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Basic Concepts and Definitions

As well known, any module M is a quotient M = Fy/Rg of some
free module Fy. The submodule Ry is again a quotient

Rop = F1/R; of a suitable free module F;. Continuation of this
process yields an exact sequence 0 <~ M < Fg < F; « ---
which will be called a free resolution of M.

(Co)chain Complex

Let A be an associative algebra with unit over some
commutative ring R. A chain complex is a sequence
dn+1 dn dnfl
Go: - — Gor1 — Gn —> Gn_1 —— Gn—2 — - -
of left(right) A-modules connected by A-homomorphisms such

that d, o dp41 = 0 for all n. A-homomorphisms d,, are called
boundary operators or differentials.
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Basic Concepts and Definitions

A cochain complex

is a sequences

qn dn—l
Fo e g B S N

of left(right) A-modules connected by A-homomorphisms such
that d” o d"~! = 0 for all n.

A chain complex can be considered as a cochain complex by
reversing the enumeration: €™ = ¢_,, d* = d_,. This is why
we will usually consider only chain complexes.

Setting €o := Pz 6 we the get the homogenous
homomorphism of degree 1, de : Go —> G-
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Homology and Cohomology

Let &€ be a chain complex

dnl dn—1
G Cosl G I G TS Gy

of A-modules. Since dy, o dp4+1 = 0, we have Im(dy+1) € Ker(d,).

|

A homology

of a chain complex is the A-module
H, (%) := Ker(dy)/Im(dn+1).
A cohomology of a cochain complex is the A-module

H*(%*) := Ker(d")/Im(dp—1).
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|
The standard terminology is as follows: elements of %, are called
n-dimensional chains, elements of €™ are called n-dimensional
cochains, elements of Ker(d,) are called n-dimensional cycles,
elements of Ker(d") are called n-dimensional cocycles, elements

of Im(dy,) are called n-dimensional boundary, and elements of
Im(d®~1) are called n-dimensional coboundary.

|
A complex is said to be acyclic if H*(%) = 0 for all n. It is easy
to see that H, (%) = 0 means that the sequence % is exact at &,.
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Resolution

Definition

A (left) resolution of M is a complex (C,,ds) with C; = 0 for
i < 0, together with a map € : Cy — M so that the (augmented)
complex

0eMEC & &0y ...

is exact, i.e., Hy(Co) =0 for n > 0 and ¢ : Ho(Co) = M.
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Examples

If K =7 (or any principal ideal domain) then submodules
of a free module are free, hence any K-module M admits a
free resolution

0+ M+ Fyg+ F; 0.

In particular, the Z-module Z,, n > 1 admits the resolution

0 Zy 200 7 20 7 g,

Let K = Z[x]/(x* — 1) and let x be the image of x in K. Let
M = Z, regarded as a Z[x]/(x*> — 1)-module, with x acting
as the identity, i.e., M is the Z[x]/(x?> — 1)-module
K/(x —1). Since x2 — 1 = (x — 1)(x + 1), it is clear that an
element of K is annihilated by x — 1 (resp. x + 1) if and
only if it is d1v181ble by x + 1 (resp. x — 1). One therefore
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The Bar Resolution for Algebras

The identity element 15 gives a K-module map ¢ : K — A; its
cokernel A/i(K) = A/(K1p) will be denoted as A/K, with
elements the cosets A + K. For each left A-module M construct
the relatively free A-module

PBn(NM) = A2k (NK) @k -+ @k (ANK) @M.

n

As a K-module, it is spanned by elements which we write, with
a vertical bar replacing “®k”, as

A An]m =A@k (M + K) @k -+ @k (An + K)] @k my;

in particular, %y = {\[ Jm}. The left factor A\ gives the left
A-module structure of By, and [A;|...|A\]Jm without the operator
will designate the corresponding element of (A/K)"* @k M. These
elements are normalized, in the sense that [A1]...|AnJc =0
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Further, define left A-module homomorphisms ¢ : By — M and
dy 1 By — Bn_1 for n > 0 by e(A\[ Jm) := Am, and

dn(A[A1] ... [Ap]m) = )\)\1[)\2| .| An]m
+ Z DI - Nidie] - - [Aa]m
(— VAN [ Aa—1](Anm).
It is easy to verify that from associative low in A it follows that
diy1 od; = 0, for every i > 0. We thus get the complex

