A generalization of circulant Hadamard and conference matrices

Ondřej Turek

(Joint work with D. Goyeneche)
6 March 2018

Introduction

Circulant matrix

$$
C=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & & c_{n-2} \\
\vdots & c_{n-1} & c_{0} & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & c_{0}
\end{array}\right)
$$

Circulant matrix

$$
\begin{gathered}
C=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & & c_{n-2} \\
\vdots & c_{n-1} & c_{0} & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & c_{0}
\end{array}\right) \\
g=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \cdots \text { generator of } C
\end{gathered}
$$

Circulant matrix

$$
C=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & & c_{n-2} \\
\vdots & c_{n-1} & c_{0} & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & c_{0}
\end{array}\right)
$$

$g=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \ldots$ generator of C

Examples:

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 2 \pi & \mathrm{e} \\
\mathrm{e} & 1 & 2 \pi \\
2 \pi & \mathrm{e} & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 2 & -4 & 1 \\
1 & 0 & 2 & -4 \\
-4 & 1 & 0 & 2 \\
2 & -4 & 1 & 0
\end{array}\right)
$$

Hadamard matrix

Hadamard matrix is a square matrix with entries ± 1 and mutually orthogonal rows.

Examples:

$$
(1), \quad\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Hadamard matrix

Hadamard matrix is a square matrix with entries ± 1 and mutually orthogonal rows.

Examples:

$$
(1), \quad\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Theorem
The order of any Hadamard matrix is 1,2 , or a multiple of 4 .

Hadamard matrix

Hadamard matrix is a square matrix with entries ± 1 and mutually orthogonal rows.

Examples:

$$
(1), \quad\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Theorem
The order of any Hadamard matrix is 1,2 , or a multiple of 4 .
Hadamard conjecture (before 1933)
There exists an Hadamard matrix of order $4 k$ for every $k \in \mathbb{N}$.

Hadamard matrices and the determinant

Theorem (Hadamard 1893)
If all the entries of an $M \in \mathbb{C}^{n, n}$ satisfy $\left|m_{i j}\right| \leq 1$, then

$$
|\operatorname{det}(M)| \leq n^{n / 2}
$$

and equality is achieved if and only if $\left|m_{i j}\right|=1$ for all i, j and the rows of M are orthogonal.

Corollary
Hadamard matrices have maximal $|\operatorname{det}(M)|$ among all matrices of order n with entries $m_{i j} \in\{-1,1\}$.

Hadamard circulant matrices

$$
\begin{array}{cc}
(1), & (-1) \\
\pm\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right), & \pm\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1
\end{array}\right), \\
\pm\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right), & \pm\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{array}\right)
\end{array}
$$

Hadamard circulant matrices

$$
\begin{aligned}
& (1), \quad(-1) \\
& \pm\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Hadamard circulant conjecture (Ryser 1963):
Hadamard circulant matrices exist only of orders $n=1$ and $n=4$.

Conference matrix

Conference matrix is an $n \times n$ matrix $(n>1)$ such that

$$
m_{i j}= \begin{cases} \pm 1 & \text { for } i \neq j \\ 0 & \text { for } i=j\end{cases}
$$

and its rows are mutually orthogonal.

Examples:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 \\
1 & 1 & 0 & -1 \\
1 & -1 & 1 & 0
\end{array}\right)
$$

The name "conference matrix"

V. Belevitch (Electrical Communication, vol. 27, 1950):

An n-port ideal conference network exists if and only if there exists an $n \times n$ orthogonal matrix

$$
S=\frac{1}{(n-1)^{1 / 2}}\left(\begin{array}{ccccc}
0 & \pm 1 & \pm 1 & \cdots & \pm 1 \\
\pm 1 & 0 & \pm 1 & \cdots & \pm 1 \\
\pm 1 & \pm 1 & 0 & & \pm 1 \\
\vdots & \vdots & & \ddots & \pm 1 \\
\pm 1 & \pm 1 & \cdots & \pm 1 & 0
\end{array}\right)
$$

(ideal $=$ constructed without resistances)
... Hence the name "conference matrix".

