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Introduction



Circulant matrix

C =


c0 c1 · · · cn−2 cn−1

cn−1 c0 c1 cn−2
... cn−1 c0

. . .
...

c2
. . .

. . . c1
c1 c2 · · · cn−1 c0



g = (c0, c1, . . . , cn−1) . . . generator of C

Examples:

(
0 −1
−1 0

)
,

 1 2π e

e 1 2π
2π e 1

 ,


0 2 −4 1

1 0 2 −4
−4 1 0 2

2 −4 1 0
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Hadamard matrix

Hadamard matrix is a square matrix with entries ±1 and mutually

orthogonal rows.

Examples:

(
1
)
,

(
1 1

1 −1

)
,


1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Theorem

The order of any Hadamard matrix is 1, 2, or a multiple of 4.

Hadamard conjecture (before 1933)

There exists an Hadamard matrix of order 4k for every k ∈ N.
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Theorem

The order of any Hadamard matrix is 1, 2, or a multiple of 4.

Hadamard conjecture (before 1933)

There exists an Hadamard matrix of order 4k for every k ∈ N.



Hadamard matrices and the determinant

Theorem (Hadamard 1893)

If all the entries of an M ∈ Cn,n satisfy |mij | ≤ 1, then

| det(M)| ≤ nn/2 ,

and equality is achieved if and only if |mij | = 1 for all i , j and the

rows of M are orthogonal.

Corollary

Hadamard matrices have maximal | det(M)| among all matrices of

order n with entries mij ∈ {−1, 1}.



Hadamard circulant matrices

(
1
)
,

(
−1
)

±


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 , ±


1 −1 1 1

1 1 −1 1

1 1 1 −1
−1 1 1 1

 ,

±


1 1 −1 1

1 1 1 −1
−1 1 1 1

1 −1 1 1

 , ±


1 1 1 −1
−1 1 1 1

1 −1 1 1

1 1 −1 1



Hadamard circulant conjecture (Ryser 1963):

Hadamard circulant matrices exist only of orders n = 1 and n = 4.
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Conference matrix

Conference matrix is an n × n matrix (n > 1) such that

mij =

{
±1 for i 6= j

0 for i = j

and its rows are mutually orthogonal.

Examples:

(
0 1

1 0

)
,


0 1 1 1

1 0 −1 1

1 1 0 −1
1 −1 1 0





The name �conference matrix�

V. Belevitch (Electrical Communication, vol. 27, 1950):

An n-port ideal conference network exists if and only if there exists

an n × n orthogonal matrix

S =
1

(n − 1)1/2


0 ±1 ±1 · · · ±1
±1 0 ±1 · · · ±1
±1 ±1 0 ±1
...

...
. . . ±1

±1 ±1 · · · ±1 0

 .

(ideal = constructed without resistances)

. . . Hence the name �conference matrix�.



Circulant conference matrices

Examples:

(
0 1

1 0

)
,

(
0 −1
−1 0

)

Theorem (Stanton and Mullin 1976)

A circulant conference matrix, i.e.,
0 c1 · · · cn−2 cn−1

cn−1 0 c1 cn−2
... cn−1 0

. . .
...

c2
. . .

. . . c1
c1 c2 · · · cn−1 0


with

cj ∈ {1,−1} ∀j = 1, . . . , n − 1

and mutually orthogonal rows, exists only for n = 2.
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Generalized problem

C =


d c1 · · · cn−2 cn−1

cn−1 d c1 cn−2
... cn−1 d

. . .
...

c2
. . .

. . . c1
c1 c2 · · · cn−1 d


with entries

d ≥ 0 , cj ∈ {1,−1} ∀j = 1, . . . , n − 1

and mutually orthogonal rows.

Problem: Determine possible orders n > 1 for a given value of d .

Remark. d = 0 ⇒ n = 2 (Stanton and Mullin)

d = 1 ?
⇒ n = 4 (Hadamard circulant conjecture)
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Conditions on n



The problem

Let

C =


d ±1 ±1 · · · ±1
±1 d ±1 · · · ±1
±1 ±1 d ±1
...

