonormality here and in the last line we have changed the summation index, $n+1 \rightarrow n$, in the first part of the sum

Proof of Theorem 4 (continued).

- it follows from Lemma 5 that

$$
\begin{aligned}
|\mathbf{b}[\Psi]| \leq \frac{1}{\sqrt{2}} \sum_{n \in \mathbb{N}} \sqrt{n}\left(\mid \psi_{n}(0+)\right. & -\left.\psi_{n}(0-)\right|^{2}+ \\
& \left.+\left|\psi_{n-1}(0+)-\psi_{n-1}(0-)\right|^{2}\right) .
\end{aligned}
$$

- changing the summation index in the second part of the sum we get

$$
\begin{aligned}
&|\mathbf{b}[\Psi]| \leq \frac{1}{\sqrt{2}} \sum_{n \in \mathbb{N}_{0}}(\sqrt{n}+\sqrt{n+1})\left|\psi_{n}(0+)-\psi_{n}(0-)\right|^{2} \\
& \leq \sum_{n \in \mathbb{N}_{0}} \sqrt{2 n+1}\left|\psi_{n}(0+)-\psi_{n}(0-)\right|^{2}
\end{aligned}
$$

where we have used the inequality

$$
\sqrt{n}+\sqrt{n+1}<\sqrt{2(2 n+1)}
$$

Proof of Theorem 4 (continued).

- using subsequently Lemmata 5 and 6 we obtain

$$
\begin{array}{r}
|\mathbf{b}[\Psi]| \leq 2 \sqrt{2} \sum_{n \in \mathbb{N}_{0}} \sqrt{n+\frac{1}{2}}\left(\left|\psi_{n}(0+)\right|^{2}+\left|\psi_{n}(0-)\right|^{2}\right) \\
\leq 2 \sqrt{2} \sum_{n \in \mathbb{N}_{0}} \int_{\mathbb{R}}\left(\left|\psi_{n}^{\prime}(x)\right|^{2}+\left(n+\frac{1}{2}\right)\left|\psi_{n}(x)\right|^{2}\right) \mathrm{d} x \\
=2 \sqrt{2} \mathbf{a}_{0}[\Psi] .
\end{array}
$$

- we use $\mathbf{a}_{0}[\Psi] \geq \frac{1}{2}\|\Psi\|^{2}$, which follows from (5)
- we obtain

$$
\begin{aligned}
& \mathbf{a}_{\beta}[\Psi]=\mathbf{a}_{0}[\Psi]+\frac{1}{\beta} \mathbf{b}[\Psi] \geq\left(1-\frac{2 \sqrt{2}}{\beta}\right) \mathbf{a}_{0}[\Psi] \\
& \geq \frac{1}{2}\left(1-\frac{2 \sqrt{2}}{\beta}\right)\|\Psi\|^{2} \\
& \text { Jirí Lipovský } \text { Smilansky-Solomyak model }
\end{aligned}
$$

Construction of the Jacobi operator

- we will rephrase the problem with using certain Jacobi operator
- we substitute to eq. (1) the Ansatz (4) for Ψ, multiply the equation by $\bar{\chi}_{m}(y)$, integrate with respect to y over \mathbb{R}. and use the orthonormality

$$
\begin{aligned}
& \sum_{n \in \mathbb{N}_{0}} \int_{\mathbb{R}} \bar{\chi}_{m}(y) y\left(\psi_{n}(0+)-\psi_{n}(0-)\right) \chi_{n}(y) \mathrm{d} y= \\
&=\beta \sum_{n \in \mathbb{N}_{0}} \int_{\mathbb{R}} \frac{\partial \psi_{n}}{\partial x}(0+) \bar{\chi}_{m}(y) \chi_{n}(y) \mathrm{d} y
\end{aligned}
$$

- relation (6) then yields the condition

$$
\begin{align*}
\beta \frac{\partial \psi_{m}}{\partial x}(0+)= & \sum_{n \in \mathbb{N}_{0}} \frac{1}{\sqrt{2}} \int_{\mathbb{R}}\left(\psi_{n}(0+)-\psi_{n}(0-)\right) \bar{\chi}_{m}(y) \\
& \left(\sqrt{n+1} \chi_{n+1}(y)+\sqrt{n} \chi_{n-1}(y)\right) \mathrm{d} y \\
& =\frac{\sqrt{m}}{\sqrt{2}}\left(\psi_{m-1}(0+)-\psi_{m-1}(0-)\right) \\
+ & \frac{\sqrt{m+1}}{\sqrt{2}}\left(\psi_{m+1}(0+)-\psi_{m+1}(0-)\right) \tag{8}
\end{align*}
$$