Circulant conference matrices

$$
\text { Examples: } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Circulant conference matrices

Examples: $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
Theorem (Stanton and Mullin 1976)
A circulant conference matrix, i.e.,

$$
\left(\begin{array}{ccccc}
0 & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & 0 & c_{1} & & c_{n-2} \\
\vdots & c_{n-1} & 0 & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & 0
\end{array}\right)
$$

with

$$
c_{j} \in\{1,-1\} \quad \forall j=1, \ldots, n-1
$$

and mutually orthogonal rows, exists only for $n=2$.

Generalized problem

$$
C=\left(\begin{array}{ccccc}
d & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & d & c_{1} & & c_{n-2} \\
\vdots & c_{n-1} & d & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & d
\end{array}\right)
$$

with entries

$$
d \geq 0, \quad c_{j} \in\{1,-1\} \quad \forall j=1, \ldots, n-1
$$

and mutually orthogonal rows.
Problem: Determine possible orders $n>1$ for a given value of d.

Generalized problem

$$
C=\left(\begin{array}{ccccc}
d & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & d & c_{1} & & c_{n-2} \\
\vdots & c_{n-1} & d & \ddots & \vdots \\
c_{2} & & \ddots & \ddots & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & d
\end{array}\right)
$$

with entries

$$
d \geq 0, \quad c_{j} \in\{1,-1\} \quad \forall j=1, \ldots, n-1
$$

and mutually orthogonal rows.
Problem: Determine possible orders $n>1$ for a given value of d.
Remark. $\quad d=0 \Rightarrow n=2$ (Stanton and Mullin)

$$
d=1 \stackrel{?}{\Rightarrow} n=4 \quad \text { (Hadamard circulant conjecture) }
$$

Conditions on n

The problem

Let

$$
C=\left(\begin{array}{ccccc}
d & \pm 1 & \pm 1 & \cdots & \pm 1 \\
\pm 1 & d & \pm 1 & \cdots & \pm 1 \\
\pm 1 & \pm 1 & d & & \pm 1 \\
\vdots & \vdots & & \ddots & \pm 1 \\
\pm 1 & \pm 1 & \cdots & \pm 1 & d
\end{array}\right) \in \mathbb{R}^{n, n}
$$

be

- circulant,
- having mutually orthogonal rows.

Question: For a given d, what are possible sizes of C ?

Convention.
We assume $n \geq 2$ and $d \geq 0$ without loss of generality.

Lemma. The order n satisfies

$$
n \equiv 2 d+2 \quad(\bmod 4) \quad \text { and } \quad n \geq 2 d+2
$$

Lemma. The order n satisfies

$$
n \equiv 2 d+2 \quad(\bmod 4) \quad \text { and } \quad n \geq 2 d+2
$$

Proof. Generator: $g=\left(d, c_{1}, c_{2}, \ldots, c_{n-1}\right), \quad c_{j}= \pm 1$

- if n is even: scalar product of the 0th and the $\frac{n}{2}$-th row

$$
\begin{gathered}
2 d c_{\frac{n}{2}}+2 \sum_{j=1}^{\frac{n}{2}-1} c_{j} c_{\frac{n}{2}+j}=0 \\
d=\left|\sum_{j=1}^{\frac{n}{2}-1} c_{j} c_{\frac{n}{2}+j}\right| \\
\Rightarrow \quad d \equiv \frac{n}{2}-1 \quad(\bmod 2) \quad \text { and } \quad d \leq \frac{n}{2}-1
\end{gathered}
$$

Lemma. The order n satisfies

$$
n \equiv 2 d+2 \quad(\bmod 4) \quad \text { and } \quad n \geq 2 d+2
$$

Proof. Generator: $g=\left(d, c_{1}, c_{2}, \ldots, c_{n-1}\right), \quad c_{j}= \pm 1$

- if n is even: scalar product of the 0th and the $\frac{n}{2}$-th row

$$
\begin{gathered}
2 d c_{\frac{n}{2}}+2 \sum_{j=1}^{\frac{n}{2}-1} c_{j} c_{\frac{n}{2}+j}=0 \\
d=\left|\sum_{j=1}^{\frac{n}{2}-1} c_{j} c_{\frac{n}{2}+j}\right| \\
\Rightarrow \quad d \equiv \frac{n}{2}-1 \quad(\bmod 2) \quad \text { and } \quad d \leq \frac{n}{2}-1
\end{gathered}
$$

- if n is odd: using the orthogonality of the 0 th and the 1 st row.

