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generator of C
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2m e 1 0 2 -4
U 4 1 0 2
e 1 2 4 1 0
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Hadamard matrix

Hadamard matrix is a square matrix with entries +£1 and mutually
orthogonal rows.

Examples:

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

[ G T W T G Ty

Theorem

The order of any Hadamard matrix is 1, 2, or a multiple of 4.

Hadamard conjecture (before 1933)
There exists an Hadamard matrix of order 4k for every k € N.



Hadamard matrices and the determinant

Theorem (Hadamard 1893)
If all the entries of an M € C™" satisfy |mj;| < 1, then

| det(M)| < n"/?,

and equality is achieved if and only if [m;j| =1 for all i, and the
rows of M are orthogonal.

Corollary

Hadamard matrices have maximal | det(M)| among all matrices of
order n with entries m;; € {—1,1}.



Hadamard circulant matrices

(1),
111 1
1 -1 1 1
o1 11|
11 1 -1
11 -1 1
11 1 -1
a1 1 1]
1 -1 1 1

(1)
1
1
=11
-1
1
-1
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1



Hadamard circulant matrices

. (=1

111 1 1 -1 1 1

1 -1 1 1 11 -1 1
11 110 Sl )

11 1 -1 1111

11 -1 1 11 1 -1

11 1 -1 1111
a1 o1 1] Flr o1

1 -1 1 1 11 -1 1

Hadamard circulant conjecture (Ryser 1963):

Hadamard circulant matrices exist only of orders n =1 and n = 4.



Conference matrix

Conference matrix is an n x n matrix (n > 1) such that

+1 fori#j
mjj = T
0 fori=j

and its rows are mutually orthogonal.

Examples:
0 1 1 1
01 1 0 -1 1
10/’ 1 1 0 -1
1 -1 1 0



The name “conference matrix’

V. Belevitch (Electrical Communication, vol. 27, 1950):

An n-port ideal conference network exists if and only if there exists
an n x n orthogonal matrix

0 +1 +1 - =1

£1 0 1 .- 41

s—_ 1 | 41 41 o0 +1
(n—1)t/2 . .

: : o+l

1 41 - £1 0

(ideal = constructed without resistances)

... Hence the name “conference matrix”.



Circulant conference matrices
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Circulant conference matrices

cmlee (01 0 -1
xamples: 1 0) 10

Theorem (Stanton and Mullin 1976)

A circulant conference matrix, i.e.,

0 1t ' Ch2 Cn1
ch-1 0 a Cph—2
Ch—1 0
o .. a
1 Co et Cp—1 0

with
¢ e{l,—-1} Vi=1,...,n—1

and mutually orthogonal rows, exists only for n = 2.



Generalized problem

d G2 Gl
-1 d a Cn—2
C= Ch—1 d
(o) c
C1 Co Ch—1 d

with entries
d>0, ¢e{l -1} Vi=1,...,n—1
and mutually orthogonal rows.

Problem: Determine possible orders n > 1 for a given value of d.



Generalized problem

d c Ch—2 Cn-1
-1 d a Cn—2
C= Ch—1 d
(&} (4]
C1 Co Ch—1 d

with entries
d>0, ¢e{l -1} Vi=1,...,n—1
and mutually orthogonal rows.
Problem: Determine possible orders n > 1 for a given value of d.

Remark. =0 = n=2 (Stanton and Mullin)

d
, : :
d=1 % n=4 (Hadamard circulant conjecture)



Conditions on n



The problem

Let
d +1 +1 ... 41
+1 d4 41 ..o 41
c—| 1 £1 d +1 | cgon
: : -
+1 41 --- 41 d
be
» circulant,

» having mutually orthogonal rows.

Question: For a given d, what are possible sizes of C?

Convention.
We assume n > 2 and d > 0 without loss of generality.



Lemma. The order n satisfies

n=2d+2 (mod 4) and n>2d+2.



Lemma. The order n satisfies

n=2d+2 (mod 4) and n>2d+2.

Proof. Generator: g =(d,c1,¢,...,¢n-1), ¢ ==l

» if nis even: scalar product of the Oth and the 7-th row
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j=1
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Lemma. The order n satisfies
n=2d+2 (mod 4) and n>2d+2.
Proof. Generator: g =(d,c1,¢,...,¢n-1), ¢ ==l
» if nis even: scalar product of the Oth and the 7-th row

01

2ng +2 Z Cng_,_j =0
j=1

21
d=1> gy
j=1

= dEg—l (mod 2) and dgg—l

» if nis odd: using the orthogonality of the Oth and the 1st row.
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I. dis even integer
II. dis odd integer

[1l. d is half-integer: %,%,%,%,...

