A generalization of circulant Hadamard and conference matrices

Ondřej Turek

(Joint work with D. Goyeneche)

6 March 2018

Introduction

Circulant matrix

$$C = \begin{pmatrix} c_0 & c_1 & \cdots & c_{n-2} & c_{n-1} \\ c_{n-1} & c_0 & c_1 & & c_{n-2} \\ \vdots & c_{n-1} & c_0 & \ddots & \vdots \\ c_2 & & \ddots & \ddots & c_1 \\ c_1 & c_2 & \cdots & c_{n-1} & c_0 \end{pmatrix}$$

Circulant matrix

$$C = \begin{pmatrix} c_0 & c_1 & \cdots & c_{n-2} & c_{n-1} \\ c_{n-1} & c_0 & c_1 & & c_{n-2} \\ \vdots & c_{n-1} & c_0 & \ddots & \vdots \\ c_2 & & \ddots & c_1 \\ c_1 & c_2 & \cdots & c_{n-1} & c_0 \end{pmatrix}$$

$$g = (c_0, c_1, \dots, c_{n-1})$$
 generator of C

Circulant matrix

$$C = \begin{pmatrix} c_0 & c_1 & \cdots & c_{n-2} & c_{n-1} \\ c_{n-1} & c_0 & c_1 & & c_{n-2} \\ \vdots & c_{n-1} & c_0 & \ddots & \vdots \\ c_2 & & \ddots & c_1 \\ c_1 & c_2 & \cdots & c_{n-1} & c_0 \end{pmatrix}$$

$$g = (c_0, c_1, \dots, c_{n-1})$$
 generator of C

Examples:

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2\pi & e \\ e & 1 & 2\pi \\ 2\pi & e & 1 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 2 & -4 & 1 \\ 1 & 0 & 2 & -4 \\ -4 & 1 & 0 & 2 \\ 2 & -4 & 1 & 0 \end{pmatrix}$$

Hadamard matrix

Hadamard matrix is a square matrix with entries ± 1 and mutually orthogonal rows.

Examples:

Hadamard matrix

Hadamard matrix is a square matrix with entries ± 1 and mutually orthogonal rows.

Examples:

Theorem

The order of any Hadamard matrix is 1, 2, or a multiple of 4.

Hadamard matrix

Hadamard matrix is a square matrix with entries ± 1 and mutually orthogonal rows.

Examples:

Theorem

The order of any Hadamard matrix is 1, 2, or a multiple of 4.

Hadamard conjecture (before 1933)

There exists an Hadamard matrix of order 4k for every $k \in \mathbb{N}$.

Hadamard matrices and the determinant

Theorem (Hadamard 1893) If all the entries of an $M \in \mathbb{C}^{n,n}$ satisfy $|m_{ij}| \leq 1$, then

 $|\det(M)| \leq n^{n/2}$,

and equality is achieved if and only if $|m_{ij}| = 1$ for all i, j and the rows of M are orthogonal.

Corollary

Hadamard matrices have maximal $|\det(M)|$ among all matrices of order *n* with entries $m_{ij} \in \{-1, 1\}$.

Hadamard circulant matrices

$$(1) , (-1)$$

$$\pm \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix} , \pm \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \end{pmatrix} ,$$

$$\pm \begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{pmatrix} , \qquad \pm \begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

Hadamard circulant matrices

Hadamard circulant conjecture (Ryser 1963):

Hadamard circulant matrices exist only of orders n = 1 and n = 4.

Conference matrix

Conference matrix is an $n \times n$ matrix (n > 1) such that

$$m_{ij} = egin{cases} \pm 1 & ext{for } i
eq j \ 0 & ext{for } i = j \end{cases}$$

and its rows are mutually orthogonal.

Examples:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$

The name "conference matrix"

V. Belevitch (*Electrical Communication*, vol. 27, 1950):

An n-port ideal conference network exists if and only if there exists an $n \times n$ orthogonal matrix

$$S = \frac{1}{(n-1)^{1/2}} \begin{pmatrix} 0 & \pm 1 & \pm 1 & \cdots & \pm 1 \\ \pm 1 & 0 & \pm 1 & \cdots & \pm 1 \\ \pm 1 & \pm 1 & 0 & & \pm 1 \\ \vdots & \vdots & & \ddots & \pm 1 \\ \pm 1 & \pm 1 & \cdots & \pm 1 & 0 \end{pmatrix}$$

٠

(ideal = constructed without resistances)

... Hence the name "conference matrix".

