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Basic Concepts and Definitions

As well known, any module M is a quotient M = F0/R0 of some
free module F0. The submodule R0 is again a quotient
R0 = F1/R1 of a suitable free module F1. Continuation of this
process yields an exact sequence 0← M← F0 ← F1 ← · · ·
which will be called a free resolution of M.
(Co)chain Complex

Let Λ be an associative algebra with unit over some
commutative ring R. A chain complex is a sequence

C• : · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ Cn−2 → · · ·

of left(right) Λ-modules connected by Λ-homomorphisms such
that dn ◦ dn+1 = 0 for all n. Λ-homomorphisms dn are called
boundary operators or differentials.
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Basic Concepts and Definitions

A cochain complex

is a sequences

C • : · · · ← C n+1 dn
←− C n dn−1

←−−− Cn−1 ← · · ·

of left(right) Λ-modules connected by Λ-homomorphisms such
that dn ◦ dn−1 = 0 for all n.
A chain complex can be considered as a cochain complex by
reversing the enumeration: C n = C−n, dn = d−n. This is why
we will usually consider only chain complexes.
Setting C• :=

⊕
i∈Z Ci we the get the homogenous

homomorphism of degree 1, d• : C• → C•.
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Homology and Cohomology

Let C be a chain complex

C• : · · · → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1
dn−1−−−→ Cn−2 → · · ·

of Λ-modules. Since dn ◦ dn+1 = 0, we have Im(dn+1) ⊆ Ker(dn).

A homology

of a chain complex is the Λ-module

Hn(C•) := Ker(dn)/Im(dn+1).

A cohomology of a cochain complex is the Λ-module

Hn(C •) := Ker(dn)/Im(dn−1).
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The standard terminology is as follows: elements of Cn are called
n-dimensional chains, elements of C n are called n-dimensional
cochains, elements of Ker(dn) are called n-dimensional cycles,
elements of Ker(dn) are called n-dimensional cocycles, elements
of Im(dn) are called n-dimensional boundary, and elements of
Im(dn−1) are called n-dimensional coboundary.

A complex is said to be acyclic if Hn(C ) = 0 for all n. It is easy
to see that Hn(C ) = 0 means that the sequence C is exact at Cn.
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Resolution

Definition
A (left) resolution of M is a complex (C•, d•) with Ci = 0 for
i < 0, together with a map ε : C0 → M so that the (augmented)
complex

0← M ε←− C0
d1←− C1

d2←− C2 ← . . .

is exact, i.e., Hn(C•) = 0 for n > 0 and ε : H0(C•) ∼= M.
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Examples

1 If K = Z (or any principal ideal domain) then submodules
of a free module are free, hence any K-module M admits a
free resolution

0← M← F0 ← F1 ← 0.

In particular, the Z-module Zn, n > 1 admits the resolution

0← Zn
mod (n)←−−−−− Z ×n←−− Z← 0.

2 Let K = Z[x]/(x2 − 1) and let χ be the image of x in K. Let
M = Z, regarded as a Z[x]/(x2 − 1)-module, with χ acting
as the identity, i.e., M is the Z[x]/(x2 − 1)-module
K/(χ− 1). Since x2 − 1 = (x− 1)(x + 1), it is clear that an
element of K is annihilated by χ− 1 (resp. χ+ 1) if and
only if it is divisible by χ+ 1 (resp. χ− 1). One therefore
has a free resolution

0← Z← K χ−1←−− K χ+1←−− K χ−1←−− K← · · · .
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The Bar Resolution for Algebras

The identity element 1Λ gives a K-module map ι : K→ Λ; its
cokernel Λ/ι(K) = Λ/(K1Λ) will be denoted as Λ/K, with
elements the cosets λ+ K. For each left Λ-module M construct
the relatively free Λ-module

Bn(Λ,M) := Λ⊗K (Λ/K)⊗K · · · ⊗K (Λ/K)︸ ︷︷ ︸
n

⊗KM.

As a K-module, it is spanned by elements which we write, with
a vertical bar replacing “⊗K”, as

λ[λ1| . . . |λn]m := λ⊗K [(λ1 + K)⊗K · · · ⊗K (λn + K)]⊗K m;
in particular, B0 = {λ[ ]m}. The left factor λ gives the left
Λ-module structure of Bn, and [λ1| . . . |λ]m without the operator
will designate the corresponding element of (Λ/K)n ⊗K M. These
elements are normalized, in the sense that [λ1| . . . |λn]c = 0
when any one λi ∈ K.Viktor Lopatkin Czech Technical University in Prague
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Further, define left Λ-module homomorphisms ε : B0 → M and
dn : Bn → Bn−1 for n > 0 by ε

(
λ[ ]m

)
:= λm, and

dn(λ[λ1| . . . |λn]m) := λλ1[λ2| . . . |λn]m

+
n−1∑
i=1

(−1)iλ[λ1| . . . |λiλi+1| . . . |λn]m

+(−1)nλ[λ1| . . . |λn−1](λnm).

