On eigenvalues and singular values of adjacency matrices of regular random graphs

Anna Lytova
Opole University

Ostrava, 2018

Based on a joint work with:

Nicole Tomczak-Jaegermann

Pierre Youssef

Alexander Litvak

Konstantin Tikhomirov

Regular graphs and adjacency matrices

$G \in \mathcal{D}_{n, d} \Leftrightarrow$ every vertex of G has exactly d in-neighbors and d out-neighbors

$$
\mathbb{P}\{G \in \Gamma\}=\frac{|\Gamma|}{\left|\mathcal{D}_{n, d}\right|}, \quad \Gamma \subset \mathcal{D}_{n, d} .
$$

$M \in \mathcal{M}_{n, d} \Leftrightarrow$

$$
\begin{gathered}
M_{i j}= \begin{cases}1, & \text { if there is an edge from } i \text { to } j ; \\
0, & \text { otherwise. }\end{cases} \\
\sum_{i=1}^{n} M_{i j}=\sum_{j=1}^{n} M_{i j}=d
\end{gathered}
$$

A closely related model: Erdös-Renyi graphs. Each edge of an Erdös-Renyi graph is formed with probability p independently of others. In our case $p=d / n$.
$n=5, d=3$

$G \in \mathcal{D}_{n, d}$

1	0	1	1	0
1	1	1	0	0
0	0	1	1	1
1	1	0	0	1
0	1	0	1	1

$M \in \mathcal{M}_{n, d}$

Questions we are interested in:

1. Invertibility of adjacency matrices of regular graphs.
2. Singular values. In particular, quantitative estimates for the smallest singular value.
3. Delocalization properties of the eigenvectors.
4. Limiting distributions of eigenvalues of $M \in \mathcal{M}_{n, d}$ as $n \rightarrow \infty$:

- Circular Law if $d=d(n) \rightarrow \infty$,
- Complex Kesten-McKay distribution if d is fixed.

Invertibility of adjacency matrices of regular graphs

Conjecture
For every $3 \leq d \leq n-3$, the probability that the adjacency matrix corresponding to an undirected d-regular graph is singular goes to zero as $n \rightarrow \infty$.

Theorem [Nicholas A. Cook, 2014]
For $d \gg \ln ^{2} n, \quad \mathbb{P}\left\{M \in \mathcal{M}_{n, d} \quad\right.$ is singular $\} \leq 1 / d^{c}$.
Theorem [LLTTY,2015]
For $d \geq C, \quad \mathbb{P}\left\{M \in \mathcal{M}_{n, d} \quad\right.$ is singular $\} \leq C \ln ^{3} d / \sqrt{d}$.
Theorem [Jiaoyang Huang, 2018]
For $d \geq 3,(d<\ln \ln n), \quad \mathbb{P}\left\{M \in \mathcal{M}_{n, d} \quad\right.$ is singular $\}=o(1), \quad n \rightarrow \infty$.
Symmetric case: András Mészáros, 2018, Hoi H. Nguyen, Melanie Matchett Wood 2018.

Switching and multimaps

McKay'81 used the simple switching procedure to estimate cardinalities of subsets of graphs:
Let $A, B \subset \mathcal{D}_{n, d}$. To compare cardinalities $|A|$ and $|B|$, one uses switching to construct a multimap R between A and B, then estimate the cardinalities of images and preimages of this multimap and apply the following simple statement:

Claim. Let $R: A \rightarrow B$ be a multimap,

$$
\begin{array}{ll}
\forall a \in A & |R(a)| \geq s \geq 1, \\
\forall b \in B & \left|R^{-1}(b)\right| \leq t .
\end{array}
$$

Then

$$
\frac{|A|}{|B|} \leq \frac{t}{s}
$$

Expansion properties of d-regular graphs

With high probability:

- There are no large $I \times J$ zero minors in adjacency matrices $(|I|,|J| \geq c n / d)$.
- Supports of any two rows (columns) almost do not intersect.
- For any set J of vertices $(|J| \geq c n / d)$, the union of the supports of its vertices is concentrated near its maximum $d|J|$.