Circulant conference matrices

Examples:
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

Circulant conference matrices

Examples:
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

Theorem (Stanton and Mullin 1976) A circulant conference matrix, i.e.,

$$\begin{pmatrix} 0 & c_1 & \cdots & c_{n-2} & c_{n-1} \\ c_{n-1} & 0 & c_1 & & c_{n-2} \\ \vdots & c_{n-1} & 0 & \ddots & \vdots \\ c_2 & & \ddots & c_1 \\ c_1 & c_2 & \cdots & c_{n-1} & 0 \end{pmatrix}$$

with

$$c_j \in \{1, -1\} \qquad \forall j = 1, \dots, n-1$$

and mutually orthogonal rows, exists only for n = 2.

Generalized problem

$$C = \begin{pmatrix} d & c_1 & \cdots & c_{n-2} & c_{n-1} \\ c_{n-1} & d & c_1 & & c_{n-2} \\ \vdots & c_{n-1} & d & & \vdots \\ c_2 & & & & c_1 \\ c_1 & c_2 & \cdots & c_{n-1} & d \end{pmatrix}$$

with entries

$$d \ge 0$$
, $c_j \in \{1, -1\}$ $\forall j = 1, \dots, n-1$

and mutually orthogonal rows.

Problem: Determine possible orders n > 1 for a given value of d.

Generalized problem

$$C = \begin{pmatrix} d & c_1 & \cdots & c_{n-2} & c_{n-1} \\ c_{n-1} & d & c_1 & & c_{n-2} \\ \vdots & c_{n-1} & d & & \vdots \\ c_2 & & & & c_1 \\ c_1 & c_2 & \cdots & c_{n-1} & d \end{pmatrix}$$

with entries

$$d \ge 0$$
, $c_j \in \{1, -1\}$ $\forall j = 1, \dots, n-1$

and mutually orthogonal rows.

Problem: Determine possible orders n > 1 for a given value of d.

Remark. $d = 0 \Rightarrow n = 2$ (Stanton and Mullin) $d = 1 \stackrel{?}{\Rightarrow} n = 4$ (Hadamard circulant conjecture)

Conditions on *n*

The problem

Let

$$C = \begin{pmatrix} d & \pm 1 & \pm 1 & \cdots & \pm 1 \\ \pm 1 & d & \pm 1 & \cdots & \pm 1 \\ \pm 1 & \pm 1 & d & & \pm 1 \\ \vdots & \vdots & & \vdots & \pm 1 \\ \pm 1 & \pm 1 & \cdots & \pm 1 & d \end{pmatrix} \in \mathbb{R}^{n,n}$$

be

- circulant,
- having mutually orthogonal rows.

Question: For a given d, what are possible sizes of C?

Convention.

We assume $n \ge 2$ and $d \ge 0$ without loss of generality.

Lemma. The order *n* satisfies

$$n \equiv 2d+2 \pmod{4}$$
 and $n \ge 2d+2$.

Lemma. The order *n* satisfies

$$n \equiv 2d+2 \pmod{4}$$
 and $n \geq 2d+2$.

Proof. Generator: $g = (d, c_1, c_2, \dots, c_{n-1}), \quad c_j = \pm 1$

• if *n* is even: scalar product of the 0th and the $\frac{n}{2}$ -th row

$$2dc_{\frac{n}{2}} + 2\sum_{j=1}^{\frac{n}{2}-1} c_j c_{\frac{n}{2}+j} = 0$$

$$d = \left| \sum_{j=1}^{\frac{n}{2}-1} c_j c_{\frac{n}{2}+j} \right|$$

 \Rightarrow $d\equiv rac{n}{2}-1 \pmod{2}$ and $d\leq rac{n}{2}-1$

Lemma. The order *n* satisfies

$$n \equiv 2d + 2 \pmod{4}$$
 and $n \ge 2d + 2$.

Proof. Generator: $g = (d, c_1, c_2, \dots, c_{n-1})$, $c_j = \pm 1$

• if *n* is even: scalar product of the 0th and the $\frac{n}{2}$ -th row

$$2dc_{\frac{n}{2}} + 2\sum_{j=1}^{\frac{n}{2}-1} c_j c_{\frac{n}{2}+j} = 0$$

$$d = \left|\sum_{j=1}^{\frac{n}{2}-1} c_j c_{\frac{n}{2}+j}\right|$$

 $\Rightarrow \quad d \equiv \frac{n}{2} - 1 \pmod{2} \quad \text{and} \quad d \leq \frac{n}{2} - 1$

▶ if *n* is *odd*: using the orthogonality of the 0th and the 1st row.

