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Regular graphs and adjacency matrices

G € D, 4 < every vertex of G has exactly d in-neighbors and d
out-neighbors

]

P{GeT}= Dol

I'c Dmd-
M e Mn.d Aad

Mo — 1, if there is an edge from i to j;
v 0, otherwise.

n n
> My=> M;=d
i=1 j=1

A closely related model: Erdos-Renyi graphs. Each edge of an Erdos-Renyi
graph is formed with probability p independently of others. In our case

p=d/n.
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Questions we are interested in:

1. Invertibility of adjacency matrices of regular graphs.

2. Singular values.
In particular, quantitative estimates for the smallest singular value.

3. Delocalization properties of the eigenvectors.

4. Limiting distributions of eigenvalues of M € M, 4 as n — oo:
e Circular Law if d = d(n) — oo,
e Complex Kesten—-McKay distribution if d is fixed.
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Invertibility of adjacency matrices of regular graphs

Conjecture

For every 3 < d < n — 3, the probability that the adjacency matrix
corresponding to an undirected d-regular graph is singular goes to zero
asn — oo.

Theorem [ Nicholas A. Cook, 2014]

Ford > 1n*n, P{M & M,  issingular}y <1/d".

Theorem [LLTTY,2015]
Ford>C, P{M e M,y issingular} < Cln’ d/\/a

Theorem [Jiaoyang Huang, 2018]
Ford>3,(d <Inlnn) P{M e M,  issingular} =o(l), n— oco.

Symmetric case: Andrds Mészaros, 2018, Hoi H. Nguyen, Melanie Matchett
Wood 2018.
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Switching and multimaps
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McKay’81 used the simple switching procedure to estimate cardinalities of
subsets of graphs:

Let A, B C D, 4. To compare cardinalities |A| and |B|, one uses switching to
construct a multimap R between A and B, then estimate the cardinalities of
images and preimages of this multimap and apply the following simple
statement:

Claim. Let R : A — B be a mul-
timap,

% VacA |R()|>s
VbeB |RT'(b)| <t
@ Then

al

>1

)

U |~
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Expansion properties of d-regular graphs

With high probability:

o There are no large / x J zero minors in adjacency matrices
(|, /| = en/d).

o Supports of any two rows (columns) almost do not intersect.

e For any set J of vertices (|J| > cn/d), the union of the supports of its
vertices is concentrated near its maximum d|J|.
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Komlés’ strategy. Bernoulli matrices

Theorem (Koml6s,1977)

Let B be a random sign matrix with the iid uniform +1 entries. Then

P {B is singular } = on='?).

Kahn-Komlés-Szemerédi’95, Tao-Vu’06, Bourgain-Vu-Wood’09.
Conjecture: (1/2+o(1))"

Key ingredient: anti-concentration Littlewood-Offord type inequalities:
Let &;,..., &, be iid Bernoulli +1 and let |x;| > 1, i < m. Then

- Ct
ilelgp(|;£iXi_a| < t) < ﬁ’ V> 1.

In particular, Vv € R", P {Row(B) - v =10} = O(|suppv|~'/?).
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The strategy of Komlds:

Step 1. Eliminate sparse null vectors Sparse,, := {x : |suppx| < nn}.
G :={B: Sparse, N (KerBUKerB") = {0}} = P{G} > 1 —¢
Step 2. Treating non-sparse null vectors. Let &, := {B : detB =0} N G.
Vi :=span{R;};z;, fix YOV, i<n.

Let B € Epgq. Then Jx : Z xR; =0, |suppx| > nn.

i€Esupp x

Viesuppx R €V, = nmnP{&uw} < Z]P’{Ri €V} =nP{R, € Vi }.
i=1

= P{gbad} < n_IP{R] S V1 |R27~-~ »Rn}
< 'r,*l}P?{Rl M =9 |Ry, - ,R,} = 0(n71/2)'
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Quantitative estimates

Theorem (Cook, 2017)
Letd > CIn'' n. Then the smallest singular number of M satisfies

P(sn > 1/nC<1n")/1“d) >1-Cln™ n/Vad.

Theorem (LLTTP 2017)
Let C < d < n/In* n. Then

P(s,, > 1/n6> >1-Cln’d/Vd.

Conjecture: s, & \/d/n.
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Circular law

Let Ay,..., A, be the eigenvalues of a random matrix M,,.

The empirical spectral distribution (ESD) of M,,:

o, (A) = %|{i: M EAY, VA€ B()

It was conjectured in 1950s, that if entries of M,, are iid satisfying some mild
conditions then py, converges to the uniform probability measure on the
unit disk D of the complex plane, that is,

[, ) m = Ho =T 1p dxdy, where D = {|z| < 1}.



Circular law

Circular law: results

Let M;; be iid copies of a centered r.v. § with variance 1.

Mehta (1967): £ is a standard complex Gaussian variable (using the joint
density function of the eigenvalues, discovered by Ginibre (1965))

Girko (1984): E |£]>*¢ < oo (but the proof has gaps)
Edelman (1997): ¢ is a standard real Gaussian variable

Bai (1997): £ has bounded density and bounded 6th moment (later improved
to (2 + ¢)-moment in his book with Silverstein (2010))

Girko (2004): E |£[*T¢ < oo (no density conditions!)
Pan, Zhou (2010): E [£]* < 0o

Tao, Vu (2008): E [£]*T¢ < oo

Gotze, Tikhomirov (2010): E |¢|*(In |¢))® < oo

Tao, Vu (2010): Universality: No additional conditions!