Komlós’ strategy. Bernoulli matrices

Theorem (Komlós,1977)
Let B be a random sign matrix with the iid uniform ± 1 entries. Then

$$
\mathbb{P}\{B \text { is singular }\}=O\left(n^{-1 / 2}\right) .
$$

Kahn-Komlós-Szemerédi'95, Tao-Vu'06, Bourgain-Vu-Wood'09. Conjecture: $(1 / 2+o(1))^{n}$

Key ingredient: anti-concentration Littlewood-Offord type inequalities: Let ξ_{1}, \ldots, ξ_{n} be iid Bernoulli ± 1 and let $\left|x_{i}\right| \geq 1, i \leq m$. Then

$$
\sup _{a \in \mathbb{C}} \mathbb{P}\left(\left|\sum_{i=1}^{m} \xi_{i} x_{i}-a\right|<t\right) \leq \frac{C t}{\sqrt{m}}, \quad \forall t \geq 1
$$

In particular, $\forall v \in \mathbb{R}^{n}, \quad \mathbb{P}\{\operatorname{Row}(B) \cdot v=0\}=O\left(\mid\right.$ supp $\left.\left.v\right|^{-1 / 2}\right)$.

The strategy of Komlós:
Step 1. Eliminate sparse null vectors Sparse $_{\eta}:=\{x:|\operatorname{supp} x|<\eta n\}$.

$$
G:=\left\{B: \text { Sparse }_{\eta} \cap\left(\operatorname{Ker} B \cup \operatorname{Ker} B^{T}\right)=\{0\}\right\} \Rightarrow \mathbb{P}\{G\}>1-e^{-c n}
$$

Step 2. Treating non-sparse null vectors. Let $\mathcal{E}_{b a d}:=\{B: \operatorname{det} B=0\} \cap G$.

$$
V_{i}:=\operatorname{span}\left\{R_{j}\right\}_{j \neq i}, \quad \text { fix } \quad v^{(i)} \perp V_{i} \quad i \leq n .
$$

$$
\text { Let } B \in \mathcal{E}_{\text {bad }} \text {. Then } \exists x: \sum_{i \in \operatorname{supp} x} x_{i} R_{i}=0, \quad|\operatorname{supp} x| \geq \eta n \text {. }
$$

$\forall i \in \operatorname{supp} x \quad R_{i} \in V_{i} \quad \Rightarrow \quad \eta n \mathbb{P}\left\{\mathcal{E}_{\text {bad }}\right\} \leq \sum_{i=1}^{n} \mathbb{P}\left\{R_{i} \in V_{i}\right\}=n \mathbb{P}\left\{R_{1} \in V_{1}\right\}$.

$$
\begin{aligned}
\Rightarrow \mathbb{P}\left\{\mathcal{E}_{\text {bad }}\right\} & \leq \eta^{-1} \mathbb{P}\left\{R_{1} \in V_{1} \mid R_{2}, \cdots, R_{n}\right\} \\
& \leq \eta^{-1} \mathbb{P}\left\{R_{1} \cdot v^{(1)}=0 \mid R_{2}, \cdots, R_{n}\right\}=O\left(n^{-1 / 2}\right) .
\end{aligned}
$$

Quantitative estimates

Theorem (Cook, 2017)
Let $d>C \ln ^{11} n$. Then the smallest singular number of M satisfies

$$
\mathbb{P}\left(s_{n}>1 / n^{C(\ln n) / \ln d}\right)>1-C \ln ^{5.5} n / \sqrt{d} .
$$

Theorem (LLTTP 2017)
Let $C<d<n / \ln ^{2} n$. Then

$$
\mathbb{P}\left(s_{n}>1 / n^{6}\right)>1-C \ln ^{2} d / \sqrt{d} .
$$

Conjecture: $\quad s_{n} \approx \sqrt{d} / n$.