V. 2d is non-integer



Possible orders of C

We distinguish 4 cases:

I. dis even integer

II. dis odd integer
[II. d is half-integer: %,%,%,%,...
V. 2d is non-integer

Case IV.

Proposition. If 2d ¢ Z, then C does not exist.

Proof. We use Lemma:

n=2d+2 (mod4) ...noné&N exists for 2d ¢ Z



Case IlI.

Proposition. If d is half-integer (d € {5,3,3,1,...}), then C
exists only of order n = 2d + 2.

Proof. 4 steps:

1. Apply Lemma:

n=2d+2 (mod4) = nisodd
2. Orthogonality = C is symmetric and 3k : cx = ¢,k = —1.
3. Prove that =3j : ¢; = c,—j = 1; hence

g=(d,—1,-1,...,—1).

4. Orthogonality = —-2d+n—-2=0 = n=2d+2.



Case I.

Theorem. If d is even integer, then n = 2d + 2.

Proof. 4 steps:

1.

2.

3.

Apply Lemma: n=2d+2 (mod 4) = n=2 (mod 4).
Prove that n=2 (mod 4) = C is symmetric.
Use the symmetry of C to prove d = 5 — 1 (mod 4).

d=7—1 (mod4)and Cissymmetric = d=7-1



Case I.

Theorem. If d is even integer, then n = 2d + 2.

Proof. 4 steps:

1.

Apply Lemma: n=2d+2 (mod 4) = n=2 (mod 4).

2. Prove that n=2 (mod 4) = C is symmetric.

3. Use the symmetry of C to prove d = 5 — 1 (mod 4).

4. d=75—1 (mod 4) and C is symmetric = d=35-1
Example.

d=0: n=2-0+2=2 (Stanton and Mullin 1976)



Case Il

Proposition. If d is odd integer, then

JkeN: n=k(2d+k) +1.

Proof. (1,1,...,1)7 is an eigenvector of C, corresponding to the
eigenvalue

A=c+ca+co+--+ch
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= eigenvalues of C satisfy |\ =+vd?+n—1
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Case Il.
Proposition. If d is odd integer, then
JkeN: n=k(2d+k)+1.

Proof. (1,1,...,1)7 is an eigenvector of C, corresponding to the
eigenvalue
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Case Il.
Proposition. If d is odd integer, then
JkeN: n=k(2d+k)+1.

Proof. (1,1,...,1)7 is an eigenvector of C, corresponding to the
eigenvalue

A=c+ca+co+--+ch
Orthogonality of rows:  CCT = (d? +n—1)/

= eigenvalues of C satisfy |\ =+vd?+n—1

d+c+-+cpa| =vVd>+n-1

€L

= 3JkeN: Vd?2+n—-1=d+k
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Partial summary

Case d Possible orders n

I even integer n=2d+2

Il odd integer n=k(2d + k) +1

" half-integer n=2d+2

v 2d ¢ 7 no n € N; equivalently:
n=2d+2(¢N)

Conjecture. If d is odd, then the order n can be only n = 2d + 2.

Remark. The conjecture is consistent with the circulant Hadamard
conjecture:
d=1. n=2-142=4



Small orders
Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.
Lemma: n=2d +2 (mod 4)
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Small orders
Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.
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Small orders
Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.
Lemma: n=2d +2 (mod 4)

» nisodd = dis half-integer (Case lll) = n=2d+2
»n=2(mod4) = diseven (Casel) = n=2d+2

> nis a multiple of 4 = d is odd integer (Case Il)
= n=k(2d + k) + 1, hence

- = for k|(n—1), k<+vn-1




Small orders
Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.
Lemma: n=2d +2 (mod 4)

» nisodd = dis half-integer (Case lll) = n=2d+2
»n=2(mod4) = diseven (Casel) = n=2d+2

> nis a multiple of 4 = d is odd integer (Case Il)

= n=k(2d + k) + 1, hence

~1 ok
d="""_""" forkl(n—1), k<vn—1

e n—1lisaprime = k=1 = n=2d+2

e Jk > 1, kis a divisor of n — 1: (see next slide)



n | (k,d) for k > 1, Remark
d=n=l_k
ok 2
none n—1is a prime
8 none n—1is a prime
12 none n—1is a prime
16 (3,1) eliminated by a computer calculation
20 none n—1is a prime
24 none n—1is a prime
28 (3,3) eliminated by a computer calculation
32 none n—1is a prime
36 (5,1) eliminated by a computer calculation
40 (3,5) eliminated by a computer calculation
44 none n—1is a prime
48 none n—1is a prime

= Up to order n =50, n and d are related by n = 2d + 2.