- on the other hand, the condition (2) implies

$$
\begin{equation*}
\frac{\partial \psi_{n}}{\partial x}(0+)=\frac{\partial \psi_{n}}{\partial x}(0-) \tag{9}
\end{equation*}
$$

- consider now the eigenvalue problem for the operator \mathbf{H}_{β}, which is equivalent to the set of equations

$$
\begin{equation*}
-\phi_{n}^{\prime \prime}(x)+\left(n+\frac{1}{2}-\Lambda\right) \phi_{n}(x)=0, \quad x=0, \quad n \in \mathbb{N}_{0} \tag{10}
\end{equation*}
$$

under the matching conditions (8) and (9), for $\phi_{n} \upharpoonright \mathbb{R}_{ \pm} \in H^{2}\left(\mathbb{R}_{ \pm}\right)$where Λ is the sought eigenvalue.

- we define $\zeta_{n}(\Lambda)=\sqrt{n+\frac{1}{2}-\Lambda}$ taking the branch of the square root which is analytic in $\mathbb{C} \backslash\left[n+\frac{1}{2}, \infty\right)$ and for number Λ from this set it holds

$$
\operatorname{Re} \zeta_{n}(\Lambda)>0, \quad \operatorname{Im} \zeta_{n}(\Lambda) \cdot \operatorname{Im} \Lambda<0
$$

- solutions to the equation (10) in $L^{2}\left(\mathbb{R}_{ \pm}\right)$are

$$
\begin{aligned}
\phi_{n}(x, \Lambda)=k_{1}(\Lambda) \mathrm{e}^{-\zeta_{n}(\Lambda) x}, & x>0 \\
\phi_{n}(x, \Lambda)=k_{2}(\Lambda) \mathrm{e}^{\zeta_{n}(\Lambda) x}, & x<0
\end{aligned}
$$

where from (9) we have $k_{1}(\Lambda)=-k_{2}(\Lambda)$

- we use the normalization $\phi_{n}(x, \Lambda)=C_{n} \eta_{n}(x, \Lambda)$ with

$$
\eta_{n}(x, \Lambda):= \pm\left(n+\frac{1}{2}\right)^{1 / 4} \mathrm{e}^{\mp \zeta_{n}(\Lambda) x} . \quad x \in \mathbb{R}_{ \pm} .
$$

- hence

$$
\begin{gather*}
\phi_{n}(0+, \Lambda)-\phi_{n}(0-, \Lambda)=2 C_{n}\left(n+\frac{1}{2}\right)^{1 / 4} \\
\frac{\partial \phi_{n}}{\partial x}(0+, \Lambda)=-C_{n}\left(n+\frac{1}{2}\right)^{1 / 4} \zeta_{n}(\Lambda) \tag{11}
\end{gather*}
$$

- substituting from here to eq. (8) we obtain the relation

$$
\begin{array}{r}
(n+1)^{1 / 2}\left(n+\frac{3}{2}\right)^{1 / 4} C_{n+1}+2 \mu\left(n+\frac{1}{2}\right)^{1 / 4} \zeta_{n}(\Lambda) C_{n}+ \\
+n^{1 / 2}\left(n-\frac{1}{2}\right)^{1 / 4} C_{n-1}=0, \quad n \in \mathbb{N}_{0} \tag{12}
\end{array}
$$

with $\mu:=\frac{\beta}{2 \sqrt{2}}$

- this equation defines the same Jacobi operator $\mathcal{J}(\Lambda, \mu)$ as for δ-condition, only our parameter μ differs

Absolutely continuous spectrum of \mathbf{H}_{β}

- one can represent the resolvent using the Krein formula with the obtained Jacobi operator
- one can proceed similarly to the known case of δ-condition and prove the following theorems

Theorem 7 (absolutely continuous spectrum of \mathbf{H}_{β})

$$
\begin{aligned}
\sigma_{\mathrm{ac}}\left(\mathbf{H}_{\beta}\right) & =\sigma_{\mathrm{ac}}\left(\mathbf{H}_{0}\right) \cup \sigma_{\mathrm{ac}}\left(\mathcal{J}_{0}(\beta /(2 \sqrt{2}))\right), \\
\mathfrak{m}_{\mathrm{ac}}\left(E, \mathbf{H}_{\beta}\right) & =\mathfrak{m}_{\mathrm{ac}}\left(E, \mathbf{H}_{0}\right)+\mathfrak{m}_{\mathrm{ac}}\left(E, \mathcal{J}_{0}(\beta /(2 \sqrt{2}))\right)
\end{aligned}
$$