(Zo(N, M), da),

0+ M<E By B &2 By
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Hochschild cohomology

nth Hochschild cohomology module of an K-algebra A with
coefficients in a A-bimodule M is the K-module

H™(A, M) := H*(Homg (%, (A, A),M)), n=0,1,...;

where the elements of the complex are K-linear functions
f:Ax - xA— M such that f(A\1,..., ;) = 0 whenever one \;
—_——

belongs I‘lco K. The coboundary §"f is the function given as
0M(A, oy Anr1) = )\1f()\2, ey Antl)
+Z (AL AL - Angl)

+(— (AL, - ) A
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Invariants and Derivations

In particular, a zero-cochain is a constant m € M; its
coboundary is the function

adm A —> M
which is given by adp,(A) := mA — Am, for every A € A.
Hence
HO(A,M) := {m € M : Am = m), for all A\ € A},

it is also called K-module of invariants.
Similarly, 1-cocycle is a K-module homomorphism D : A — M
satisfying the identity

D(AX) = DN +AD(Y), AN €A

(=the Leibnitz product rule) such a function D is called a
derivation of A.
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Let M = A.

As well known, every element A € A determines the inner
derivation ady, ady(a) = Aa — a), a € A. Denote by ad(A) the
K-module of inner derivations of A.

Thus the K-module HH*(A) := Der(A)/ ad(A) is the module of
outer derivations of A.
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Cohomology of Groups

Let G be a group. Consider Z[G] and let M be a Z[G]-module.
Next, let &, be a projective resolution of Z over Z[G].

Cohomology of G with coefficients in M

is defined as follows
H(G, M) = H* (Homzey( 2+, M)
For any group G we can always take &2, to be the bar-resolution

PBo. Namely, take A, to be the free G-module with generators
[g1] ... |gn] all n-tuples of elements g; # 1g,...,gn # lg of G.
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Operation on a generator with an g € G yields an element

glg1] .. |gn] in Ay, so B, may be described as the free abelian
group generated by all g[g1]|...|gn]. To give a meaning to every
symbol [g1]. .. |gn], set

[g1] .- lgn] =0
if any one g; = 1¢.
In particular, % is the free module on one generator, denoted
by [ ], so is isomorphic to Z[G], while ([ ]) =1 is a G-module
homomorphism ¢ : By — 7Z, with Z the trivial G-module.
Next, define G-module homomorphisms d,, : %, — %, for
n > 0 by

dulg1].--lga] = gilgl. .. [gu]
n—1
+ > (-1)'[g1] - - - |gigisl - - - gl
i=1

+(=1)"ea] - [gnal;
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in particular

dlg] = ¢l 1-1 1,
dfajb] = a[b] - [ab] + [a].

Using Homgcj(—, M), where M is a G-module, we get the
following complex (%, Ohn),

4, := Homgq)(Z[G]®™1), M) = Homyz(G*", M),
with
(0")(g15- -5 8nt1) = glf(gz,---,gnﬂ)
+Z (g1, s Bty - Entl)

+(— )" (g1, 80)-

Viktor Lopatkin Czech Technical University in Prague




Construction all groups G such that G/Z = Z,

Let us construct all groups G such that G/Z = Z,, where n € N,
n > 1. We thus have

G=goZ+g1Z+ -+ gun_1Z,

where gg = 1¢ and the homomorphism ¢ : G — Z, is such that
gi — 1 for every 0 <i<n—1. We thus can put that every
element of G has a form (¢, k), where ( € Z and k € Z,,_;.
Further, by (giZ) - (giZ) = gigiZ, we get

(0,1) - (0,k) = (f(i, k),1 + k), (1)

where f(i,k) € Z and i+ k means the addition in Z,.
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Construction all groups G such that G/Z = Z,

In other words, we get a map f : Zy x Zy — Z which determines
the group G as follows

G = <{(C7 i}CGZ,iGZnKC) 1) : (5’ k) = (C + 5 + f(17 k)’ 1+ k)>7

in particular, if f = 0 we then get G =2 Z & Z,,. We thus see that
G looks like the Z @ Z,, “perturbed” by f. Next, note that the
convention of taking 1g as the representative of Z in G yields,
from (1),

f(i,0) = £(0,j) = 0, (2)

for all i,j € Zy,.
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However, in general, an arbitrary map f : Zy X Z, — Z does not
define G. Indeed, if we define a product in G as above then by

[(61) - (&D)] - (9,%) = (¢1) - [(§,J) - (9, k)] in G, we get
[(C?l)(§7J)](ﬁ>k) = (C+€+f(iaj)>i+j)'(197k)

= ((+&+9+1(1)) + (1 +],k),i+]+k),
and

= (C+&+9+1(31,)+k)+1£(,k),1+j+k).