Symmetric C



The goal of this section

We already know:

If d is even or non-integer, then

d 41 +1 .. =1
+1 d +1 .- 1

c—| 1 41 d +1 | ¢ grn
S 4l
+1 £1 .- +1 d

can be circulant with mutually orthogonal rows only for n = 2d + 2.

In this section:

We will prove the relation n = 2d + 2 for odd d as well, under
some condition.



Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order n > 4.



Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order n > 4.

Theorem (Johnsen 1964)
There is no symmetric circulant Hadamard matrix of order n > 4.

(l.e., the Hadamard circulant conjecture is true for symmetric
matrices.)

Proof. Several proofs exist:
» Johnsen 1964
» Brualdi and Newman 1965
» McKay and Wang 1987
» Craigen and Kharaghani 1993



Generalization for symmetric C with any d

Assumptions: C is circulant with generator (d, £1,+1,...,+1),
C has mutually orthogonal rows, d >0, n> 1.

Theorem. If C is symmetric, then n = 2d + 2.
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k=7,n=120; k=13,n=0924



Generalization for symmetric C with any d

Assumptions: C is circulant with generator (d, £1,+1,...,+1),
C has mutually orthogonal rows, d >0, n> 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It suffices to consider the case d = odd integer.

disodd = n=k(2d+ k)+1 for some k € N

a0

1. We prove n=p'py?-oprr = k+1<2°

2. k>2" = k+4+1>2" = no solution for k > 27

3. k<2':  k+1<2"is satisfied in only 2 cases:
k=7,n=120; k=13,n=0924

4. k=7,n=120: no solution
k =13, n = 924: no solution



Matrices C for n=2d +2



The goal of this section

We already know:

Matrix
d +1 +1 --- 41
+1 d +£1 --- =1
cC=1| £1 £1 d +1
: : S |
+1 £1 --- £1 d

can be circulant with mutually orthogonal rows only for n = 2d + 2,

except for the unresolved case, when d is odd and C is not
symmetric.

In this section:

For any given d, we will explicitly find all such matrices C of order
n=2d+2.



Observation. Let 2d € Ng and n = 2d + 2. Then
d -1 ... —1
1 d - -1
C= _ _ _ has orthogonal rows.

-1 -1 -.- d



Observation. Let 2d € Ng and n = 2d + 2. Then

d -1 .-~ -1
-1 d - -1

C= _ _ _ has orthogonal rows.
1 -1 --- d

Theorem. If n = 2d + 2, C has orthogonal rows if and only if its
generator takes one of the forms below:

’ generator ‘ condition on d ‘
(d,-1,-1,...,-1) 2d e Ny
(d,1,-1,1,-1,...,-1,1) d € Ny
(d,1,1,-1,-1,...,1,1,-1) d odd
(d,-1,1,1,-1,...,—-1,1,1) d odd




Proof. 2 steps:

1. Find all matrices C satisfying n = 2d + 2 and

=1 VvV c_j=1 forall j=1,...,n—1.

Only 3 solutions exist:

1 1 1 -1 1 -1 1
o1y, [-1 1 1 1 1 1 -1
(1 0>' 1 -1 1 1) |1 1 1
1 1 -1 1 -1 1 1



Proof. 2 steps:
1. Find all matrices C satisfying n = 2d + 2 and
=1 VvV c_j=1 forall j=1,...,n—1.

Only 3 solutions exist:

1 1 1 -1 1 -1 1 1
o1y, [-1 1 1 1 1 1 -1 1
(1 0>' 1 -1 1 1) (1 1 1 -1
1 1 -1 1 -1 1 1 1

2. Show that matrices C satisfying n = 2d + 2 and
dme{l,....,.n=1}: cm=cr-m=-1

can be constructed from the blocks found in Step 1.



Summary
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(d,+1,+1,...,+1), d>0.

If C has orthogonal rows, find a relation between d and n.
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Problem: Let C be a circulant matrix of order n > 1 with generator
(d,+1,+1,...,+1), d>0.

If C has orthogonal rows, find a relation between d and n.

Results:

» We proved that
n=2d+2 (1)

in each of the following cases:

d is even integer
d is half-integer
2d ¢ Ny

e n—1is prime;

} whenever d is not an odd integer;

e ( is symmetric.

» Conjecture: Relation (1) is valid for any diagonal value d > 0.

» We found all matrices C satisfying (1).



Thank you for your attention!