Possible orders of C

We distinguish 4 cases:
I. d is even integer
II. d is odd integer
III. d is half-integer: $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots$
IV. $2 d$ is non-integer

Possible orders of C

We distinguish 4 cases:
I. d is even integer
II. d is odd integer
III. d is half-integer: $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots$
IV. $2 d$ is non-integer

Case IV.
Proposition. If $2 d \notin \mathbb{Z}$, then C does not exist.

Proof. We use Lemma:

$$
n \equiv 2 d+2 \quad(\bmod 4) \quad \ldots \text { no } n \in \mathbb{N} \text { exists for } 2 d \notin \mathbb{Z}
$$

Case III.

Proposition. If d is half-integer $\left(d \in\left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots\right\}\right)$, then C exists only of order $\overline{n=2 d+2}$.

Proof. 4 steps:

1. Apply Lemma:

$$
n \equiv 2 d+2 \quad(\bmod 4) \quad \Rightarrow \quad n \text { is odd }
$$

2. Orthogonality $\Rightarrow C$ is symmetric and $\exists k: c_{k}=c_{n-k}=-1$.
3. Prove that $\neg \exists j: c_{j}=c_{n-j}=1$; hence

$$
g=(d,-1,-1, \ldots,-1)
$$

4. Orthogonality $\Rightarrow \quad-2 d+n-2=0 \quad \Rightarrow \quad n=2 d+2$.

Case I.

Theorem. If d is even integer, then $n=2 d+2$.

Proof. 4 steps:

1. Apply Lemma: $n \equiv 2 d+2(\bmod 4) \Rightarrow n \equiv 2(\bmod 4)$.
2. Prove that $n \equiv 2(\bmod 4) \Rightarrow C$ is symmetric.
3. Use the symmetry of C to prove $d \equiv \frac{n}{2}-1(\bmod 4)$.
4. $d \equiv \frac{n}{2}-1(\bmod 4)$ and C is symmetric $\Rightarrow d=\frac{n}{2}-1$

Case I.

Theorem. If d is even integer, then $n=2 d+2$.

Proof. 4 steps:

1. Apply Lemma: $n \equiv 2 d+2(\bmod 4) \Rightarrow n \equiv 2(\bmod 4)$.
2. Prove that $n \equiv 2(\bmod 4) \Rightarrow C$ is symmetric.
3. Use the symmetry of C to prove $d \equiv \frac{n}{2}-1(\bmod 4)$.
4. $d \equiv \frac{n}{2}-1(\bmod 4)$ and C is symmetric $\Rightarrow d=\frac{n}{2}-1$

Example.

$d=0: \quad n=2 \cdot 0+2=2 \quad$ (Stanton and Mullin 1976)

Case II.

Proposition. If d is odd integer, then

$$
\exists k \in \mathbb{N}: \quad n=k(2 d+k)+1 .
$$

Proof. $(1,1, \ldots, 1)^{T}$ is an eigenvector of C, corresponding to the eigenvalue

$$
\lambda=c_{0}+c_{1}+c_{2}+\cdots+c_{n-1}
$$

Case II.

Proposition. If d is odd integer, then

$$
\exists k \in \mathbb{N}: \quad n=k(2 d+k)+1
$$

Proof. $(1,1, \ldots, 1)^{T}$ is an eigenvector of C, corresponding to the eigenvalue

$$
\lambda=c_{0}+c_{1}+c_{2}+\cdots+c_{n-1}
$$

Orthogonality of rows: $\quad C C^{T}=\left(d^{2}+n-1\right)$ I
$\Rightarrow \quad$ eigenvalues of C satisfy $\quad|\lambda|=\sqrt{d^{2}+n-1}$

Case II.