It is easy to verify that from associative low in Λ it follows that
di+1 ◦ di = 0, for every i ≥ 0. We thus get the complex
(B•(Λ,M), d•),

0← M ε←− B0
d1←− B1

d2←− B2 ← · · · .
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Hochschild cohomology

nth Hochschild cohomology module of an K-algebra Λ with
coefficients in a Λ-bimodule M is the K-module

Hn(Λ,M) := Hn(HomK(B̃n(Λ,Λ),M)), n = 0, 1, . . . ;

where the elements of the complex are K-linear functions
f : Λ× · · · × Λ︸ ︷︷ ︸

n

→ M such that f(λ1, . . . , λn) = 0 whenever one λi

belongs to K. The coboundary δnf is the function given as

δnf(λ1, . . . , λn+1) = λ1f(λ2, . . . , λn+1)

+
n∑

i=1
(−1)nf(λ1, . . . , λiλi+1, . . . , λn+1)

+(−1)n+1f(λ1, . . . , λn)λn+1.
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Invariants and Derivations

In particular, a zero-cochain is a constant m ∈ M; its
coboundary is the function

adm : Λ→ M

which is given by adm(λ) := mλ− λm, for every λ ∈ Λ.
Hence

H0(Λ,M) := {m ∈ M : λm = mλ, for all λ ∈ Λ},

it is also called K-module of invariants.
Similarly, 1-cocycle is a K-module homomorphism D : Λ→ M
satisfying the identity

D(λλ′) = D(λ)λ′ + λD(λ′), λ, λ′ ∈ Λ;

(=the Leibnitz product rule) such a function D is called a
derivation of Λ.
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Let M = Λ.
As well known, every element λ ∈ Λ determines the inner
derivation adλ, adλ(a) = λa− aλ, a ∈ Λ. Denote by ad(Λ) the
K-module of inner derivations of Λ.
Thus the K-module HH1(Λ) := Der(Λ)/ ad(Λ) is the module of
outer derivations of Λ.
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Cohomology of Groups

Let G be a group. Consider Z[G] and let M be a Z[G]-module.
Next, let P∗ be a projective resolution of Z over Z[G].

Cohomology of G with coefficients in M

is defined as follows

H∗(G,M) := H∗(HomZ[G](P∗,M))

For any group G we can always take P• to be the bar-resolution
B•. Namely, take Bn to be the free G-module with generators
[g1| . . . |gn] all n-tuples of elements g1 6= 1G, . . . , gn 6= 1G of G.
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Operation on a generator with an g ∈ G yields an element
g[g1| . . . |gn] in Bn, so Bn may be described as the free abelian
group generated by all g[g1| . . . |gn]. To give a meaning to every
symbol [g1| . . . |gn], set

[g1| . . . |gn] = 0

if any one gi = 1G.
In particular, B0 is the free module on one generator, denoted
by [ ], so is isomorphic to Z[G], while ε([ ]) = 1 is a G-module
homomorphism ε : B0 → Z, with Z the trivial G-module.
Next, define G-module homomorphisms dn : Bn → Bn−1 for
n > 0 by

dn[g1| . . . |gn] = g1[g2| . . . |gn]

+
n−1∑
i=1

(−1)i[g1| . . . |gigi+1| . . . |gn]

+(−1)n[g1| . . . |gn−1];
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in particular

d[g] = g[ ]− [ ],
d[a|b] = a[b]− [ab] + [a].

Using HomZ[G](−,M), where M is a G-module, we get the
following complex (G•, ∂n),

Gn := HomZ[G](Z[G]⊗(n+1),M) ∼= HomZ(G×n,M),

with

(∂nf)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+
n∑

i=1
(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn).
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Construction all groups G such that G/Z ∼= Zn

Let us construct all groups G such that G/Z ∼= Zn, where n ∈ N,
n > 1. We thus have

G = g0Z + g1Z + · · ·+ gn−1Z,

where g0 = 1G and the homomorphism ϕ : G→ Zn is such that
gi 7→ i for every 0 ≤ i ≤ n− 1. We thus can put that every
element of G has a form (ζ, k), where ζ ∈ Z and k ∈ Zn−1.
Further, by (giZ) · (gjZ) = gigjZ, we get

(0, i) · (0, k) = (f(i, k), i + k), (1)

where f(i, k) ∈ Z and i + k means the addition in Zn.
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Construction all groups G such that G/Z ∼= Zn

In other words, we get a map f : Zn × Zn → Z which determines
the group G as follows

G = 〈{(ζ, i}ζ∈Z,i∈Zn |(ζ, i) · (ξ, k) := (ζ + ξ + f(i, k), i + k)〉,

in particular, if f ≡ 0 we then get G ∼= Z⊕ Zn. We thus see that
G looks like the Z⊕ Zn, “perturbed” by f. Next, note that the
convention of taking 1G as the representative of Z in G yields,
from (1),

f(i, 0) = f(0, j) = 0, (2)

for all i, j ∈ Zn.

Viktor Lopatkin Czech Technical University in Prague
Combinatorial Calculation of Homology



However, in general, an arbitrary map f : Zn × Zn → Z does not
define G. Indeed, if we define a product in G as above then by[
(ζ, i) · (ξ, j)

]
· (ϑ, k) = (ζ, i) ·

[
(ξ, j) · (ϑ, k)

)
] in G, we get[

(ζ, i) · (ξ, j)
]
· (ϑ, k) = (ζ + ξ + f(i, j), i + j) · (ϑ, k)

= (ζ + ξ + ϑ+ f(i, j) + f(i + j, k), i + j + k),

and

(ζ, i) ·
[
(ξ, j) · (ϑ, k)

]
= (ζ, i) · (ξ + ϑ+ f(j, k), j + k)
= (ζ + ξ + ϑ+ f(i, j + k) + f(j, k), i + j + k).