Possible orders of C

We distinguish 4 cases:

- I. d is even integer
- II. *d* is odd integer
- III. *d* is half-integer: $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, ...$
- IV. 2*d* is non-integer

Possible orders of *C*

We distinguish 4 cases:

- I. d is even integer
- II. *d* is odd integer
- III. *d* is half-integer: $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, ...$
- IV. 2*d* is non-integer

Case IV.

Proposition. If $2d \notin \mathbb{Z}$, then C does not exist.

Proof. We use Lemma:

 $n \equiv 2d + 2 \pmod{4}$... no $n \in \mathbb{N}$ exists for $2d \notin \mathbb{Z}$

Proposition. If d is half-integer $(d \in \{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, ...\})$, then C exists only of order $\overline{n = 2d + 2}$.

Proof. 4 steps:

1. Apply Lemma:

$$n \equiv 2d + 2 \pmod{4} \Rightarrow n \text{ is odd}$$

2. Orthogonality \Rightarrow C is symmetric and $\exists k : c_k = c_{n-k} = -1$.

3. Prove that $\neg \exists j : c_j = c_{n-j} = 1$; hence

$$g = (d, -1, -1, \dots, -1).$$

4. Orthogonality $\Rightarrow -2d + n - 2 = 0 \Rightarrow n = 2d + 2$.

Theorem. If d is even integer, then n = 2d + 2.

Proof. 4 steps:

- 1. Apply Lemma: $n \equiv 2d + 2 \pmod{4} \Rightarrow n \equiv 2 \pmod{4}$.
- 2. Prove that $n \equiv 2 \pmod{4} \Rightarrow C$ is symmetric.
- 3. Use the symmetry of C to prove $d \equiv \frac{n}{2} 1 \pmod{4}$.
- 4. $d \equiv \frac{n}{2} 1 \pmod{4}$ and C is symmetric $\Rightarrow d = \frac{n}{2} 1$

Theorem. If d is even integer, then n = 2d + 2.

Proof. 4 steps:

- 1. Apply Lemma: $n \equiv 2d + 2 \pmod{4} \Rightarrow n \equiv 2 \pmod{4}$.
- 2. Prove that $n \equiv 2 \pmod{4} \Rightarrow C$ is symmetric.
- 3. Use the symmetry of C to prove $d \equiv \frac{n}{2} 1 \pmod{4}$.
- 4. $d \equiv \frac{n}{2} 1 \pmod{4}$ and C is symmetric $\Rightarrow d = \frac{n}{2} 1$

Example.

$$d = 0:$$
 $n = 2 \cdot 0 + 2 = 2$ (Stanton and Mullin 1976)

Proposition. If *d* is odd integer, then

 $\exists k \in \mathbb{N}: \quad n = k(2d+k) + 1.$

Proof. $(1, 1, ..., 1)^T$ is an eigenvector of C, corresponding to the eigenvalue

$$\lambda = c_0 + c_1 + c_2 + \cdots + c_{n-1}$$

Proposition. If *d* is odd integer, then

 $\exists k \in \mathbb{N}: \quad n = k(2d+k) + 1.$

Proof. $(1, 1, ..., 1)^T$ is an eigenvector of C, corresponding to the eigenvalue

$$\lambda = c_0 + c_1 + c_2 + \cdots + c_{n-1}$$

Orthogonality of rows: $CC^{T} = (d^{2} + n - 1)I$

 \Rightarrow eigenvalues of C satisfy $|\lambda|=\sqrt{d^2+n-1}$

Proposition. If *d* is odd integer, then

 $\exists k \in \mathbb{N}$: n = k(2d + k) + 1.

Proof. $(1, 1, ..., 1)^T$ is an eigenvector of C, corresponding to the eigenvalue

$$\lambda = c_0 + c_1 + c_2 + \cdots + c_{n-1}$$

Orthogonality of rows: $CC^T = (d^2 + n - 1)I$

 $\Rightarrow \quad \text{eigenvalues of } C \text{ satisfy } \quad |\lambda| = \sqrt{d^2 + n - 1}$ $\underbrace{|d + c_1 + \dots + c_{n-1}|}_{\in \mathbb{Z}} = \sqrt{d^2 + n - 1}$