It follows that the product in G is associative if and only if f
satisfies the identity

f(1,j) +f(i+j,k) =£(i,j + k) + £(j, k) (3)

for all i,j,k € Zy,.
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Construction all groups G such that G/Z = Z,

Thus the set of elements (¢, 1), ¢ € Z, i € Zy, with the product
rule

(Ca i) ’ (f? k) = (C +&+ f(iv k)> 14 k)’

where f : Zy,, X Zy, — 7Z satisfies (2) and (3), defines a group G
with normal subgroup Z and G/Z = Z,,.

Next, set
.. 0 ifi+j<n-1,
f(i,j) = e
acZ ifi+j>n.

With these definition we easily verify that (2) and (3) are
satisfied, and so all groups G such that G/Z = 7Z,, are defined.
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Construction all groups G such that G/Z = Z,

Thus for every a € Z we’ve obtained the extension G, of Z by
Zy. Let «, B € Z and consider the corresponding extensions Gg,
Gg. We want to know whether they are equivalent, i.e., whether
there is an homomorphism ® : G, — Gg.

We thus get the following commutative diagram

Ga
0——7Z ® Zy ——0
inB A\
Gg

Set ®((,1) = ((¢), ¢(i )) By ® oin, = ing, ®(¢,0) = (¢,0), and
by 7To¢ =T, P(i) =

Czech Technical University in Prague
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Construction all groups G such that G/Z = Z,

Thus, we can put ®(¢,1) := (¢ + ¢(i),1), where ¢ : Z, — Z is a
function with ¢(0) = 0. Since ® is a homomorphism then one
can easy obtain that a and § must satisfy the following identity

a—B=¢p(i+]j)— (i) = e) (4)

From these identities it follows that there exist only n non
equivalent extensions of Z by Z,. Indeed, let us consider the
case n = 3. We then get

£(0,0) = £(1,0) = £(0,1) = £(1,1) = £(2,0) = £(0,2) = 0,

and
£(1,2) =1(2,1) =1(2,2) = € Z,
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Construction all groups G such that G/Z = Z,

Thus the multiplication tableau in G, has the following form

(¢,0) (¢,1) (v,2)

(€h0) | (C'+¢0) | (('+&1) (¢"+7,2)
€1 E+¢) | (€+&2) | (€ +9+0,0)
(2 [(0+C2) | (T +E+a0) | (T +9+a,1)

Further, by (4), any two extensions G, Gg are equivalent if and
only if there exist a function ¢ : Zs — Z, ¢(0) = 0, such that

a—B=p(i+]) — o) — e(),

for every i,j € Zs.
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Construction all groups G such that G/Z = Z,

We get
{a — 0= 2¢(2) = »(1),
a—F=e()+¢(2),
hence p(2) = 2¢(1), therefore a — § = 3¢(1). This implies that

Gq and Gg are equivalent if and only if & = § mod (3). Thus we
get only 3 non equivalent extensions of Z by Zs.

Viktor Lopatkin
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We've got the following complex (%, On),
4, := Homgq)(Z[G]®™1), M) = Homy(G*", M),
with
(0")(g15- -5 8nt1) = glf(g2>--->gn+1)

+Z (g1, Bigit1s -5 Ent1)

+(— ) (g1, gn)-
In particular
(azf)(g, h,w) = gf(h, w) — f(gh, w) + f(g, hw) — f(g, h).