It follows that the product in G is associative if and only if f
satisfies the identity

f(i, j) + f(i + j, k) = f(i, j + k) + f(j, k) (3)

for all i, j, k ∈ Zn.
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Construction all groups G such that G/Z ∼= Zn

Thus the set of elements (ζ, i), ζ ∈ Z, i ∈ Zn, with the product
rule

(ζ, i) · (ξ, k) := (ζ + ξ + f(i, k), i + k),

where f : Zn × Zn → Z satisfies (2) and (3), defines a group G
with normal subgroup Z and G/Z ∼= Zn.
Next, set

f(i, j) =
{
0 if i + j ≤ n− 1,
α ∈ Z if i + j ≥ n.

With these definition we easily verify that (2) and (3) are
satisfied, and so all groups G such that G/Z ∼= Zn are defined.
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Construction all groups G such that G/Z ∼= Zn

Thus for every α ∈ Z we’ve obtained the extension Gα of Z by
Zn. Let α, β ∈ Z and consider the corresponding extensions Gα,
Gβ . We want to know whether they are equivalent, i.e., whether
there is an homomorphism Φ : Gα → Gβ .
We thus get the following commutative diagram

Gα

πα

!!

Φ

��

0 // Z

inα
>>

inβ ��

Zn // 0

Gβ

πβ

>>

Set Φ(ζ, i) = (Φ(ζ),Φ(i)). By Φ ◦ inα = inβ , Φ(ζ, 0) = (ζ, 0), and
by πβ ◦ Φ = πα, Φ(i) = i.
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Construction all groups G such that G/Z ∼= Zn

Thus, we can put Φ(ζ, i) := (ζ + ϕ(i), i), where ϕ : Zn → Z is a
function with ϕ(0) = 0. Since Φ is a homomorphism then one
can easy obtain that α and β must satisfy the following identity

α− β = ϕ(i + j)− ϕ(i)− ϕ(j). (4)

From these identities it follows that there exist only n non
equivalent extensions of Z by Zn. Indeed, let us consider the
case n = 3. We then get

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = f(2, 0) = f(0, 2) = 0,

and
f(1, 2) = f(2, 1) = f(2, 2) = α ∈ Z,
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Construction all groups G such that G/Z ∼= Zn

Thus the multiplication tableau in Gα has the following form

(ζ, 0) (ξ, 1) (ϑ, 2)
(ζ ′, 0) (ζ ′ + ζ, 0) (ζ ′ + ξ, 1) (ζ ′ + ϑ, 2)
(ξ′, 1) (ξ′ + ζ, 1) (ξ′ + ξ, 2) (ξ′ + ϑ+ α, 0)
(ϑ′, 2) (ϑ′ + ζ, 2) (ϑ′ + ξ + α, 0) (ϑ′ + ϑ+ α, 1)

Further, by (4), any two extensions Gα, Gβ are equivalent if and
only if there exist a function ϕ : Z3 → Z, ϕ(0) = 0, such that

α− β = ϕ(i + j)− ϕ(i)− ϕ(j),

for every i, j ∈ Z3.
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Construction all groups G such that G/Z ∼= Zn

We get {
α− β = 2ϕ(2)− ϕ(1),
α− β = ϕ(1) + ϕ(2),

hence ϕ(2) = 2ϕ(1), therefore α− β = 3ϕ(1). This implies that
Gα and Gβ are equivalent if and only if α ≡ β mod (3). Thus we
get only 3 non equivalent extensions of Z by Z3.
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We’ve got the following complex (G•, ∂n),

Gn := HomZ[G](Z[G]⊗(n+1),M) ∼= HomZ(G×n,M),

with

(∂nf)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+
n∑

i=1
(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn).

In particular

(∂2f)(g, h,w) = gf(h,w)− f(gh,w) + f(g, hw)− f(g, h).

And now this identity can be rewritten in a form which should
look familiar:

µg(f(h,w))− f(gh,w) + f(g, hw)− f(g, h) = 0.
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Thus f can be regarded as a 2-cochain of the complex G for
computing H∗(G,A) and the identity says precisely that f is a
cocycle and we therefore can say that(

extensions with
a normalised section

)
�

(
normalized 2-cocycles of
G with coefficients in A

)

Finally, one can prove the following

Theorem
Let A be a G-module and let E (G,A) be the set of equivalence
classes of extensions of G by A giving rise to the given action of
G on A. Then there is a bijection

E (G,A)←→ H2(G,A).
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Composition–Diamond Lemma

Here we present the concepts of Composition–Diamond lemma
and Gröbner–Shirshov basis. In the classical version of
Composition–Diamond lemma, it assumed that considered
algebras is over a field, here we consider the general case.

Let K be an arbitrary commutative ring with unit, K〈X〉 the
free associative algebra over K generated by X, and let X∗ be
the free monoid generated by X, where empty word is the
identity, denoted by 1X∗ . Assume that X∗ is a well-ordered set.
Take f ∈ K〈X〉 with the leading word (term) f and f = κf + rf ,
where 0 6= κ ∈ K and rf < f. We call f is monic if κ = 1. We
denote by deg(f) the degree of f.
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Zero Devisors in Group Rings

The problem is

let G be a free torsion group, does Z[G] contain zero devisors?
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Given a group G is presented as follows

G = 〈x1, . . . , xn | r1, . . . , rm〉.