Proposition. If *d* is odd integer, then

 $\exists k \in \mathbb{N}: \quad n = k(2d+k) + 1.$

Proof. $(1, 1, ..., 1)^T$ is an eigenvector of C, corresponding to the eigenvalue

$$\lambda = c_0 + c_1 + c_2 + \cdots + c_{n-1}$$

Orthogonality of rows: $CC^T = (d^2 + n - 1)I$

 \Rightarrow eigenvalues of C satisfy $|\lambda| = \sqrt{d^2 + n - 1}$

$$\underbrace{|d+c_1+\cdots+c_{n-1}|}_{\in\mathbb{Z}}=\sqrt{d^2+n-1}$$

Proposition. If *d* is odd integer, then

 $\exists k \in \mathbb{N}: \quad n = k(2d+k) + 1.$

Proof. $(1, 1, ..., 1)^T$ is an eigenvector of C, corresponding to the eigenvalue

$$\lambda = c_0 + c_1 + c_2 + \cdots + c_{n-1}$$

Orthogonality of rows: $CC^{T} = (d^{2} + n - 1)I$

 \Rightarrow eigenvalues of C satisfy $|\lambda|=\sqrt{d^2+n-1}$

$$\underbrace{|d+c_1+\cdots+c_{n-1}|}_{\in\mathbb{Z}}=\sqrt{d^2+n-1}$$

$$\Rightarrow \exists k \in \mathbb{N}: \sqrt{d^2 + n - 1} = d + k$$

Case	d	Possible orders <i>n</i>
	even integer	n=2d+2
	odd integer	n=k(2d+k)+1
	half-integer	n = 2d + 2
IV	$2d \notin \mathbb{Z}$	no $n \in \mathbb{N}$; equivalently:
		$n=2d+2 \ (\notin \mathbb{N})$

Case	d	Possible orders <i>n</i>
	even integer	n=2d+2
	odd integer	n=k(2d+k)+1
	half-integer	n = 2d + 2
IV	$2d \notin \mathbb{Z}$	no $n \in \mathbb{N}$; equivalently:
		$n=2d+2 \ (\notin \mathbb{N})$

Case	d	Possible orders <i>n</i>
	even integer	n=2d+2
11	odd integer	n = k(2d + k) + 1
	half-integer	n=2d+2
IV	$2d \notin \mathbb{Z}$	no $n \in \mathbb{N}$; equivalently:
		$n=2d+2 \ (\notin \mathbb{N})$

Conjecture. If d is odd, then the order n can be only n = 2d + 2.

Case	d	Possible orders <i>n</i>
	even integer	n=2d+2
11	odd integer	n=k(2d+k)+1
	half-integer	n = 2d + 2
IV	$2d \notin \mathbb{Z}$	no $n \in \mathbb{N}$; equivalently:
		$n=2d+2 \ (\notin \mathbb{N})$

Conjecture. If d is odd, then the order n can be only n = 2d + 2.

Remark. The conjecture is consistent with the circulant Hadamard conjecture:

$$d = 1$$
: $n = 2 \cdot 1 + 2 = 4$

Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.

Lemma: $n \equiv 2d + 2 \pmod{4}$

Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.

Lemma: $n \equiv 2d + 2 \pmod{4}$

▶ *n* is odd \Rightarrow *d* is half-integer (Case III) \Rightarrow *n* = 2*d* + 2

Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.

Lemma: $n \equiv 2d + 2 \pmod{4}$

▶ *n* is odd \Rightarrow *d* is half-integer (Case III) \Rightarrow *n* = 2*d* + 2

▶ $n \equiv 2 \pmod{4} \Rightarrow d$ is even (Case I) $\Rightarrow n = 2d + 2$

Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.

Lemma: $n \equiv 2d + 2 \pmod{4}$

▶ *n* is odd \Rightarrow *d* is half-integer (Case III) \Rightarrow *n* = 2*d* + 2

▶ $n \equiv 2 \pmod{4} \Rightarrow d$ is even (Case I) $\Rightarrow n = 2d + 2$

• *n* is a multiple of 4 \Rightarrow *d* is odd integer (Case II)

 \Rightarrow n = k(2d + k) + 1, hence

 $d = \frac{n-1}{2k} - \frac{k}{2}$ for $k | (n-1), k \le \sqrt{n-1}$

Observation. Every C up to order n = 50 satisfies n = 2d + 2.

Proof.