Circular law

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of a random matrix M_{n}.
The empirical spectral distribution (ESD) of M_{n} :

$$
\mu_{M_{n}}(A):=\frac{1}{n}\left|\left\{i: \lambda_{i} \in A\right\}\right|, \quad \forall A \in \mathcal{B}(\mathbb{C}) .
$$

It was conjectured in 1950s, that if entries of M_{n} are iid satisfying some mild conditions then $\mu_{M_{n}}$ converges to the uniform probability measure on the unit disk D of the complex plane, that is,

$$
\mu_{M_{n} / \sqrt{n}} \rightarrow \mu_{\circ}=\pi^{-1} \mathbf{1}_{D} d x d y, \quad \text { where } \quad D=\{|z| \leq 1\} .
$$

Circular law: results

Let $M_{i j}$ be iid copies of a centered r.v. ξ with variance 1 .
Mehta (1967): ξ is a standard complex Gaussian variable (using the joint density function of the eigenvalues, discovered by Ginibre (1965))
Girko (1984): $\mathbf{E}|\xi|^{2+\varepsilon}<\infty$ (but the proof has gaps)
Edelman (1997): ξ is a standard real Gaussian variable
Bai (1997): ξ has bounded density and bounded 6th moment (later improved to ($2+\varepsilon$)-moment in his book with Silverstein (2010))
Girko (2004): $\mathbf{E}|\xi|^{4+\varepsilon}<\infty$ (no density conditions!)
Pan, Zhou (2010): $\mathbf{E}|\xi|^{4}<\infty$
Tao, Vu (2008): $\mathbf{E}|\xi|^{2+\varepsilon}<\infty$
Götze, Tikhomirov (2010): E $|\xi|^{2}(\ln |\xi|)^{20}<\infty$
Tao, Vu (2010): Universality: No additional conditions!
Many recent works on matrices with non iid entries. In particular, for sparse matrices: Götze-Tikhomirov, Tao-Vu, Basak-Rudelson.

Circular law in our setting

In our setting $M \in \mathcal{M}_{n, d}$ is uniformly distributed in the set of $n \times n$ matrices with $0 / 1$ entries, such that sums in rows and in columns are equal to d.

Theorem (Cook, 2017)
The circular law holds for $d^{-1 / 2} M$ provided that $d>\ln ^{96} n$.

Theorem (LLTTY, 2018)

The circular law holds for $d^{-1 / 2} M$ provided that $d=d(n) \rightarrow \infty$ as $n \rightarrow \infty$.

Consider an $n \times n$ real symmetric random matrix

$$
M_{n}=\left(M_{j k}\right)_{j, k=1}^{n}=\left(\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right)
$$

$M_{j k}$ are random variables. Denote the eigenvalues of M_{n} by

$$
\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} .
$$

The Normalized Counting Measure (NCM) of eigenvalues: $\forall \Delta \subset \mathbb{R}$

$$
N_{n}(\Delta)=\frac{\left|\left\{k: \lambda_{k} \in \Delta\right\}\right|}{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(\lambda_{k} \in \Delta\right) .
$$

For many classes of properly normalized random matrices, their eigenvalues possess a self-averaging property: their NCMs of eigenvalues converge to a non-random limit as $n \rightarrow \infty$.

Wigner real symmetric matrices

$$
M_{n}=n^{-1 / 2} W_{n}
$$

- $W_{n}=\left\{W_{j k}\right\}_{j, k=1}^{n}, W_{j k}=W_{k j} \in \mathbb{R}$,
- $W_{j k}, 1 \leq j \leq k \leq n$, are independent,
- $\mathbf{E} W_{j k}=0$,
- $\mathbf{E} W_{j k}^{2}=1$.