We then get the following exact sequence of Z[G]-modules

0→ π2(K) p−→
m⊕

i=1
Z[G] d1−→

n⊕
i=1

Z[G] d0−→ Z[G] ε−→ Z→ 0,

where K is the standard 2-complex associated with G. The
homomorphisms d1 is given by

(α1, . . . , αn)T 7→
n∑

i=1
αi(xi − 1),

the homomorphism d2 is given by the matrix (=“Jacobian”)(
∂rj
∂xi

)
1≤i≤n,
1≤j≤m
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Further, take a β ∈ π2(K), we then get p(β) = (β1, . . . , βm)T,
and hence

m∑
j=1

βj
∂rj
∂xi

= 0,

for every 1 ≤ i ≤ n.

Assume now that for a fixed i,
∂rj
∂xi

= Sjf, 1 ≤ j ≤ m, then by the

previous equality we then have

m∑
j=1

(βjSj)f = 0,

it follows that Z[G] has zero divisors.
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Example

G = sgr〈x, y, x−1, y−1 | r11 = r12, r21 = r22〉

r1 = {r11 = r12} = {ypxnymxyt = ykxnymxyl},
r2 = {r21 = r22} = {y1xnymxys = yrxnymxyh},

and the Fox derivatives
∂r1
∂x

,
∂r2
∂x

have common divisor

f = xnym + xn−1 + · · ·+ x + 1.

Viktor Lopatkin Czech Technical University in Prague
Combinatorial Calculation of Homology



Composition–Diamond Lemma

A well ordering 6 on X∗ is called monomial if for u, v ∈ X∗, we
have:

u 6 v =⇒ w
∣∣
u 6 w

∣∣
v, ∀w ∈ X∗,

where w
∣∣
u := w

∣∣
x→u and x’s are the same individuality of the

letter x ∈ X in w.
A standard example of monomial ordering on X∗ is the deg-lex
ordering (i.e., degree and lexicographical), in which two words
are compared first by the degree and then lexicographically,
where X is a well-ordering set.
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Composition–Diamond Lemma

Fix a monomial ordering 6 on X∗, and let ϕ and ψ be two monic
polynomials in K〈X〉. There are two kinds of compositions:
(i) If w is a word (i.e, it lies in X∗) such that w = ϕb = aψ for

some a, b ∈ X∗ with deg(ϕ) + deg(ψ) > deg(w), then the
polynomial (ϕ,ψ)w := ϕb− aψ is called the intersection
composition of ϕ and ψ with respect to w.

(ii) If w = ϕ = aψb for some a, b ∈ X∗, then the polynomial
(ϕ,ψ)w := ϕ− aψb is called the inclusion composition of ϕ
and ψ with respect to w.

We then note that (ϕ,ψ)w ≤ w and (ϕ,ψ)w lies in the ideal
(ϕ,ψ) of K〈X〉 generated by ϕ and ψ.
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Composition–Diamond Lemma

Let S ⊆ K〈X〉 be a monic set (i.e., it is a set of monic
polynomials). Take f ∈ K〈X〉 and w ∈ X∗. We call f is trivial
modulo (S,w), denoted by

f ≡ 0 mod (S,w),

if f =
∑

s∈S κasb, where κ ∈ K, a, b ∈ X∗, and asb 6 w.
A monic set S ⊆ K〈X〉 is called a Gröbner–Shirshov basis in
K〈X〉 with respect to the monomial ordering ≤ if every
composition of polynomials in S is trivial modulo S and the
corresponding w.

Viktor Lopatkin Czech Technical University in Prague
Combinatorial Calculation of Homology



Theorem (Composition Diamond Lemma)

Let K be an arbitrary commutative ring with unit, 6 a
monomial ordering on X∗ and let I(S) be the ideal of K〈X〉
generated by the monic set S ⊆ K〈X〉. Then the following
statements are equivalent:
(1) S is a Gröbner–Shirshov basis in K〈X〉.
(2) if f ∈ I(S) then f = asb for some s ∈ S and a, b ∈ X∗.
(3) the set of irreducible words

Irr(S) := {u ∈ X∗ : u 6= asb, s ∈ S, a, b ∈ X∗}

is a linear basis of the algebra K〈X
∣∣S〉 := K〈X〉/I(S).

Viktor Lopatkin Czech Technical University in Prague
Combinatorial Calculation of Homology



Example

Let K be an arbitrary commutative ring and consider the
following algebra Λ = K〈x, y〉/(x2 − y2). Let us consider the
polynomials ϕ = x2 − y2, ψ = xy2 − y2x, and let y 6 x. It is not
hard to see that the set S = {ϕ,ψ} is a Gröbner–Shirshov basis
of Λ. Indeed,

(ϕ,ϕ)w = ϕx− xϕ
= x3 − y2x− (x3 − xy2) = ψ,

for w = x3, and

(ϕ,ψ)w = ϕy2 − xψ
= x2y2 − y2y2 − (x2y2 − xy2x)
= ψx + y2ϕ,

for w = x2y2.
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Example

Since the set S is monic, then the set

Irr(S) =
⋃
n>0

{
1, x, xy, yn, ynx, (xy)n, (yx)n, (yxy)n

}
is the K-basis for Λ, by Composition–Diamond lemma.
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In practice, to calculate a Gröbner–Shirshov basis, it is better to
use the following way;
(1) for the given ϕ = x3 − y3, x3 = ϕ, we have

xy2

x xx

>>

// yx2,

(2) we thus have to add a polynomial ψ = xy2 − yx2. We have
ψ = xy2 and thus

y2y2 → y4

x xy2

::

// xy2x→ y2xx→ y2y2 → y4

since y4 = y4 we then have no new polynomials we thus can
conclude that {ϕ,ψ} is the Gröbner–Shirshov basis if Λ.
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The Anick Resolution

Let F be a field and let Λ be an associative F-algebra with unit.
Let X be a set of generators for Λ. Suppose that ≤ is a
well-ordering on the free monoid generated by X.