And now this identity can be rewritten in a form which should
look familiar:

pg(f(h, w)) — f(gh, w) + f(g, hw) — f(g, h) = 0.
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Thus f can be regarded as a 2-cochain of the complex ¢ for
computing H*(G, A) and the identity says precisely that f is a
cocycle and we therefore can say that

extensions with _, (normalized 2-cocycles of
a normalised section | ~ | G with coefficients in A

Finally, one can prove the following

Theorem

Let A be a G-module and let &(G, A) be the set of equivalence
classes of extensions of G by A giving rise to the given action of
G on A. Then there is a bijection

&(G,A) «— H%(G,A).
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Composition-Diamond Lemma,

Here we present the concepts of Composition—Diamond lemma
and Grobner—Shirshov basis. In the classical version of
Composition—Diamond lemma, it assumed that considered
algebras is over a field, here we consider the general case.

|
Let K be an arbitrary commutative ring with unit, K(X) the
free associative algebra over K generated by X, and let X* be
the free monoid generated by X, where empty word is the
identity, denoted by 1x«. Assume that X* is a well-ordered set.
Take f € K(X) with the leading word (term) f and f = »f + ¢,
where 0 # x € K and 77 < f. We call f is monic if x = 1. We
denote by deg(f) the degree of f.
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Zero Devisors in Group Rings

The problem is

let G be a free torsion group, does Z[G] contain zero devisors?
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Given a group G is presented as follows
G= <X1,...,Xn|r1,...,1‘m>.

We then get the following exact sequence of Z[G]-modules
0 — m(K) & @Z[G] @Z[G] Z|G] = Z — 0,

where K is the standard 2-complex associated with G. The
homomorphisms d; is given by

(Oél, ce ,Oén)T — Zai(xi — 1),
i=1

the homomorphism dj is given by the matrix (=‘Jacobian”)

o
Oxi ) 1<i<n,

1<j<m
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Further, take a 3 € ma(K), we then get p(8) = (B1,---,Pm) ",

and hence
5rJ

ZBJ@XI =0,

for every 1 <i<n.

Or;
S = Gif, 1 <j < m, then by the
<

previous equality we then have 1

Z Sj)f =0,

=1

Assume now that for a fixed i,

it follows that Z[G] has zero divisors.
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Example

r1 = {11 =12} = {yPx"y"xy' = y*x"y"xy'},
ro = {r9; =roa} = {ylxnymxy = yrxnymxyh},
81‘1 81‘2

Ox Ox
f=xty™ + x4 x4+ 1.

and the Fox derivatives — have common divisor
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Composition-Diamond Lemma

A well ordering < on X* is called monomial if for u,v € X*, we
have:
uév:>w|u<vv|v, Yw € X*,

where W|u = W|X _,, and x’s are the same individuality of the
letter x € X in w.

A standard example of monomial ordering on X* is the deg-lex
ordering (i.e., degree and lexicographical), in which two words
are compared first by the degree and then lexicographically,
where X is a well-ordering set.
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Composition-Diamond Lemma

Fix a monomial ordering < on X*, and let ¢ and ¥ be two monic
polynomials in K(X). There are two kinds of compositions:

(i) If wis a word (i.e, it lies in X*) such that w = b = a) for
some a,b € X* with deg(®) + deg(¢)) > deg(w), then the
polynomial (¢, %)y := @b — at is called the intersection
composition of ¢ and ¥ with respect to w.

(ii) If w = = aybb for some a,b € X*, then the polynomial
(p,9¥)w := ¢ — ahb is called the inclusion composition of ¢
and v with respect to w.

We then note that (¢, 1), < w and (¢, 1)y lies in the ideal
(¢, 1) of K(X) generated by ¢ and .
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Composition-Diamond Lemma

Let S € K(X) be a monic set (i.e., it is a set of monic
polynomials). Take f € K(X) and w € X*. We call f is trivial
modulo (S, w), denoted by

f =0 mod (S,w),

if f =) cqkwash, where Kk € K, a,b € X*, and asb < w.

A monic set S C K(X) is called a Grobner—Shirshov basis in
K(X) with respect to the monomial ordering < if every
composition of polynomials in S is trivial modulo S and the
corresponding w.
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Theorem (Composition Diamond Lemma)

Let K be an arbitrary commutative ring with unit, < a
monomial ordering on X* and let I(S) be the ideal of K(X)
generated by the monic set S C K(X). Then the following
statements are equivalent:

(1) S is a Grobner—Shirshov basis in K(X).
(2) if f € I(S) then f = asb for some s € S and a,b € X*.
(3) the set of irreducible words

Irr(S) = {ue X*:u#ash,seS, abeX"}

is a linear basis of the algebra K(X|S) := K(X)/I(S).
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Example

Let K be an arbitrary commutative ring and consider the
following algebra A = K(x,y)/(x*> — y?). Let us consider the
polynomials ¢ = x? — y2, ¥ = xy? — y2x, and let y < x. It is not
hard to see that the set S = {, 1} is a Grobner—Shirshov basis

of A. Indeed,
(s o)w = px—x¢
= X =y (" —xy?) =9,
for w = x3, and
() = oy’ —x¢

2.2 2.2 2.2 2

= Xy —yy - (xy° —xy°x)
2
= Yx+y“p,
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Example

Since the set S is monic, then the set

frr(S) = [J {1,339,y v, (o)™, (%), (vxy)" }
n>0

is the K-basis for A, by Composition—Diamond lemma.