Eugene Paul Wigner

Wigner's Semicircle Law

For any bounded continuous function φ, with probability 1 ,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \varphi(\lambda) d N_{n}(\lambda)=\int_{-2}^{2} \varphi(\lambda) \rho_{s c}(\lambda) d \lambda \\
\rho_{s c}(\lambda)=\frac{1}{2 \pi} \sqrt{\left(4-\lambda^{2}\right)_{+}}
\end{gathered}
$$

Sample Covariance Matrices

Consider m independent random vectors in \mathbb{R}^{n} with zero mean

$$
\mathbf{X}_{1}=\left(\begin{array}{l}
X_{11} \\
\vdots \\
X_{n 1}
\end{array}\right), \quad \ldots, \mathbf{X}_{m}=\left(\begin{array}{l}
X_{1 m} \\
\vdots \\
X_{n m}
\end{array}\right)
$$

Put

$$
M_{n}=n^{-1} \sum_{\alpha=1}^{m} \mathbf{X}_{\alpha} \mathbf{X}_{\alpha}^{T}=n^{-1} B_{n} B_{n}^{T},
$$

where

$$
B_{n}=\left[\begin{array}{llll}
\mathbf{X}_{1} & \mathbf{X}_{2} & \ldots & \mathbf{X}_{m}
\end{array}\right] .
$$

We suppose that $m \rightarrow \infty, m / n \rightarrow c \in(0, \infty)$ as $n \rightarrow \infty$.

Marchenko-Pastur distribution

$$
\text { Let } \quad M_{n}=n^{-1} B_{n} B_{n}^{T}, \quad B_{n}=\left(X_{j \alpha}\right)_{j, \alpha=1}^{n, m}
$$

$\left\{X_{j \alpha}\right\}_{j, \alpha}$ are independent,

$$
\begin{aligned}
& \mathbf{E} X_{j \alpha}=0, \quad \mathbf{E} X_{j \alpha}^{2}=a^{2} \\
& m, n \rightarrow \infty, m / n \rightarrow c \geq 1
\end{aligned}
$$

Then $N_{n}(d \lambda) \rightarrow \rho_{M P}(\lambda) d \lambda \quad$ a.s.,

$$
\begin{gathered}
\rho_{M P}(\lambda)=\frac{\sqrt{\left(\left(\lambda-a_{-}\right)\left(a_{+}-\lambda\right)\right)_{+}}}{2 \pi a^{2} \lambda}, \\
a_{ \pm}=a^{2}(\sqrt{c} \pm 1)^{2}
\end{gathered}
$$

Vladimir
Marchenko

Leonid Pastur

Stieltjes transform of a non-negative finite measure m :

$$
s(z)=\int_{\mathbb{R}} \frac{m(d \lambda)}{\lambda-z}, \quad \Im z \neq 0
$$

- the Stieltjes - Perron inversion formula:

$$
m(\Delta)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{\Delta} \Im s(\lambda+i \varepsilon) d \lambda
$$

- There is a one-to-one correspondence between finite non-negative measures and their Stieltjes transforms. This correspondence is continuous if we use the uniform convergence of analytic functions on compact subsets of $\mathbb{C} \backslash \mathbb{R}$ for Stieltjes transforms and the weak convergence of measures.

$$
s_{n}(z):=\int_{\mathbb{R}} \frac{N_{n}(d \lambda)}{\lambda-z}=\frac{1}{n} \operatorname{Tr}\left(M_{n}-z\right)^{-1}, \quad \Im z \neq 0 .
$$

Main steps of the proof.

$$
M_{n}=\sum_{\beta=1}^{m} \mathbf{X}_{\beta} \mathbf{X}_{\alpha}^{T}, \quad G=\left(M_{n}-z\right)^{-1}, \quad s_{n}=\frac{1}{n} \operatorname{Tr} G, \quad M_{n}^{\alpha}=M_{n}-\mathbf{X}_{\alpha} \mathbf{X}_{\alpha}^{T} .
$$