Proposition. If d is odd integer, then

$$
\exists k \in \mathbb{N}: \quad n=k(2 d+k)+1
$$

Proof. $(1,1, \ldots, 1)^{T}$ is an eigenvector of C, corresponding to the eigenvalue

$$
\lambda=c_{0}+c_{1}+c_{2}+\cdots+c_{n-1}
$$

Orthogonality of rows: $\quad C C^{T}=\left(d^{2}+n-1\right)$ I
$\Rightarrow \quad$ eigenvalues of C satisfy $\quad|\lambda|=\sqrt{d^{2}+n-1}$

$$
\underbrace{\left|d+c_{1}+\cdots+c_{n-1}\right|}_{\in \mathbb{Z}}=\sqrt{d^{2}+n-1}
$$

Case II.

Proposition. If d is odd integer, then

$$
\exists k \in \mathbb{N}: \quad n=k(2 d+k)+1
$$

Proof. $(1,1, \ldots, 1)^{T}$ is an eigenvector of C, corresponding to the eigenvalue

$$
\lambda=c_{0}+c_{1}+c_{2}+\cdots+c_{n-1}
$$

Orthogonality of rows: $\quad C C^{T}=\left(d^{2}+n-1\right)$ I
$\Rightarrow \quad$ eigenvalues of C satisfy $\quad|\lambda|=\sqrt{d^{2}+n-1}$

$$
\begin{aligned}
& \underbrace{\left|d+c_{1}+\cdots+c_{n-1}\right|}_{\in \mathbb{Z}}=\sqrt{d^{2}+n-1} \\
& \Rightarrow
\end{aligned}
$$

Case II.

Proposition. If d is odd integer, then

$$
\exists k \in \mathbb{N}: \quad n=k(2 d+k)+1
$$

Proof. $(1,1, \ldots, 1)^{T}$ is an eigenvector of C, corresponding to the eigenvalue

$$
\lambda=c_{0}+c_{1}+c_{2}+\cdots+c_{n-1}
$$

Orthogonality of rows: $\quad C C^{T}=\left(d^{2}+n-1\right)$ I
$\Rightarrow \quad$ eigenvalues of C satisfy $\quad|\lambda|=\sqrt{d^{2}+n-1}$

$$
\begin{aligned}
& \underbrace{\left|d+c_{1}+\cdots+c_{n-1}\right|}_{\in \mathbb{Z}}=\sqrt{d^{2}+n-1} \\
& \Rightarrow \quad \exists k \in \mathbb{N}: \sqrt{d^{2}+n-1}=d+k
\end{aligned}
$$

Partial summary

Case	d	Possible orders n
I	even integer	$n=2 d+2$
II	odd integer	$n=k(2 d+k)+1$
III	half-integer	$n=2 d+2$
IV	$2 d \notin \mathbb{Z}$	no $n \in \mathbb{N} ;$ equivalently: $n=2 d+2 \quad(\notin \mathbb{N})$

Partial summary

Case	d	Possible orders n
I	even integer	$n=2 d+2$
II	odd integer	$n=k(2 d+k)+1$
III	half-integer	$n=2 d+2$
IV	$2 d \notin \mathbb{Z}$	no $n \in \mathbb{N} ;$ equivalently: $n=2 d+2(\notin \mathbb{N})$

Partial summary

Case	d	Possible orders n
I	even integer	$n=2 d+2$
II	odd integer	$n=k(2 d+k)+1$
III	half-integer	$n=2 d+2$
IV	$2 d \notin \mathbb{Z}$	no $n \in \mathbb{N} ;$ equivalently: $n=2 d+2(\notin \mathbb{N})$

Conjecture. If d is odd, then the order n can be only $n=2 d+2$.