In practice, to calculate a Grobner—Shirshov basis, it is better to
use the following way;

(1) for the given ¢ = x*

é 3 3
-y, X

=, we have

Xy2

L /I
X XX X2
%
— yx=,

(2) we thus have to add a polynomial 1) = xy? — yx2. We have
1 = xy? and thus

y2y? =yl
=
I};)I(y2 Xy2X — y2XX — y2y2 — y4
| I— [
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The Anick Resolution

Let F be a field and let A be an associative F-algebra with unit.
Let X be a set of generators for A. Suppose that < is a
well-ordering on the free monoid generated by X.

Definition

Let GSBa = {fi} be a Grébner—Shirshov basis for A and let
fi,...,f, be leading terms of GSBp, such that for j=1,...,4—1
we have f; = ajb; with aj.1 = by, |a|, [bj| > 1. Then we call the
word fj - - -fg the ¢th Anick’s chain.

We say that elements from X are 0-chains, further, we say that
leading terms are 1-chains. Denote by A the the set of all /th
Anick’s chains.
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The Anick Resolution

Example

Let A = F(x,y|x? = y?). Consider the polynomials ¢ = x? — y?,
1 = xy? — y?x, and let y < x. We have seen that the set
{x? — y%,xy? — y%x} is a Grobner-Shirshov basis of A. We thus

get
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Theorem (Anick’s Resolution)

Let A be an associative augmented F-algebra, generated as a
F-algebra by the set X and let < be an well-ordering on the free
monoid generated by X. Let GSBp be a Grobner—Shirshov basis
for A let A(Y) be a set of leading terms (1-chains) of GSBp and
let A1) be a set of n-chains. Then there is a free A-resolution of
F,

0FEANLFAO g A & FAD @p A 2 FA® gp A &5

in which do(x ® 1) = x — £(x), for x € A© and for n > 1,
dn(an ® 1) = ay—1 ® b + w, where a, = a,_1b, a, € A®)
an_1 € AN=1) HT(w) < ay if w # 0.

Viktor Lopatkin Czech Technical University in Prague

Combinatorial Calculation of Homolo



Algebraic Discrete Morse Theory

The discrete Morse theory developed by Forman provides a way
to reduce the number of cells in a CW-complex without
changing the homotopy type.

There are a few different ways to express discrete Morse theory,
the way that works best for the algebraic setting is in terms of
acyclic matchings in the Hasse diagram of the face poset of the
complex. Let ' = (V,E) be a directed graph. A subset M C E is
a matching if every vertex is in at most one of the edges in M.
A matching is acyclic if the graph obtained by reversing the
edges in the matching contain no directed cycles. An important
property of Hasse diagrams of a posets is that they contain no
directed cycles. Given an acyclic matching M of I' the elements
of V that are not matched are critical.

Czech Technical University in Prague
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Algebraic Discrete Morse Theory

The main theorem of discrete Morse theory can be stated as
follows.

Theorem

Let X be a regular CW-complex with face poset P. If I is an
acyclic matching of P where the empty face is critical, then
there is a CW-complex X homotopy equivalent to X. The
critical cells are in bijection with the cells of }NC, this bijection
preserve dimension.

For one-dimensional complexes the theory is greatly simplified
and it is always possible to find optimal matchings in the sense
that the resulting complex have the minimal number of cells of
any complex homotopy equivalent to the original complex.
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Algebraic Discrete Morse Theory

One-dimensional complexes are essentially graphs where loops
and multiple edges are allowed, the complexes obtained from
discrete Morse theory are the complexes obtained by contracting
non-loop edges. The matchings are pairings of a vertex with an
edge containing the vertex, and the matched edge is then
contracted and the new vertex is identified with the endpoint of
the contracted edge not paired to the contracted edge. In
particular it is possible to contract edges in a graph until there
is only a single vertex in each component and there is a
matching realizing this. The space of acyclic matchings for the
Hasse diagram of posets of one-dimensional complexes has
interesting structure and was further studied by Chari and
Joswig. Batzies and Welker extended discrete Morse theory to
work well with cellular resolutions.