Many recent works on matrices with non iid entries. In particular, for sparse
matrices: Gotze—Tikhomirov, Tao—Vu, Basak—Rudelson.
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Circular law in our setting

In our setting M € M, 4 is uniformly distributed in the set of n x n matrices
with 0/1 entries, such that sums in rows and in columns are equal to d.

Theorem (Cook, 2017)
The circular law holds for d='/*M provided that d > 1n*® n.

Theorem (LLTTY, 2018)

The circular law holds for d='/*M provided that d = d(n) — oo as
n — oo.



Wigner

Consider an n X n real symmetric random matrix

My ... My,
n
M, = (%k)j7k:1 =

My ... My,

Mj; are random variables. Denote the eigenvalues of M, by

AM< <<\

The Normalized Counting Measure (NCM) of eigenvalues: VA C R

Ny(A) = w 121)\ eN).

For many classes of properly normalized random matrices, their eigenvalues
possess a self-averaging property: their NCMs of eigenvalues converge to a

non-random limit as n — oo.
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Wigner real symmetric matrices

M, = nil/ZWn

W = {Wic}j 1> Wik = Wy € R,

Wik, 1 <j <k < n, are independent,

EW;. =0,

|

EW; = 1. Eugene Paul Wigner
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Wigner’s Semicircle Law

lim

n—oo

For any bounded continuous function ¢, with probability 1,

2
SN, (\) = / S\ pe VA,
R -2

psc()‘) A

:27'('

V@ =Ny
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Sample Covariance Matrices

Consider m independent random vectors in R” with zero mean

X11 le
X, = R , X, =
an Xnm
Put "
M, =n"" Z XQX(Tk = n_'B,qBZ7
=1
where

B,=[Xi Xo .. Xl

We suppose that m — oo, m/n — ¢ € (0,00) as n — oo.
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Marchenko-Pastur distribution

—1 T n,m
Let M,=n""B,B,, B,= (XJ )j,a:17
{Xja}ja are independent,
EX;, =0, EXfa =d,

m,n — oo, m/n — ¢ > 1.

Then N, (d)\) — AN)dN  as.,
(@) = prr(}) Vladimir

VA —a)(ar —N) Marchenko

pmp(A) = 2mac\ ’

Leonid Pastur
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Stieltjes transform of a non-negative finite measure m:

s(z)—/Rn;(d)\), Sz#0

—Z

o the Stieltjes - Perron inversion formula:

e—0t T

m(A) = lim l/A%s()\Jris)d)\;

e There is a one-to-one correspondence between finite non-negative
measures and their Stieltjes transforms. This correspondence is
continuous if we use the uniform convergence of analytic functions on
compact subsets of C \ R for Stieltjes transforms and the weak
convergence of measures.

N, (d\) 1 _
/ - TI‘(M” - Z) la %Z 7é 0.
n
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Main steps of the proof.
m 1
T -1 e T
My = "XgXI, G=(M,—2)7", s, = TG, My =M, — XoX[.
B=1

Let E(AX,,X,) =TrA+O(n~') and Var(AX,,X,) = o(1) for every A.
Since

GeX X' Gge
G=-14+GM and G- G* = —— "%Za?
Z + an T4 (G°Xo, X0
we have
Es = -1+ 13 g !
ni= 1+(G¥a,Ya)
m 1« 1
=—14—=—- 1
+n n;1+Esn+ (1)

Hence, zs(z) = —1 + ¢ —c(1 + s(z)) L.

2
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Logarithmic potential

Let
1
o, (A) :== —=|{i: N\ € A}|, (\i); are eigenvalues of M,,.
n

M, = M. The Stieltjes transform of pi,:

an(z) = /R 70[[;\1‘3(?) =n ' Tr(M, —2)~".

M, # M. The logarithmic potential of fy, :

Uy, (2) = /0 I A — 2ldjaag, (A).
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Lets; > ... > s, be the singular values of an n X n matrix B.
The singular values distribution of B:

1
B :;HS,'EA}', AEB(R).

Hermitization:

Uy, () = — /0 I A — zldju, ()
—121n|)\<—z| :—lln|H)\'—Z|
n - J n ; J
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Open questions:

1. Invertibility of adjacency matrices of regular graphs:

e directed case,
e undirected case (symmetric matrices), d = d(n) — co.

2. Singular values.
Quantitative estimates for the smallest singular value.
To get optimal bound.

3. Delocalization properties of the eigenvectors.

4. Limiting distributions of eigenvalues of M € M,, 4
e n— 00,d = d(n) — oo (circular law),
e n — 00, d is fixed (complex Kesten—-McKay distribution). Conjecture: as
n — oo the normalized counting measures of eigenvalues of M € M, 4
converge to the probability measure

1 d*(d—1)
7 (& — |2P)? X{|z)< vaydxdy.
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Thank you!
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