Partial summary

Case	d	Possible orders n
I	even integer	$n=2 d+2$
II	odd integer	$n=k(2 d+k)+1$
III	half-integer	$n=2 d+2$
IV	$2 d \notin \mathbb{Z}$	no $n \in \mathbb{N} ;$ equivalently: $n=2 d+2(\notin \mathbb{N})$

Conjecture. If d is odd, then the order n can be only $n=2 d+2$.
Remark. The conjecture is consistent with the circulant Hadamard conjecture:

$$
d=1: \quad n=2 \cdot 1+2=4
$$

Small orders

Observation. Every C up to order $n=50$ satisfies $n=2 d+2$.
Proof.
Lemma: $n \equiv 2 d+2(\bmod 4)$

Small orders

Observation. Every C up to order $n=50$ satisfies $n=2 d+2$.
Proof.
Lemma: $n \equiv 2 d+2(\bmod 4)$

- n is odd $\Rightarrow d$ is half-integer (Case III) $\Rightarrow n=2 d+2$

Small orders

Observation. Every C up to order $n=50$ satisfies $n=2 d+2$.
Proof.
Lemma: $n \equiv 2 d+2(\bmod 4)$

- n is odd $\Rightarrow d$ is half-integer (Case III) $\Rightarrow n=2 d+2$
- $n \equiv 2(\bmod 4) \Rightarrow d$ is even (Case I) $\Rightarrow n=2 d+2$

Small orders

Observation. Every C up to order $n=50$ satisfies $n=2 d+2$.
Proof.
Lemma: $n \equiv 2 d+2(\bmod 4)$

- n is odd $\Rightarrow d$ is half-integer (Case III) $\Rightarrow n=2 d+2$
- $n \equiv 2(\bmod 4) \Rightarrow d$ is even (Case I) $\Rightarrow n=2 d+2$
- n is a multiple of $4 \Rightarrow d$ is odd integer (Case II)

$$
\Rightarrow \quad n=k(2 d+k)+1, \text { hence }
$$

$$
d=\frac{n-1}{2 k}-\frac{k}{2} \quad \text { for } k \mid(n-1), \quad k \leq \sqrt{n-1}
$$

Small orders

Observation. Every C up to order $n=50$ satisfies $n=2 d+2$.

Proof.

Lemma: $n \equiv 2 d+2(\bmod 4)$

- n is odd $\Rightarrow d$ is half-integer (Case III) $\Rightarrow n=2 d+2$
- $n \equiv 2(\bmod 4) \Rightarrow d$ is even (Case I) $\Rightarrow n=2 d+2$
- n is a multiple of $4 \Rightarrow d$ is odd integer (Case II)

$$
\Rightarrow \quad n=k(2 d+k)+1, \text { hence }
$$

$$
d=\frac{n-1}{2 k}-\frac{k}{2} \quad \text { for } k \mid(n-1), \quad k \leq \sqrt{n-1}
$$

- $n-1$ is a prime $\Rightarrow k=1 \Rightarrow n=2 d+2$
- $\exists k>1, k$ is a divisor of $n-1$: (see next slide)

n	(k, d) for $k>1$, $d=\frac{n-1}{2 k}-\frac{k}{2}$	Remark
4	none	$n-1$ is a prime
8	none	$n-1$ is a prime
12	none	$n-1$ is a prime
16	$(3,1)$	eliminated by a computer calculation
20	none	$n-1$ is a prime
24	none	$n-1$ is a prime
28	$(3,3)$	eliminated by a computer calculation
32	none	$n-1$ is a prime
36	$(5,1)$	eliminated by a computer calculation
40	$(3,5)$	eliminated by a computer calculation
44	none	$n-1$ is a prime
48	none	$n-1$ is a prime

$\Rightarrow \quad$ Up to order $n=50, n$ and d are related by $n=2 d+2$.

Symmetric C

The goal of this section

We already know:
If d is even or non-integer, then

$$
C=\left(\begin{array}{ccccc}
d & \pm 1 & \pm 1 & \cdots & \pm 1 \\
\pm 1 & d & \pm 1 & \cdots & \pm 1 \\
\pm 1 & \pm 1 & d & & \pm 1 \\
\vdots & \vdots & & \ddots & \pm 1 \\
\pm 1 & \pm 1 & \cdots & \pm 1 & d
\end{array}\right) \in \mathbb{R}^{n, n}
$$

can be circulant with mutually orthogonal rows only for $n=2 d+2$.