Lemma: $n \equiv 2d + 2 \pmod{4}$

▶ *n* is odd \Rightarrow *d* is half-integer (Case III) \Rightarrow *n* = 2*d* + 2

▶
$$n \equiv 2 \pmod{4} \Rightarrow d$$
 is even (Case I) $\Rightarrow n = 2d + 2$

• *n* is a multiple of 4 \Rightarrow *d* is odd integer (Case II)

$$\Rightarrow$$
 $n=k(2d+k)+1$, hence

$$d = rac{n-1}{2k} - rac{k}{2}$$
 for $k | (n-1), k \le \sqrt{n-1}$

• n-1 is a prime $\Rightarrow k=1 \Rightarrow n=2d+2$

• $\exists k > 1$, k is a divisor of n - 1: (see next slide)

n	(k, d) for $k > 1$,	Remark
	$d = \frac{n-1}{2k} - \frac{k}{2}$	
4	none	n-1 is a prime
8	none	n-1 is a prime
12	none	n-1 is a prime
16	(3, 1)	eliminated by a computer calculation
20	none	n-1 is a prime
24	none	n-1 is a prime
28	(3,3)	eliminated by a computer calculation
32	none	n-1 is a prime
36	(5,1)	eliminated by a computer calculation
40	(3,5)	eliminated by a computer calculation
44	none	n-1 is a prime
48	none	n-1 is a prime

 \Rightarrow Up to order n = 50, n and d are related by n = 2d + 2.

Symmetric C

The goal of this section

We already know:

If d is <u>even</u> or non-integer, then

$$C = \begin{pmatrix} d & \pm 1 & \pm 1 & \cdots & \pm 1 \\ \pm 1 & d & \pm 1 & \cdots & \pm 1 \\ \pm 1 & \pm 1 & d & & \pm 1 \\ \vdots & \vdots & & \ddots & \pm 1 \\ \pm 1 & \pm 1 & \cdots & \pm 1 & d \end{pmatrix} \in \mathbb{R}^{n,n}$$

can be circulant with mutually orthogonal rows only for n = 2d + 2.

In this section:

We will prove the relation n = 2d + 2 for odd d as well, under some condition.

Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order n > 4.

Result of Johnsen

Hadamard circulant conjecture

There is no circulant Hadamard matrix of order n > 4.

Theorem (Johnsen 1964)

There is no <u>symmetric</u> circulant Hadamard matrix of order n > 4. (*I.e.*, the Hadamard circulant conjecture is true for symmetric matrices.)

Proof. Several proofs exist:

- ► Johnsen 1964
- Brualdi and Newman 1965
- McKay and Wang 1987
- Craigen and Kharaghani 1993

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \dots, \pm 1)$, C has mutually orthogonal rows, $d \ge 0$, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \dots, \pm 1)$, C has mutually orthogonal rows, $d \ge 0$, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It suffices to consider the case d = odd integer.

 $d \text{ is odd } \Rightarrow n = k(2d + k) + 1 \text{ for some } k \in \mathbb{N}$

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \dots, \pm 1)$, C has mutually orthogonal rows, $d \ge 0$, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It suffices to consider the case d = odd integer.

 $d ext{ is odd } \Rightarrow n = k(2d + k) + 1 ext{ for some } k \in \mathbb{N}$

1. We prove
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \Rightarrow k+1 \le 2^r$$

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \dots, \pm 1)$, C has mutually orthogonal rows, $d \ge 0$, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It suffices to consider the case d = odd integer.

 $d ext{ is odd } \Rightarrow n = k(2d + k) + 1 ext{ for some } k \in \mathbb{N}$

1. We prove
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \Rightarrow k+1 \leq 2^r$$
.

2. $k \geq 2^7 \quad \Rightarrow \quad k+1 > 2^r \quad \Rightarrow \quad \text{no solution for } k \geq 2^7$

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \dots, \pm 1)$, C has mutually orthogonal rows, $d \ge 0$, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It suffices to consider the case d = odd integer.

 $d ext{ is odd } \Rightarrow n = k(2d + k) + 1 ext{ for some } k \in \mathbb{N}$

1. We prove
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \Rightarrow k+1 \leq 2^r$$
.

2. $k \geq 2^7 \quad \Rightarrow \quad k+1 > 2^r \quad \Rightarrow \quad \text{no solution for } k \geq 2^7$

3. $k < 2^7$: $k + 1 \le 2^r$ is satisfied in only 2 cases: k = 7, n = 120; k = 13, n = 924

Assumptions: C is circulant with generator $(d, \pm 1, \pm 1, \dots, \pm 1)$, C has mutually orthogonal rows, $d \ge 0$, n > 1.