...
. . . ±1

±1 ±1 · · · ±1 d

 ∈ Rn,n

be

I circulant,

I having mutually orthogonal rows.

Question: For a given d , what are possible sizes of C?

Convention.

We assume n ≥ 2 and d ≥ 0 without loss of generality.



Lemma. The order n satis�es

n ≡ 2d + 2 (mod 4) and n ≥ 2d + 2 .

Proof. Generator: g = (d , c1, c2, . . . , cn−1), cj = ±1

I if n is even: scalar product of the 0th and the n
2
-th row

2dc n
2

+ 2

n
2
−1∑

j=1

cjc n
2
+j = 0

d =

∣∣∣∣∣∣
n
2
−1∑

j=1

cjc n
2
+j

∣∣∣∣∣∣
⇒ d ≡ n

2
− 1 (mod 2) and d ≤ n

2
− 1

I if n is odd: using the orthogonality of the 0th and the 1st row.
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Possible orders of C

We distinguish 4 cases:

I. d is even integer

II. d is odd integer

III. d is half-integer: 1

2
, 3
2
, 5
2
, 7
2
, . . .

IV. 2d is non-integer

Case IV.

Proposition. If 2d /∈ Z, then C does not exist.

Proof. We use Lemma:

n ≡ 2d + 2 (mod 4) . . . no n ∈ N exists for 2d /∈ Z
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Case III.

Proposition. If d is half-integer (d ∈
{
1

2
, 3
2
, 5
2
, 7
2
, . . .

}
), then C

exists only of order n = 2d + 2.

Proof. 4 steps:

1. Apply Lemma:

n ≡ 2d + 2 (mod 4) ⇒ n is odd

2. Orthogonality ⇒ C is symmetric and ∃k : ck = cn−k = −1.

3. Prove that ¬∃j : cj = cn−j = 1; hence

g = (d ,−1,−1, . . . ,−1) .

4. Orthogonality ⇒ −2d + n − 2 = 0 ⇒ n = 2d + 2.



Case I.

Theorem. If d is even integer, then n = 2d + 2.

Proof. 4 steps:

1. Apply Lemma: n ≡ 2d + 2 (mod 4) ⇒ n ≡ 2 (mod 4).

2. Prove that n ≡ 2 (mod 4) ⇒ C is symmetric.

3. Use the symmetry of C to prove d ≡ n
2
− 1 (mod 4).

4. d ≡ n
2
− 1 (mod 4) and C is symmetric ⇒ d = n

2
− 1

Example.

d = 0: n = 2 · 0+ 2 = 2 (Stanton and Mullin 1976)
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Case II.

Proposition. If d is odd integer, then

∃k ∈ N : n = k(2d + k) + 1 .

Proof. (1, 1, . . . , 1)T is an eigenvector of C , corresponding to the

eigenvalue

λ = c0 + c1 + c2 + · · ·+ cn−1

Orthogonality of rows: CCT = (d2 + n − 1)I

⇒ eigenvalues of C satisfy |λ| =
√
d2 + n − 1

|d + c1 + · · ·+ cn−1|︸ ︷︷ ︸

∈Z

=
√
d2 + n − 1

⇒ ∃k ∈ N :
√

d2 + n − 1 = d + k
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Partial summary

Case d Possible orders n

I even integer n = 2d + 2

II odd integer n = k(2d + k) + 1

III half-integer n = 2d + 2

IV 2d /∈ Z no n ∈ N; equivalently:
n = 2d + 2 (/∈ N)

Conjecture. If d is odd, then the order n can be only n = 2d + 2.

Remark. The conjecture is consistent with the circulant Hadamard

conjecture:

d = 1: n = 2 · 1+ 2 = 4
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Small orders

Observation. Every C up to order n = 50 satis�es n = 2d + 2.

Proof.

Lemma: n ≡ 2d + 2 (mod 4)

I n is odd ⇒ d is half-integer (Case III) ⇒ n = 2d + 2

I n ≡ 2 (mod 4) ⇒ d is even (Case I) ⇒ n = 2d + 2

I n is a multiple of 4 ⇒ d is odd integer (Case II)

⇒ n = k(2d + k) + 1, hence

d =
n − 1

2k
− k

2
for k |(n − 1), k ≤

√
n − 1

• n − 1 is a prime ⇒ k = 1 ⇒ n = 2d + 2

• ∃k > 1, k is a divisor of n − 1: (see next slide)



Small orders

Observation. Every C up to order n = 50 satis�es n = 2d + 2.