Czech Technical University in Prague

of Homology



Algebraic Discrete Morse Theory

Let X be a CW-complex with labeling map ¢ and face poset P.
An acyclic matching M of the Hasse diagram of P satisfying

or € M = {(o) = {(7) is homogenous, that is the matching is
homogenous if cells are only matched to cells with the same
label.

The main theorem of algebraic discrete Morse theory for cellular
resolutions can be stated as follows.

Theorem

Let X be a regular CW-complex with face poset P. Let £ be a
labeling of X giving a cellular resolution of the ideal I. If I is a
homogenous acyclic matching of P then X also supports a
cellular resolution of I. The cell corresponding to the critical cell
o has label {(0).
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Algebraic Discrete Morse Theory

Let R be a ring and %, = (%6, 0i)i>o0 be a chain complex of free
R-modules €;. We choose a basis X = Uj>oXj such that

6 = Deex, Re. Write the differentials d; with respect to the
basis X in the following form:

G — G-
O : c—oi(c)= X [e:d]-c.

x'€Xi_1

Given a complex %, and a basis X, we construct a directed
weighted graph (%) = (V,E). The set of vertices V of ['(%) is
the basis V = X and the set E of weighted edges is given by the
rule

(c,c,[c:c]) € E ifand only if ¢ € Xj, ¢ € Xj_1, and[c: '] # 0.
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Algebraic Discrete Morse Theory

A finite subset MM C E in the set of edges is called an acyclic
matching if it satisfies the following three conditions:

(1) (Matching) Each vertex v € V lies in at most one edge
ec M

(2) (Invertibility) For all edges (c,c[c : ¢/]) € M the weight
[c : ¢/] lies in the center Z(R) of the ring R and is a unit in
R.

(3) (Acyclicity) The graph 'y (V, Egy) has no directed cycles,
where Egy is given by

Eg = (E\M)U{(,c,[c: 7)) with (c,d,[c:]) € M}.

Czech Technical University in Prague
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Algebraic Discrete Morse Theory

For an acyclic matching I on the graph I'(%,) = (V,E), we
introduce the following notation

(1) We call a vertex ¢ € V critical with respect to M if ¢ does
not lie in an edge e € IM; we write
X™ .= {c € X; : c critical}

for the set of all critical vertices of homological degree i.
(2) The weight w(p) of a path p =c¢; — ... = ¢, € Path(cy, ¢;)

is given by
r—1 _;
wler = ... = ) == [Jwle = cis1), wlc—d):= [c:c]
i=1 [c: ], ¢
(3) We write '(c,c') := > w(p) for the sum of weights

p€Path(c,c’)
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Algebraic Discrete Morse Theory

Theorem

The chain complex (%, ds) of free R-modules is
homotopy-equivalent to the complex (€, 02) which is
complex of free R-modules and

" = G
m . m .
%" = P Re, G Je— X T(e, ).
cex™ c/ex™
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Theorem (Jollenbeck—Scoldberg—Welker)

For w € X*, let A, ; be the vertices [wi]...|wn] in Mg, (A x) such
that w = wy - - - wy and 1 is the larger integer i > —1 such that
W1 Wikl € A® is an Anick i-chain. Let A, := U Aui

i>—1
Define a partial matching M, on (I z, (A x))w = T2, (AK)IA, DY
letting IM,, consist of all edges

[wil ... Jwipglwiial ... Jwn] = [wi]. .. Jwita]. .. |wm]
when [w]...|wm] € Awj, such that wi ywi, 5 = wit2 and
[wil. .. |wit1|wl 5] € AGHY is an Anick (i + 1)-chain.