In this section:
We will prove the relation $n=2 d+2$ for odd d as well, under some condition.

Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order $n>4$.

Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order $n>4$.

Theorem (Johnsen 1964)
There is no symmetric circulant Hadamard matrix of order $n>4$.
(I.e., the Hadamard circulant conjecture is true for symmetric matrices.)

Proof. Several proofs exist:

- Johnsen 1964
- Brualdi and Newman 1965
- McKay and Wang 1987
- Craigen and Kharaghani 1993

Generalization for symmetric C with any d

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \ldots, \pm 1)$, C has mutually orthogonal rows, $d \geq 0, \quad n>1$.

Theorem. If C is symmetric, then $n=2 d+2$.

Generalization for symmetric C with any d

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \ldots, \pm 1)$, C has mutually orthogonal rows, $\quad d \geq 0, \quad n>1$.

Theorem. If C is symmetric, then $n=2 d+2$.
Proof. It suffices to consider the case $d=$ odd integer.

$$
d \text { is odd } \Rightarrow n=k(2 d+k)+1 \text { for some } k \in \mathbb{N}
$$

Generalization for symmetric C with any d

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \ldots, \pm 1)$, C has mutually orthogonal rows, $\quad d \geq 0, \quad n>1$.

Theorem. If C is symmetric, then $n=2 d+2$.
Proof. It suffices to consider the case $d=$ odd integer.

$$
d \text { is odd } \Rightarrow n=k(2 d+k)+1 \text { for some } k \in \mathbb{N}
$$

1. We prove $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \Rightarrow k+1 \leq 2^{r}$

Generalization for symmetric C with any d

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \ldots, \pm 1)$, C has mutually orthogonal rows, $\quad d \geq 0, \quad n>1$.

Theorem. If C is symmetric, then $n=2 d+2$.
Proof. It suffices to consider the case $d=$ odd integer.
d is odd $\Rightarrow n=k(2 d+k)+1$ for some $k \in \mathbb{N}$

1. We prove $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \Rightarrow k+1 \leq 2^{r}$
2. $k \geq 2^{7} \Rightarrow k+1>2^{r} \Rightarrow$ no solution for $k \geq 2^{7}$

Generalization for symmetric C with any d

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \ldots, \pm 1)$, C has mutually orthogonal rows, $\quad d \geq 0, \quad n>1$.

Theorem. If C is symmetric, then $n=2 d+2$.
Proof. It suffices to consider the case $d=$ odd integer.
d is odd $\Rightarrow n=k(2 d+k)+1$ for some $k \in \mathbb{N}$

1. We prove $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \Rightarrow k+1 \leq 2^{r}$
2. $k \geq 2^{7} \Rightarrow k+1>2^{r} \Rightarrow$ no solution for $k \geq 2^{7}$
3. $k<2^{7}: \quad k+1 \leq 2^{r}$ is satisfied in only 2 cases:
$k=7, n=120 ; \quad k=13, n=924$

Generalization for symmetric C with any d

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \ldots, \pm 1)$, C has mutually orthogonal rows, $d \geq 0, \quad n>1$.

Theorem. If C is symmetric, then $n=2 d+2$.
Proof. It suffices to consider the case $d=$ odd integer.
d is odd $\Rightarrow n=k(2 d+k)+1$ for some $k \in \mathbb{N}$

1. We prove $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \Rightarrow k+1 \leq 2^{r}$
2. $k \geq 2^{7} \Rightarrow k+1>2^{r} \Rightarrow$ no solution for $k \geq 2^{7}$
3. $k<2^{7}: \quad k+1 \leq 2^{r}$ is satisfied in only 2 cases: $k=7, n=120 ; \quad k=13, n=924$
4. $k=7, n=120$: no solution $k=13, n=924$: no solution

Matrices C for $n=2 d+2$

The goal of this section

We already know:
Matrix

$$
C=\left(\begin{array}{ccccc}
d & \pm 1 & \pm 1 & \cdots & \pm 1 \\
\pm 1 & d & \pm 1 & \cdots & \pm 1 \\
\pm 1 & \pm 1 & d & & \pm 1 \\
\vdots & \vdots & & \ddots & \pm 1 \\
\pm 1 & \pm 1 & \cdots & \pm 1 & d
\end{array}\right)
$$

can be circulant with mutually orthogonal rows only for $n=2 d+2$, except for the unresolved case, when d is odd and C is not symmetric.