where

$$
\mathcal{J}_{0}(\mu):=D \mathcal{S}+\mathcal{S}^{*} D+2 \mu Y_{0}
$$

with

$$
\begin{array}{r}
\mathcal{D}, \mathcal{S}: \ell^{2}\left(\mathbb{N}_{0}\right) \mapsto \ell^{2}\left(\mathbb{N}_{0}\right), \\
\mathcal{D}\left\{\omega_{n}\right\}:\left\{r_{0}, r_{1}, \ldots\right\} \mapsto\left\{\omega r_{0}, \omega_{1} r_{1}, \ldots\right\}, \\
D:=\mathcal{D}\left(d_{n}\right), \quad Y_{0}:=\mathcal{D}\{n+1 / 2\} \\
\mathcal{S}:\left\{r_{0}, r_{1}, \ldots\right\} \mapsto\left\{0, r_{0}, r_{1}, \ldots\right\}, \\
d_{n}:=n^{1 / 2}\left(n+\frac{1}{2}\right)^{1 / 4}\left(n-\frac{1}{2}\right)^{1 / 4} .
\end{array}
$$

Theorem 8 (spectrum of \mathcal{J}_{0})

$$
\begin{aligned}
\sigma\left(\mathcal{J}_{0}(\mu)\right) & =(-\infty, \infty) \text { for } \mu<1, \\
\sigma\left(\mathcal{J}_{0}(1)\right) & =[0, \infty), \\
\sigma_{\mathrm{ac}}\left(\mathcal{J}_{0}(\mu)\right) & =\emptyset \text { for } \mu>1, \\
\mathfrak{m}_{\mathrm{ac}}\left(E, \mathcal{J}_{0}(\mu)\right) & =1 \quad \text { a.e. on } \quad \sigma\left(\mathcal{J}_{0}(\mu)\right) .
\end{aligned}
$$

- since we have $\mu=\frac{\beta}{2 \sqrt{2}}$, these two theorem in combination with the well-known spectrum of \mathbf{H}_{0} prove the claim of Theorem 1

Discrete spectrum of \mathbf{H}_{β}

Proof of Theorem 3.

- first we check that the spectrum on $\left(-\infty, \frac{1}{2}\right)$ is non-empty using a variational argument
- the idea is to construct an element $\Psi^{\varepsilon} \in D$ such that $\mathbf{a}_{\beta}\left[\Psi^{\varepsilon}\right]<\frac{1}{2}\left\|\Psi^{\varepsilon}\right\|^{2}$
- consider functions ψ_{0}, ψ_{1} satisfying the conditions

$$
\psi_{0}(0+)-\psi_{0}(0-)=-C<0, \quad \psi_{1}(0+)-\psi_{1}(0-)=1
$$

and such that $\Psi=\left\{\psi_{0}, \psi_{1}, 0,0, \ldots\right\} \in D$

- we scale the first one, $\psi_{0}^{\varepsilon}(x):=\psi_{0}(\varepsilon x)$, and put $\Psi^{\varepsilon}:=\left\{\psi_{0}^{\varepsilon}, \psi_{1}, 0,0, \ldots\right\}$ which belongs again to D

Proof of Theorem 3 (continued).

- from (5) and (7) we have

$$
\begin{aligned}
& \mathbf{a}_{\beta}\left[\Psi^{\varepsilon}\right]-\frac{1}{2}\left\|\Psi^{\varepsilon}\right\|^{2}=\int_{\mathbb{R}}\left(\left|\psi_{0}^{\varepsilon}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\right. \\
& \left.\quad+\left|\psi_{1}^{\prime}(x)\right|^{2}\right) \mathrm{d} x-\frac{\sqrt{2}}{\beta} C= \\
& =\int_{\mathbb{R}}\left(\varepsilon\left|\psi_{0}^{\prime}(x)\right|^{2}+\left|\psi_{1}(x)\right|^{2}+\left|\psi_{1}^{\prime}(x)\right|^{2}\right) \mathrm{d} x-\frac{\sqrt{2}}{\beta} C
\end{aligned}
$$

- choosing ε small enough and C large enough one can achieve that the right-hand side of the last equation is negative, which means that the spectrum below $\frac{1}{2}$ is nonempty for any $\beta>0$

Proof of Theorem 3 (continued).