The set of edges M = J,, M,, is a Morse matching on Iz, (A k),
with critical cells X*® = A®=1 for all n.
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Example

Let us consider the algebra A = K(x,y|x? — y? = 0). We have
(0) — (1) — [2 2 (2) — ) A2
AN = {x,y}, AV = {X , Xy } A= = {gx,xgil},etc,
e, NO = {x*1 x%y?}, £ > 0. We thus get the Anick resolution

O%K@/Hd—ol\x@/\y&/\)g@/\xyz&/\Xg@/\xzf<—....
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b = b < [ v —— [xly?] S g
—1J +1v/)—1 —{ »
[v’] byl b vl
+1 /)—1 / lf(}’) / Jf(y")
V] «——[vly] ——[v] v] [v] [vx] v]

+1 5—1

] Y [yl — s [y

hence

di [x[x] = x[x] + e(x)[x] — y[y] — e(¥)[¥],
di[x[y?] = e(y*)[x] + xy[y] + e(y)x[y] — e(yx)ly] — y*[x] — e(x)y[y],




,—/\ £+1
AED 5 [y e o Ry — D ] e A
—— —_—

S
[x| ... [x[y*x] Y| |X ly?]x]
N—— 0—

£—1 ‘
(-1
162
[ 2] o ] [x] € A
—— ——
—2 L

hence

delxl . Ix[y?] = x[x| - Jx |y?] + (=1) ey ] - 5]+ (1) Y[ - [
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£+1
A (1) +e(x)

A1) 5 x|4..|x(7xx|...|x X|...|x€/\(271)

I f
— l \\

y2Ixl...Ix [l Ixly? x] - Jx y2 %] Clxly?] e A
£—1

£—2 £—1
thus

delx] ... [x] = x[x] ... [x]+ (=) e@)[x]. .. [x]+(=1)"y?[x] . .. |x].
{+1 l )4 -1
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Let us consider the cyclic group Z, = (¢|¢™ = 1) of order n.
Then the powers (¥ =1,¢?,...,¢" ! form a Z-basis for its
group ring A = Z[Zy]. It follows that A = Z[x]/(x" — 1). It is
obviously that the set {x" — 1} is a Gronber—Shirshov basis of A.
We thus get

N = {0},
A = (=13,
A = {7 s, B )

Calculate the differentials d; : ZAM) — ZA©)
dy : ZAN®) — ZAD),

Viktor Lopatkin Czech Technical University in Prague




1]
/ e(x™ 1)
pen ] 8
+1 5—1
2] 2, [y

] e [ — 2 [,

Viktor Lopatkin Czech Technical University in Prague

alculation of Homol



[X|Xn—1 IXn—i]
P
e e "]
[X|Xn_2‘Xn_i] [XLXn—SIXn—i]

|

[Xn—3|Xn—i]

. b .
[X|X171|Xnil]
[X|Xn—1]
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|
We thus obtain
dl[x\xnfl] = (anl + Xn72€(X I E(anl))[x],
do[x|x™ L x71] = (x» 7 — (x> 7)) [x[x*71, 1<i<n-1

0 — Z 2 Homz(ZA®, 2) 25 Homy(ZAD, Z) &5 Homy (ZA®),Z) — -
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Hence

(6" ) ([xIx" ") = (L+ - + Deo([x]) = ne([x]),

n

@) ("] = (L= Dy([xlx*) =0, 1<i<n-—1,

for every ¢ € Homyz(ZA®),Z) and ¢ € Homz(ZAW, 7). It
follows that H2(Zy, Z) & Z,,.
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Let us calculate all extensions of Z and Zs by the symmetric
group &s. It is well known that &3 my be described as follows.
It has generators sy, 8o and relations:

s% = sg =1,
5159251 = S281892.

One thinks of s; as swapping the ith and (i 4+ 1)th position.
Next, set 81 > s9. One can easy see that the set

{sT =1,85 = 1,518081 = 898182}
is its Grobner—Shirshov basis. We thus get
0
& = {fs1]. a1},
& = {fsufsul, [s2lsal. sufszs ]},

&%) = {[s1susu], [s1[s152s1], [s1]s2s1[s1], [s2/s2]s2]}-

Viktor Lopatkin Czech Technical University in Prague

Calculation of Homol



To define the differentials dy : Z&{ — Z&{" and

dp : Z@gl) — Z@go), we have to consider the corresponding
paths in the graph [y (%.(2&3));

[s1]s1]s1]
S1 —5(51)

[s1(s1] [Lls1] =0 [s1/1] =0 [s1]s1]

hence
da[s1[s1s1] = sa[s1[s1] — e(s1)[s1]s1],
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[s1s182]s1]

s1 —&(s1)
—1 +1
[s182]s1] [s2ls1] [s1]s28182]
t1i ) -1 —1: |41
e .
[s1ls2]s1] [s1s281[s2]
—1
+1 —e(sg)
[s1]s2s1] [s2s182]s2] [s1s281]
$11 ] -1
~