In this section:
For any given d, we will explicitly find all such matrices C of order $n=2 d+2$.

Observation. Let $2 d \in \mathbb{N}_{0}$ and $n=2 d+2$. Then

$$
C=\left(\begin{array}{cccc}
d & -1 & \cdots & -1 \\
-1 & d & \cdots & -1 \\
\vdots & & \ddots & \vdots \\
-1 & -1 & \cdots & d
\end{array}\right) \quad \text { has orthogonal rows. }
$$

Observation. Let $2 d \in \mathbb{N}_{0}$ and $n=2 d+2$. Then

$$
C=\left(\begin{array}{cccc}
d & -1 & \cdots & -1 \\
-1 & d & \cdots & -1 \\
\vdots & & \ddots & \vdots \\
-1 & -1 & \cdots & d
\end{array}\right) \quad \text { has orthogonal rows. }
$$

Theorem. If $n=2 d+2, C$ has orthogonal rows if and only if its generator takes one of the forms below:

generator	condition on d
$(d,-1,-1, \ldots,-1)$	$2 d \in \mathbb{N}_{0}$
$(d, 1,-1,1,-1, \ldots,-1,1)$	$d \in \mathbb{N}_{0}$
$(d, 1,1,-1,-1, \ldots, 1,1,-1)$	d odd
$(d,-1,1,1,-1, \ldots,-1,1,1)$	d odd

Proof. 2 steps:

1. Find all matrices C satisfying $n=2 d+2$ and

$$
c_{j}=1 \quad \vee \quad c_{n-j}=1 \quad \text { for all } j=1, \ldots, n-1
$$

Only 3 solutions exist:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ;\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{array}\right) ; \quad\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1
\end{array}\right)
$$

Proof. 2 steps:

1. Find all matrices C satisfying $n=2 d+2$ and

$$
c_{j}=1 \quad \vee \quad c_{n-j}=1 \quad \text { for all } j=1, \ldots, n-1
$$

Only 3 solutions exist:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ;\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{array}\right) ; \quad\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1
\end{array}\right)
$$

2. Show that matrices C satisfying $n=2 d+2$ and

$$
\exists m \in\{1, \ldots, n-1\}: \quad c_{m}=c_{n-m}=-1
$$

can be constructed from the blocks found in Step 1.

Summary

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.
Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.
Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer
- d is half-integer

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer
- d is half-integer
- $2 d \notin \mathbb{N}_{0}$

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer
- d is half-integer $\}$ whenever d is not an odd integer;
- $2 d \notin \mathbb{N}_{0}$
- $n-1$ is prime;

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer
- d is half-integer $\}$ whenever d is not an odd integer;
- $2 d \notin \mathbb{N}_{0}$
- $n-1$ is prime;
- C is symmetric.

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer
- d is half-integer $\}$ whenever d is not an odd integer;
- $2 d \notin \mathbb{N}_{0}$
- $n-1$ is prime;
- C is symmetric.
- Conjecture: Relation (1) is valid for any diagonal value $d \geq 0$.

Problem: Let C be a circulant matrix of order $n>1$ with generator

$$
(d, \pm 1, \pm 1, \ldots, \pm 1), \quad d \geq 0
$$

If C has orthogonal rows, find a relation between d and n.

Results:

- We proved that

$$
\begin{equation*}
n=2 d+2 \tag{1}
\end{equation*}
$$

in each of the following cases:

- d is even integer
- d is half-integer $\}$ whenever d is not an odd integer;
- $2 d \notin \mathbb{N}_{0}$
- $n-1$ is prime;
- C is symmetric.
- Conjecture: Relation (1) is valid for any diagonal value $d \geq 0$.
- We found all matrices C satisfying (1).

Thank you for your attention!