- one can proof that $N_{-}\left(\frac{1}{2}, \mathbf{H}_{\beta}\right)=N_{+}\left(\mu, \mathbf{J}_{0}\right)$ or $N_{-}\left(\frac{1}{2}, \mathbf{H}_{\beta}\right)=N_{+}\left(\mu, J_{0}\right)+1$, where $N_{-}\left(N_{+}\right.$is the number of eigenvalues below (above) certain value)
- using the fact on the previous slide, and the fact that the eigenvalues of J_{0} have a single accumulation point at 1 (and consequently, there is a μ such that there are no eigenvalues of \mathbf{J}_{0} larger than μ) we find that for β large enough the operator \mathbf{H}_{β} has exactly one simple eigenvalue.
- the asymptotic expansion of this eigenvalue Λ_{1} can be found by an argument similar to the original Smilansky model

Proof of Theorem 3 (continued).

- the system of equations (12) can be after substitution $Q_{n}=\left(n+\frac{1}{2}\right)^{1 / 4} C_{n}$ rewritten as

$$
\begin{align*}
& Q_{1}+2 \mu \sqrt{\frac{1}{2}-\Lambda_{1}} Q_{0}=0 \tag{13}\\
&(n+1)^{1 / 2} Q_{n+1}+2 \mu \zeta_{n}\left(\Lambda_{1}\right) Q_{n}+n^{1 / 2} Q_{n-1}=0 \\
& n \in \mathbb{N} \tag{14}
\end{align*}
$$

- we normalize $\|Q\|:=\sum_{n=0}^{\infty}\left|Q_{n}\right|^{2}=1$, using then

$$
\sqrt{n} \leq \sqrt{n+\frac{1}{2}-\Lambda_{1}}=\zeta_{n}\left(\Lambda_{1}\right) \text { and } \sqrt{n+1} \leq \sqrt{2\left(n+\frac{1}{2}-\Lambda_{1}\right)}
$$

we obtain from (14) the estimate

$$
\begin{equation*}
\left|Q_{n}\right| \leq \frac{1}{2 \mu}\left|Q_{n-1}\right|+\frac{1}{\sqrt{2} \mu}\left|Q_{n+1}\right| \tag{15}
\end{equation*}
$$

Proof of Theorem 3 (continued).

- in the analogy with Lemma 5 we have

$$
\left|Q_{n}\right|^{2} \leq \frac{1}{2 \mu^{2}}\left|Q_{n-1}\right|^{2}+\frac{1}{\mu^{2}}\left|Q_{n+1}\right|^{2}
$$

- hence

$$
\sum_{n=1}^{\infty}\left|Q_{n}\right|^{2} \leq \frac{1}{2 \mu^{2}} \sum_{n=0}^{\infty}\left|Q_{n}\right|^{2}+\frac{1}{\mu^{2}} \sum_{n=2}^{\infty}\left|Q_{n}\right|^{2} \leq \frac{3}{2 \mu^{2}}
$$

where we have used the mentioned normalization

- from here it follows that

$$
\begin{equation*}
\left|Q_{0}\right|=\left(\sum_{n=0}^{\infty}\left|Q_{n}\right|^{2}-\sum_{n=1}^{\infty}\left|Q_{n}\right|^{2}\right)^{1 / 2}=1+\mathcal{O}\left(\mu^{-2}\right) \tag{16}
\end{equation*}
$$

- without loss of generality we may suppose that Q_{0} is positive

Proof of Theorem 3 (continued).

- from (15) with $n=2$ with the use of the normalization we obtain

$$
\left|Q_{2}\right| \leq \frac{1}{2 \mu}+\frac{1}{\sqrt{2} \mu} \quad \Rightarrow \quad Q_{2}=\mathcal{O}\left(\mu^{-1}\right)
$$

- furthermore, from (14) and (16) we get

$$
Q_{1}=\frac{1}{2 \mu}+\mathcal{O}\left(\mu^{-2}\right)
$$

- from (13) we obtain
$\left(\frac{1}{2}-\Lambda_{1}\right)^{1 / 2}=-\frac{Q_{1}}{2 \mu Q_{0}}=-\frac{1}{4 \mu^{2}}+\mathcal{O}\left(\mu^{-3}\right)$, or equivalently

$$
\frac{1}{2}-\Lambda_{1}=\frac{1}{16 \mu^{4}}+\mathcal{O}\left(\mu^{-5}\right)=\frac{4}{\beta^{4}}+\mathcal{O}\left(\beta^{-5}\right)
$$

which concludes the proof.

Paper on which the talk was based

P. Exner, J. Lipovsky: Smilansky-Solomyak model with a δ^{\prime}-interaction, Phys. Lett. A 382 (2018), 1207-1213.

Thank you for your attention!

Paper on which the talk was based

P. Exner, J. Lipovsky: Smilansky-Solomyak model with a δ^{\prime}-interaction, Phys. Lett. A 382 (2018), 1207-1213.

Thank you for your attention!