Definition
Let GSBΛ = {fi} be a Gröbner–Shirshov basis for Λ and let
f̄1, . . . , f̄` be leading terms of GSBΛ, such that for j = 1, . . . , `− 1
we have f̄j = ajbj with aj+1 = bj, |aj|, |bj| ≥ 1. Then we call the
word f̄1 · · · f̄` the `th Anick’s chain.

We say that elements from X are 0-chains, further, we say that
leading terms are 1-chains. Denote by Λ(`) the the set of all `th
Anick’s chains.
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The Anick Resolution

Example

Let Λ = F〈x, y|x2 = y2〉. Consider the polynomials ϕ = x2 − y2,
ψ = xy2 − y2x, and let y 6 x. We have seen that the set
{x2 − y2, xy2 − y2x} is a Gröbner–Shirshov basis of Λ. We thus
get

Λ(0) = {x, y},

Λ(1) =
{
x2, xy2

}
,

Λ(2) =
{
x xx, x xy2

}
,

Λ(3) =
{
x xxx, x xxy2

}
, etc.

�
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Theorem (Anick’s Resolution)

Let Λ be an associative augmented F-algebra, generated as a
F-algebra by the set X and let ≤ be an well-ordering on the free
monoid generated by X. Let GSBΛ be a Gröbner–Shirshov basis
for Λ let Λ(1) be a set of leading terms (1-chains) of GSBΛ and
let Λ(n) be a set of n-chains. Then there is a free Λ-resolution of
F,

0←− F ε←− Λ d0←− FΛ(0) ⊗F Λ d1←− FΛ(1) ⊗F Λ d2←− FΛ(2) ⊗F Λ d3←− . . .

in which d0(x⊗ 1) = x− ε(x), for x ∈ Λ(0) and for n ≥ 1,
dn(an ⊗ 1) = an−1 ⊗ b + ω, where an = an−1b, an ∈ Λ(n),
an−1 ∈ Λ(n−1), HT(ω) < an if ω 6= 0.

�
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Algebraic Discrete Morse Theory

The discrete Morse theory developed by Forman provides a way
to reduce the number of cells in a CW-complex without
changing the homotopy type.
There are a few different ways to express discrete Morse theory,
the way that works best for the algebraic setting is in terms of
acyclic matchings in the Hasse diagram of the face poset of the
complex. Let Γ = (V,E) be a directed graph. A subset M ⊆ E is
a matching if every vertex is in at most one of the edges in M.
A matching is acyclic if the graph obtained by reversing the
edges in the matching contain no directed cycles. An important
property of Hasse diagrams of a posets is that they contain no
directed cycles. Given an acyclic matching M of Γ the elements
of V that are not matched are critical.
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Algebraic Discrete Morse Theory

The main theorem of discrete Morse theory can be stated as
follows.

Theorem
Let X be a regular CW-complex with face poset P. If M is an
acyclic matching of P where the empty face is critical, then
there is a CW-complex X̃ homotopy equivalent to X. The
critical cells are in bijection with the cells of X̃, this bijection
preserve dimension.

For one-dimensional complexes the theory is greatly simplified
and it is always possible to find optimal matchings in the sense
that the resulting complex have the minimal number of cells of
any complex homotopy equivalent to the original complex.
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Algebraic Discrete Morse Theory

One-dimensional complexes are essentially graphs where loops
and multiple edges are allowed, the complexes obtained from
discrete Morse theory are the complexes obtained by contracting
non-loop edges. The matchings are pairings of a vertex with an
edge containing the vertex, and the matched edge is then
contracted and the new vertex is identified with the endpoint of
the contracted edge not paired to the contracted edge. In
particular it is possible to contract edges in a graph until there
is only a single vertex in each component and there is a
matching realizing this. The space of acyclic matchings for the
Hasse diagram of posets of one-dimensional complexes has
interesting structure and was further studied by Chari and
Joswig. Batzies and Welker extended discrete Morse theory to
work well with cellular resolutions.
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Algebraic Discrete Morse Theory

Let X be a CW-complex with labeling map ` and face poset P.
An acyclic matching M of the Hasse diagram of P satisfying
στ ∈M =⇒ `(σ) = `(τ) is homogenous, that is the matching is
homogenous if cells are only matched to cells with the same
label.
The main theorem of algebraic discrete Morse theory for cellular
resolutions can be stated as follows.

Theorem
Let X be a regular CW-complex with face poset P. Let ` be a
labeling of X giving a cellular resolution of the ideal I. If M is a
homogenous acyclic matching of P then X̃ also supports a
cellular resolution of I. The cell corresponding to the critical cell
σ has label `(σ).
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Algebraic Discrete Morse Theory

Let R be a ring and C• = (Ci, ∂i)i≥0 be a chain complex of free
R-modules Ci. We choose a basis X = ∪i≥0Xi such that
Ci ∼=

⊕
c∈Xi

Rc. Write the differentials ∂i with respect to the
basis X in the following form:

∂i :


Ci → Ci−1

c 7→ ∂i(c) =
∑

x′∈Xi−1

[c : c′] · c′.