Let $\mathbb{E}\left(A \mathbf{X}_{\alpha}, \mathbf{X}_{\alpha}\right)=\operatorname{Tr} A+O\left(n^{-1}\right)$ and $\operatorname{Var}\left(A \mathbf{X}_{\alpha}, \mathbf{X}_{\alpha}\right)=o(1)$ for every A. Since

$$
z G=-1+G M \quad \text { and } \quad G-G^{\alpha}=-\frac{G^{\alpha} \mathbf{X}_{\alpha} \mathbf{X}_{\alpha}^{T} G^{\alpha}}{1+\left(G^{\alpha} \mathbf{X}_{\alpha}, \mathbf{X}_{\alpha}\right)},
$$

we have

$$
\begin{aligned}
z \mathbb{E} s_{n} & =-1+\frac{m}{n}-\frac{1}{n} \sum_{\alpha=1}^{m} \mathbb{E} \frac{1}{1+\left(G^{\alpha} \mathbf{y}_{\alpha}, \mathbf{y}_{\alpha}\right)} \\
& =-1+\frac{m}{n}-\frac{1}{n} \sum_{\alpha=1}^{m} \frac{1}{1+\mathbb{E} s_{n}}+o(1) .
\end{aligned}
$$

Hence, $z s(z)=-1+c-c(1+s(z))^{-1}$.

Logarithmic potential

Let

$$
\mu_{M_{n}}(A):=\frac{1}{n}\left|\left\{i: \lambda_{i} \in A\right\}\right|, \quad\left(\lambda_{i}\right)_{i} \text { are eigenvalues of } M_{n} .
$$

$M_{n}=M_{n}^{*}$. The Stieltjes transform of $\mu_{M_{n}}$:

$$
g_{n}(z):=\int_{\mathbb{R}} \frac{d \mu_{M_{n}}(\lambda)}{\lambda-z}=n^{-1} \operatorname{Tr}\left(M_{n}-z\right)^{-1} .
$$

$M_{n} \neq M_{n}^{*}$. The logarithmic potential of $\mu_{M_{n}}$:

$$
U_{\mu_{M_{n}}}(z)=-\int_{0}^{\infty} \ln |\lambda-z| d \mu_{M_{n}}(\lambda) .
$$

Hermitization

Let $s_{1} \geq \ldots \geq s_{n}$ be the singular values of an $n \times n$ matrix B. The singular values distribution of B :

$$
\nu_{B}:=\frac{1}{n}\left|\left\{s_{i} \in A\right\}\right|, \quad A \in \mathcal{B}(\mathbb{R}) .
$$

Hermitization:

$$
\begin{gathered}
U_{\mu M_{n}}(z)=-\int_{0}^{\infty} \ln |\lambda-z| d \mu_{M_{n}}(\lambda) \\
=-\frac{1}{n} \sum_{j} \ln \left|\lambda_{j}-z\right|=-\frac{1}{n} \ln \left|\prod_{j} \lambda_{j}-z\right| \\
=-\frac{1}{n} \ln \left|\operatorname{det}\left(M_{n}-z\right)\right|=-\frac{1}{n} \ln \sqrt{\left|\operatorname{det}\left(M_{n}-z\right)\left(M_{n}^{*}-\bar{z}\right)\right|} \\
=-\frac{1}{n} \sum_{j} \ln \left(s_{j}\left(M_{n}-z\right)\right)=-\int_{0}^{\infty} \ln (t) d \nu_{M_{n}-z l}(t) .
\end{gathered}
$$

Open questions:

1. Invertibility of adjacency matrices of regular graphs:

- directed case,
- undirected case (symmetric matrices), $d=d(n) \rightarrow \infty$.

2. Singular values.

Quantitative estimates for the smallest singular value.
To get optimal bound.
3. Delocalization properties of the eigenvectors.
4. Limiting distributions of eigenvalues of $M \in \mathcal{M}_{n, d}$:

- $n \rightarrow \infty, d=d(n) \rightarrow \infty$ (circular law),
- $n \rightarrow \infty, d$ is fixed (complex Kesten-McKay distribution). Conjecture: as $n \rightarrow \infty$ the normalized counting measures of eigenvalues of $M \in \mathcal{M}_{n, d}$ converge to the probability measure

$$
\frac{1}{\pi} \frac{d^{2}(d-1)}{\left(d^{2}-|z|^{2}\right)^{2}} \chi_{\{|z|<\sqrt{d}\}} d x d y .
$$

Thank you!