[s2]s182]s2]
52
[s1s2]s2]

+1 -1
~
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[s1s152]

-1 +1

<
[s1ls1

s2]
—e(s2)

[s1]s1]
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hence

da[s1[s1s2[s1] = (s1 + &(s2))[s1(s281] + s2s1[s2[se] — (s2)[s1s1],
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[s1]s281 1]

51 —e(s1)
-1 +1

[s2s1]s1] [s2s182]s1] [s1]s2] [51]5251]
» j_l " j_l
Falsilsa]  fselsiselsa)
S e
[s1]s1] [s182]s1] [S2]s25182]
+1 /)—1 -1 /j+1
falsolsi]  solsalsusa
+1J \L—E(Slsg)
[51]s281] [s2]s2]
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hence

do[s1ses1|s1] = sise[si|s1] — (s2 + €(s1))[s1]s281] — e(s182)[s2]s2],

[s2]s2[s2]
S2 —&(s2)
[s2]s2] [1]s2] =0 [s2]1] =0 [s2s2]

hence
da[s2[s2[s2] = sa[sa[se] — e(s2)[s2]s2],
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Thus we obtain the following cochain complex

0= Z 2% Homy(z&\", Z) L& Homz(z&(V, Z) 2 Homy(z&\?, Z) -

where
(daf)([s1[s1]s1]) = 0,

(daf)([s1[s182[s1]) = 2f([s1s2s1]) + £([s2[s2]) — £([s1]s1]),

(daf)[s1[s2s1s1] = £([s1s1]) — 2£([s1[s2s1]) — £([s2ls2]),

(daf)[s2]s2[s2] = 0,

(

(

(d1

[
[
dia)([s1]s1]) = 2a([s1]),
)
)

(
(

—_~ o~

dra)([szfs2]) = 2a([s2]),
([s1ls2s1]) = e[s1]) — a([s2)),

f € Homz(Z&\", Z), o € Homz(Z&\”, Z). Hence f € Ker(dy) if
and only if f has the following values:

f([s1]s1]) =k, £([s1[s2s1]) = 1, £([s2]s2]) = k — 21,
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On the other hand, by the description of d,

(dre)(fszls2]) = (dua)([safs1]) — 2(drer)([s1s2s1])-
Hence every f € Ker(dz) has a form (d;«) for some
a € HomZ(Z@go),Z), i.e., Ker(d2) = Im(d;). Thus

H?(®3,7Z) = Ker(dg)/Im(d;) = 0.
Next, it is easy to see that Aut(Z) = {idz, ¢} = Zy, where
t(¢) = —( for every ¢ € Z. We then have two homomorphisms
01, P2 1 ©3 — Zy are defined as follows: ¢1(p) := 0, and
wa(p) := sign(p) (= signature of the permutation p), for every
p € ©3. Thus we obtain
0 =2 —7Z Xy &3 — S3 — 1, i=1,2,

where Z x,, @3 = Z x @3 (=trivial action of @3 over Z), and
Z %, @3 has the following group low
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Thus these extensions are equivalent and we thus have only one
class of extension of Z by 3.




Further, let us find all extensions of Zs by &3. Using the
calculations above, we get the following cochain complex

0 = Zy 2% Homy(Z&Y), Z,) L5 Homy(Z&\", Z5) 22 Homy (2P, Z,) — -

where

Viktor Lopatkin

(daf)([s1]s1s1]) =0,

(daf)([s1]s182[s1]) = £([s2(s2]) + £([s1]s1]),
(daf)[s1[s2s1[s1] = £([s1]s1]) + £([s2]s2]),
(daf)[s2]s2[s2] = 0,

(dia)([s1s1]) = 0,

(dia)([s2ls2]) = 0,

(dia)([s1s2s1]) = a([s1]) + a([s2]),
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There exists only two non equivalent extensions of Zy by @3,
namely;

00— Zo — 7o X ©3 — &3 — 1,
0—Zo — Ef > &3 — 1,

where E¢ is generated by the following set of pairs
{(i,p) :1 € Z2,p € @3}, and the group low is given by

(i, p) - (,q) = (i+]j+£f(p,q), Pa),

here f(s1,s1) = f(s2,s2) and f(p, q) = a € Za otherwise.
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