Given a complex C• and a basis X, we construct a directed
weighted graph Γ(C ) = (V,E). The set of vertices V of Γ(C ) is
the basis V = X and the set E of weighted edges is given by the
rule

(c, c′, [c : c′]) ∈ E if and only if c ∈ Xi, c′ ∈ Xi−1, and [c : c′] 6= 0.
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Algebraic Discrete Morse Theory

Definition
A finite subset M ⊂ E in the set of edges is called an acyclic
matching if it satisfies the following three conditions:
(1) (Matching) Each vertex v ∈ V lies in at most one edge

e ∈M.
(2) (Invertibility) For all edges (c, c′[c : c′]) ∈M the weight

[c : c′] lies in the center Z(R) of the ring R and is a unit in
R.

(3) (Acyclicity) The graph ΓM(V,EM) has no directed cycles,
where EM is given by

EM := (E \M) ∪ {(c′, c, [c : c′]−1) with (c, c′, [c : c′]) ∈M}.
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Algebraic Discrete Morse Theory

For an acyclic matching M on the graph Γ(C•) = (V,E), we
introduce the following notation
(1) We call a vertex c ∈ V critical with respect to M if c does

not lie in an edge e ∈M; we write

XM
i := {c ∈ Xi : c critical}

for the set of all critical vertices of homological degree i.
(2) The weight ω(p) of a path p = c1 → . . .→ cr ∈ Path(c1, cr)

is given by

ω(c1 → . . .→ cr) :=
r−1∏
i=1

ω(ci → ci+1), ω(c→ c′) :=

−
1

[c : c′] , c ≤ c′,

[c : c′], c′ ≤ c,.

(3) We write Γ(c, c′) :=
∑

p∈Path(c,c′)
ω(p) for the sum of weights

of all paths from c to c′.Viktor Lopatkin Czech Technical University in Prague
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Algebraic Discrete Morse Theory

Theorem
The chain complex (C•, ∂•) of free R-modules is
homotopy-equivalent to the complex (CM

• , ∂
M
• ) which is

complex of free R-modules and

CM
i :=

⊕
c∈XM

i

Rc, ∂Mi :


CM

i → CM
i−1

c 7→
∑

c′∈XM
i−1

Γ(c, c′)c′.
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Theorem (Jöllenbeck–Scöldberg–Welker)

For ω ∈ X∗, let Λω,i be the vertices [ω1| . . . |ωn] in ΓB•(Λ,k) such
that ω = ω1 · · ·ωn and i is the larger integer i ≥ −1 such that
ω1 · · ·ωi+1 ∈ Λ(i) is an Anick i-chain. Let Λω :=

⋃
i≥−1

Λω,i.

Define a partial matching Mω on (ΓB•(Λ,K))ω = ΓB•(Λ,K)|Λω by
letting Mω consist of all edges

[ω1| . . . |ω′i+2|ω′′i+2| . . . |ωn]→ [ω1| . . . |ωi+2| . . . |ωm]

when [ω1| . . . |ωm] ∈ Λω,i, such that ω′i+2ω
′′
i+2 = ωi+2 and

[ω1| . . . |ωi+1|ω′i+2] ∈ Λ(i+1) is an Anick (i + 1)-chain.
The set of edges M =

⋃
ωMω is a Morse matching on ΓB•(Λ,K),

with critical cells XM
n = Λ(n−1) for all n.
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Example

Let us consider the algebra Λ = K〈x, y|x2 − y2 = 0〉. We have

Λ(0) = {x, y},Λ(1) =
{
x2, xy2

}
, Λ(2) =

{
x xx, x xy2

}
, etc,

i.e., Λ(`) = {x`+1, x`y2}, ` ≥ 0. We thus get the Anick resolution

0← K ε←− Λ d0←− Λx⊕ Λy d1←− Λx2 ⊕ Λxy2 d2←− Λx3 ⊕ Λx2y2 ← . . . .
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[x] [x|x]
ε(x)

//xoo

−1
��

[x]

[y2]

+1
��

[y] [y|y]

−1

UU

ε(y)
//

y
oo [y]

[y2]

+1
��

[x|y2]

−1
��

ε(y2)
//xoo [x]

[y|y]

−1

TT

y

}}

ε(y)
��

[y2x] +1
// [y|yx]

−1
rr

y
{{

ε(yx)
��

[y] [y] [yx]

+1
��

[y]

[x] [y|x]

−1

UU

ε(x)
//

y
oo [y]

hence

d1[x|x] = x[x] + ε(x)[x]− y[y]− ε(y)[y],
d1[x|y2] = ε(y2)[x] + xy[y] + ε(y)x[y]− ε(yx)[y]− y2[x]− ε(x)y[y],
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Λ(`−1) 3 [x| . . . |x︸ ︷︷ ︸
`−1

|y2] [
`︷ ︸︸ ︷

x| . . . |x |y2]xoo
(−1)`+1ε(y2)

//

(−1)`

yy

[x| . . . |x︸ ︷︷ ︸
`

] ∈ Λ(`−1)

[x| . . . |x︸ ︷︷ ︸
`−1

|y2x]
−(−1)`

// [
︷ ︸︸ ︷
x| . . . |x
`−1

|y2|x]