Proof.

Lemma: n ≡ 2d + 2 (mod 4)

I n is odd ⇒ d is half-integer (Case III) ⇒ n = 2d + 2

I n ≡ 2 (mod 4) ⇒ d is even (Case I) ⇒ n = 2d + 2

I n is a multiple of 4 ⇒ d is odd integer (Case II)

⇒ n = k(2d + k) + 1, hence

d =
n − 1

2k
− k

2
for k |(n − 1), k ≤

√
n − 1

• n − 1 is a prime ⇒ k = 1 ⇒ n = 2d + 2

• ∃k > 1, k is a divisor of n − 1: (see next slide)



Small orders

Observation. Every C up to order n = 50 satis�es n = 2d + 2.

Proof.

Lemma: n ≡ 2d + 2 (mod 4)

I n is odd ⇒ d is half-integer (Case III) ⇒ n = 2d + 2

I n ≡ 2 (mod 4) ⇒ d is even (Case I) ⇒ n = 2d + 2

I n is a multiple of 4 ⇒ d is odd integer (Case II)

⇒ n = k(2d + k) + 1, hence

d =
n − 1

2k
− k

2
for k |(n − 1), k ≤

√
n − 1

• n − 1 is a prime ⇒ k = 1 ⇒ n = 2d + 2

• ∃k > 1, k is a divisor of n − 1: (see next slide)



Small orders

Observation. Every C up to order n = 50 satis�es n = 2d + 2.

Proof.

Lemma: n ≡ 2d + 2 (mod 4)

I n is odd ⇒ d is half-integer (Case III) ⇒ n = 2d + 2

I n ≡ 2 (mod 4) ⇒ d is even (Case I) ⇒ n = 2d + 2

I n is a multiple of 4 ⇒ d is odd integer (Case II)

⇒ n = k(2d + k) + 1, hence

d =
n − 1

2k
− k

2
for k |(n − 1), k ≤

√
n − 1

• n − 1 is a prime ⇒ k = 1 ⇒ n = 2d + 2

• ∃k > 1, k is a divisor of n − 1: (see next slide)



Small orders

Observation. Every C up to order n = 50 satis�es n = 2d + 2.

Proof.

Lemma: n ≡ 2d + 2 (mod 4)

I n is odd ⇒ d is half-integer (Case III) ⇒ n = 2d + 2

I n ≡ 2 (mod 4) ⇒ d is even (Case I) ⇒ n = 2d + 2

I n is a multiple of 4 ⇒ d is odd integer (Case II)

⇒ n = k(2d + k) + 1, hence

d =
n − 1

2k
− k

2
for k |(n − 1), k ≤

√
n − 1

• n − 1 is a prime ⇒ k = 1 ⇒ n = 2d + 2

• ∃k > 1, k is a divisor of n − 1: (see next slide)



n (k , d) for k > 1, Remark

d = n−1
2k −

k
2

4 none n − 1 is a prime

8 none n − 1 is a prime

12 none n − 1 is a prime

16 (3, 1) eliminated by a computer calculation

20 none n − 1 is a prime

24 none n − 1 is a prime

28 (3, 3) eliminated by a computer calculation

32 none n − 1 is a prime

36 (5, 1) eliminated by a computer calculation

40 (3, 5) eliminated by a computer calculation

44 none n − 1 is a prime

48 none n − 1 is a prime

⇒ Up to order n = 50, n and d are related by n = 2d + 2.



Symmetric C



The goal of this section

We already know:

If d is even or non-integer, then

C =


d ±1 ±1 · · · ±1
±1 d ±1 · · · ±1
±1 ±1 d ±1
...

...
. . . ±1

±1 ±1 · · · ±1 d

 ∈ Rn,n

can be circulant with mutually orthogonal rows only for n = 2d + 2.

In this section:

We will prove the relation n = 2d + 2 for odd d as well, under

some condition.



Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order n > 4.

Theorem (Johnsen 1964)

There is no symmetric circulant Hadamard matrix of order n > 4.

(I.e., the Hadamard circulant conjecture is true for symmetric

matrices.)

Proof. Several proofs exist:

I Johnsen 1964

I Brualdi and Newman 1965

I McKay and Wang 1987

I Craigen and Kharaghani 1993
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Generalization for symmetric C with any d

Assumptions: C is circulant with generator (d ,±1,±1, . . . ,±1),
C has mutually orthogonal rows, d ≥ 0, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It su�ces to consider the case d = odd integer.

d is odd ⇒ n = k(2d + k) + 1 for some k ∈ N

1. We prove n = pα1
1
pα2
2
· · · pαr

r ⇒ k + 1 ≤ 2r .

2. k ≥ 27 ⇒ k + 1 > 2r ⇒ no solution for k ≥ 27

3. k < 27: k + 1 ≤ 2r is satis�ed in only 2 cases:

k = 7, n = 120; k = 13, n = 924

4. k = 7, n = 120: no solution

k = 13, n = 924: no solution
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Matrices C for n = 2d + 2



The goal of this section

We already know:

Matrix

C =


d ±1 ±1 · · · ±1
±1 d ±1 · · · ±1
±1 ±1 d ±1
...

...
. . . ±1

±1 ±1 · · · ±1 d


can be circulant with mutually orthogonal rows only for n = 2d + 2 ,

except for the unresolved case, when d is odd and C is not

symmetric.

In this section:

For any given d , we will explicitly �nd all such matrices C of order

n = 2d + 2.



Observation. Let 2d ∈ N0 and n = 2d + 2. Then

C =


d −1 · · · −1
−1 d · · · −1
...

. . .
...

−1 −1 · · · d

 has orthogonal rows.

Theorem. If n = 2d + 2, C has orthogonal rows if and only if its

generator takes one of the forms below:

generator condition on d

(d ,−1,−1, . . . ,−1) 2d ∈ N0

(d , 1,−1, 1,−1, . . . ,−1, 1) d ∈ N0

(d , 1, 1,−1,−1, . . . , 1, 1,−1) d odd

(d ,−1, 1, 1,−1, . . . ,−1, 1, 1) d odd



Observation. Let 2d ∈ N0 and n = 2d + 2. Then

C =


d −1 · · · −1
−1 d · · · −1
...

. . .
...

−1 −1 · · · d

 has orthogonal rows.

Theorem. If n = 2d + 2, C has orthogonal rows if and only if its

generator takes one of the forms below:
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(d ,−1,−1, . . . ,−1) 2d ∈ N0

(d , 1,−1, 1,−1, . . . ,−1, 1) d ∈ N0

(d , 1, 1,−1,−1, . . . , 1, 1,−1) d odd

(d ,−1, 1, 1,−1, . . . ,−1, 1, 1) d odd



Proof. 2 steps:

1. Find all matrices C satisfying n = 2d + 2 and

cj = 1 ∨ cn−j = 1 for all j = 1, . . . , n − 1.

Only 3 solutions exist:

(
0 1

1 0

)
;


1 1 1 −1
−1 1 1 1

1 −1 1 1

1 1 −1 1

 ;


1 −1 1 1

1 1 −1 1

1 1 1 −1
−1 1 1 1



2. Show that matrices C satisfying n = 2d + 2 and

∃m ∈ {1, . . . , n − 1} : cm = cn−m = −1

can be constructed from the blocks found in Step 1.
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Summary



Problem: Let C be a circulant matrix of order n > 1 with generator

(d ,±1,±1, . . . ,±1), d ≥ 0.

If C has orthogonal rows, �nd a relation between d and n.

Results:

I We proved that
n = 2d + 2 (1)

in each of the following cases:

• d is even integer

• d is half-integer

• 2d /∈ N0

}
whenever d is not an odd integer;

• n − 1 is prime;

• C is symmetric.

I Conjecture: Relation (1) is valid for any diagonal value d ≥ 0.

I We found all matrices C satisfying (1).
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Thank you for your attention!