(−1)`−1

��

[x| . . . |x︸ ︷︷ ︸
`−2

|y2x|x]
(−1)`y2

// [x| . . . |x︸ ︷︷ ︸
`

] ∈ Λ(`−1)

hence

d`[x| . . . |x︸ ︷︷ ︸
`

|y2] = x[x| . . . |x︸ ︷︷ ︸
`−1

|y2] + (−1)`+1ε(y2)[x| . . . |x︸ ︷︷ ︸
`

] + (−1)`y2[x| . . . |x︸ ︷︷ ︸
`

],
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Λ(`−1) 3 [x| . . . |x︸ ︷︷ ︸
`

] [

`+1︷ ︸︸ ︷
x| . . . |x]

(−1)`+1ε(x)
//

(−1)i

��

(−1)`−1

%%

(−1)`

**

xoo

(−1)1

xx

[x| . . . |x︸ ︷︷ ︸
`

] ∈ Λ(`−1)

[y2| x| . . . |x︸ ︷︷ ︸
`−1

] [x| . . . |x︸ ︷︷ ︸
`−i

|y2| x| . . . |x︸ ︷︷ ︸
i−1

] [x| . . . |x︸ ︷︷ ︸
`−2

|y2|x] [x| . . . |x︸ ︷︷ ︸
`−1

|y2] ∈ Λ(`−1)

thus

d`[x| . . . |x︸ ︷︷ ︸
`+1

] = x[x| . . . |x︸ ︷︷ ︸
`

]+(−1)`+1ε(x)[x| . . . |x︸ ︷︷ ︸
`

]+(−1)`y2[x| . . . |x︸ ︷︷ ︸
`−1

].
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Let us consider the cyclic group Zn = 〈ζ|ζn = 1〉 of order n.
Then the powers ζ0 = 1, ζ2, . . . , ζn−1 form a Z-basis for its
group ring Λ = Z[Zn]. It follows that Λ ∼= Z[x]/(xn − 1). It is
obviously that the set {xn − 1} is a Grönber–Shirshov basis of Λ.
We thus get

Λ(0) = {[x]},
Λ(1) = {[x|xn−1]},
Λ(2) = {[x|xn−1|x], [x|xn−1|x2], . . . , [x|xn−1|xn−1]}.

Calculate the differentials d1 : ZΛ(1) → ZΛ(0),
d2 : ZΛ(2) → ZΛ(1).
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[x|xn−1]
x

yy

ε(xn−1)

##

[xn−1]

+1
��

[x]

[x|xn−2]

x
��

−1

TT

ε(xn−2)
// [x]

[xn−2]

��

[x] [x|x]xoo
ε(x)

// [x],
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[x|xn−1|xn−i]
x

ww

−ε(xn−i)

&&

[xn−1|xn−i]

+1
��

[x|xn−1]

[x|xn−2|xn−i]

−1

UU

x
��

[x|xn−3|xn−i]
−1

{{

x
��

[xn−2|xn−i]
+1

77

[xn−3|xn−i]

��

[x|xi−1|xn−i]

+1
��

[x|xn−1]
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We thus obtain

d1[x|xn−1] = (xn−1 + xn−2ε(x) + · · ·+ ε(xn−1))[x],
d2[x|xn−1|xn−i] = (xn−i − ε(xn−i))[x|xn−1], 1 ≤ i ≤ n− 1.

0→ Z δ0−→ HomZ(ZΛ(0),Z) δ1−→ HomZ(ZΛ(1),Z) δ2−→ HomZ(ZΛ(2),Z)→ · · · .
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Hence

(δ1ϕ)([x|xn−1]) = (1 + · · ·+ 1︸ ︷︷ ︸
n

)ϕ([x]) = nϕ([x]),

(δ2ψ)([x|xn−1|xn−i]) = (1− 1)ψ([x|xn−1]) = 0, 1 ≤ i ≤ n− 1,

for every ϕ ∈ HomZ(ZΛ(0),Z) and ψ ∈ HomZ(ZΛ(1),Z). It
follows that H2(Zn,Z) ∼= Zn.
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Let us calculate all extensions of Z and Z2 by the symmetric
group S3. It is well known that S3 my be described as follows.
It has generators s1, s2 and relations:

s21 = s22 = 1,
s1s2s1 = s2s1s2.

One thinks of si as swapping the ith and (i + 1)th position.
Next, set s1 > s2. One can easy see that the set

{s21 = 1, s22 = 1, s1s2s1 = s2s1s2}

is its Gröbner–Shirshov basis. We thus get

S
(0)
3 = {[s1], [s2]},

S
(1)
3 = {[s1|s1], [s2|s2], [s1|s2s1]},

S
(2)
3 = {[s1|s1|s1], [s1|s1s2|s1], [s1|s2s1|s1], [s2|s2|s2]}.
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To define the differentials d2 : ZS(2)
3 → ZS(1)

3 and
d1 : ZS(1)

3 → ZS(0)
3 , we have to consider the corresponding

paths in the graph ΓA(B•(ZS3));

[s1|s1|s1]
s1

tt
−1

xx
+1

&&

−ε(s1)

**
[s1|s1] [1|s1] = 0 [s1|1] = 0 [s1|s1]

hence
d2[s1|s1|s1] = s1[s1|s1]− ε(s1)[s1|s1],
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[s1|s1s2|s1]

s1

tt
−1

yy
+1

&&

−ε(s1)

++
[s1s2|s1]

+1

��

[s2|s1] [s1|s2s1s2]

−1

��

[s1|s1s2]

−1

��
[s1|s2|s1]

−1

VV

+1

��

[s1|s2s1|s2]

−1

xx

+1

VV

−ε(s2)

��

[s1|s1|s2]

+1

VV

−ε(s2)

��
[s1|s2s1] [s2s1s2|s2]

+1

��

[s1|s2s1] [s1|s1]

[s2|s1s2|s2]

−1

VV

s2

��
[s1s2|s2]

+1

��
[s1|s2|s2]

−1

VV

s1

��
[s2|s2]
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hence

d2[s1|s1s2|s1] = (s1 + ε(s2))[s1|s2s1] + s2s1[s2|s2]− ε(s2)[s1|s1],
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[s1|s2s1|s1]
s1

ss
−1

xx
+1

%%

−ε(s1)

**

[s2s1|s1]

+1
��

[s2s1s2|s1]

+1
��

[s1|s2] [s1|s2s1]

[s2|s1|s1]

−1

UU

s2
��

[s2|s1s2|s1]

−1

UU

s2
��

+1
&&

[s1|s1] [s1s2|s1]

+1
��

[s2|s2s1s2]

−1
��

[s1|s2|s1]

−1

UU

+1
��

[s2|s2|s1s2]

+1

UU

−ε(s1s2)
��

[s1|s2s1] [s2|s2]
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hence

d2[s1|s2s1|s1] = s1s2[s1|s1]− (s2 + ε(s1))[s1|s2s1]− ε(s1s2)[s2|s2],

[s2|s2|s2]
s2

tt
−1

xx
+1

&&

−ε(s2)

**
[s2|s2] [1|s2] = 0 [s2|1] = 0 [s2|s2]

hence
d2[s2|s2|s2] = s2[s2|s2]− ε(s2)[s2|s2],
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Thus we obtain the following cochain complex

0→ Z d0−→ HomZ(ZS(0)
3 ,Z) d1−→ HomZ(ZS(1)

3 ,Z) d2−→ HomZ(ZS(2)
3 ,Z)→ · · ·

where

(d2f)([s1|s1|s1]) = 0,
(d2f)([s1|s1s2|s1]) = 2f([s1|s2s1]) + f([s2|s2])− f([s1|s1]),
(d2f)[s1|s2s1|s1] = f([s1|s1])− 2f([s1|s2s1])− f([s2|s2]),
(d2f)[s2|s2|s2] = 0,
(d1α)([s1|s1]) = 2α([s1]),
(d1α)([s2|s2]) = 2α([s2]),
(d1α)([s1|s2s1]) = α([s1])− α([s2]),

f ∈ HomZ(ZS(1)
3 ,Z), α ∈ HomZ(ZS(0)

3 ,Z). Hence f ∈ Ker(d2) if
and only if f has the following values:

f([s1|s1]) = k, f([s1|s2s1]) = l, f([s2|s2]) = k− 2l,

here k, l ∈ Z.Viktor Lopatkin Czech Technical University in Prague
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On the other hand, by the description of d1,

(d1α)([s2|s2]) = (d1α)([s1|s1])− 2(d1α)([s1|s2s1]).
Hence every f ∈ Ker(d2) has a form (d1α) for some
α ∈ HomZ(ZS(0)

3 ,Z), i.e., Ker(d2) = Im(d1). Thus
H2(S3,Z) ∼= Ker(d2)/Im(d1) = 0.

Next, it is easy to see that Aut(Z) = {idZ, ι} ∼= Z2, where
ι(ζ) = −ζ for every ζ ∈ Z. We then have two homomorphisms
ϕ1, ϕ2 : S3 → Z2 are defined as follows: ϕ1(p) := 0, and
ϕ2(p) := sign(p) (= signature of the permutation p), for every
p ∈ S3. Thus we obtain

0→ Z→ Z oϕi S3 → S3 → 1, i = 1, 2,

where Z oϕ1 S3 = Z×S3 (=trivial action of S3 over Z), and
Z oϕ S3 has the following group low

(ζ,p) · (ξ, q) := (ζ + sign(p)ξ, pq).
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Result
Thus these extensions are equivalent and we thus have only one
class of extension of Z by S3.
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Further, let us find all extensions of Z2 by S3. Using the
calculations above, we get the following cochain complex

0→ Z2
d0−→ HomZ(ZS(0)

3 ,Z2) d1−→ HomZ(ZS(1)
3 ,Z2) d2−→ HomZ(ZS(2)

3 ,Z2)→ · · ·

where

(d2f)([s1|s1|s1]) = 0,
(d2f)([s1|s1s2|s1]) = f([s2|s2]) + f([s1|s1]),
(d2f)[s1|s2s1|s1] = f([s1|s1]) + f([s2|s2]),
(d2f)[s2|s2|s2] = 0,
(d1α)([s1|s1]) = 0,
(d1α)([s2|s2]) = 0,
(d1α)([s1|s2s1]) = α([s1]) + α([s2]),
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Result
There exists only two non equivalent extensions of Z2 by S3,
namely;

0→ Z2 → Z2 ×S3 → S3 → 1,
0→ Z2 → Ef → S3 → 1,

where Ef is generated by the following set of pairs
{(i, p) : i ∈ Z2, p ∈ S3}, and the group low is given by

(i, p) · (j, q) := (i + j + f(p, q), pq),

here f(s1, s1) = f(s2, s2) and f(p, q) = α ∈ Z2 otherwise.
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