Theorem. If C is symmetric, then n = 2d + 2.

Proof. It suffices to consider the case d = odd integer.

 $d ext{ is odd } \Rightarrow n = k(2d + k) + 1 ext{ for some } k \in \mathbb{N}$

1. We prove
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \Rightarrow k+1 \leq 2^r$$
.

2. $k \geq 2^7 \quad \Rightarrow \quad k+1 > 2^r \quad \Rightarrow \quad \text{no solution for } k \geq 2^7$

3.
$$k < 2^7$$
: $k + 1 \le 2^r$ is satisfied in only 2 cases:
 $k = 7, n = 120; k = 13, n = 924$

Matrices C for n = 2d + 2

The goal of this section

We already know:

Matrix

$$C = \begin{pmatrix} d & \pm 1 & \pm 1 & \cdots & \pm 1 \\ \pm 1 & d & \pm 1 & \cdots & \pm 1 \\ \pm 1 & \pm 1 & d & & \pm 1 \\ \vdots & \vdots & & \ddots & \pm 1 \\ \pm 1 & \pm 1 & \cdots & \pm 1 & d \end{pmatrix}$$

can be circulant with mutually orthogonal rows only for $\underline{n = 2d + 2}$, except for the unresolved case, when d is odd and C is not symmetric.

In this section:

For any given d, we will explicitly find all such matrices C of order n = 2d + 2.

Observation. Let $2d \in \mathbb{N}_0$ and n = 2d + 2. Then

$$C = \begin{pmatrix} d & -1 & \cdots & -1 \\ -1 & d & \cdots & -1 \\ \vdots & & \ddots & \vdots \\ -1 & -1 & \cdots & d \end{pmatrix}$$

has orthogonal rows.

Observation. Let $2d \in \mathbb{N}_0$ and n = 2d + 2. Then

$$C = \left(egin{array}{ccccc} d & -1 & \cdots & -1 \ -1 & d & \cdots & -1 \ dots & dots & dots \ -1 & -1 & \cdots & d \end{array}
ight)$$

has orthogonal rows.

Theorem. If n = 2d + 2, C has orthogonal rows if and only if its generator takes one of the forms below:

generator	condition on <i>d</i>
$(d,-1,-1,\ldots,-1)$	$2d \in \mathbb{N}_0$
$(d, 1, -1, 1, -1, \dots, -1, 1)$	$d\in\mathbb{N}_0$
$(d, 1, 1, -1, -1, \dots, 1, 1, -1)$	<i>d</i> odd
$(d, -1, 1, 1, -1, \dots, -1, 1, 1)$	<i>d</i> odd

Proof. 2 steps:

1. Find all matrices C satisfying n = 2d + 2 and

$$c_j = 1 \quad \lor \quad c_{n-j} = 1 \quad \text{for all } j = 1, \ldots, n-1.$$

Only 3 solutions exist:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix}; \quad \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \end{pmatrix}$$

Proof. 2 steps:

1. Find all matrices C satisfying n = 2d + 2 and

$$c_j = 1 \quad \lor \quad c_{n-j} = 1 \quad \text{for all } j = 1, \ldots, n-1.$$

Only 3 solutions exist:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \begin{pmatrix} 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix}; \quad \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \end{pmatrix}$$

2. Show that matrices C satisfying n = 2d + 2 and

$$\exists m \in \{1, \ldots, n-1\}: \quad c_m = c_{n-m} = -1$$

can be constructed from the blocks found in Step 1.

Summary

$$(d,\pm 1,\pm 1,\ldots,\pm 1), \quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

$$(d,\pm 1,\pm 1,\ldots,\pm 1), \quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

▶ We proved that

$$\boxed{n=2d+2} \tag{1}$$

in each of the following cases:

$$(d,\pm 1,\pm 1,\ldots,\pm 1), \quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

► We proved that

$$\boxed{n=2d+2}$$
 (1)

in each of the following cases:

• *d* is even integer

$$(d,\pm 1,\pm 1,\ldots,\pm 1), \quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

We proved that

$$\boxed{n=2d+2}$$
 (1)

in each of the following cases:

- *d* is even integer
- *d* is half-integer

$$(d,\pm 1,\pm 1,\ldots,\pm 1), \quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

We proved that

$$\boxed{n=2d+2} \tag{1}$$

in each of the following cases:

- $2d \notin \mathbb{N}_0$

d is even integer *d* is half-integer *k* whenever *d* is not an odd integer;

$$(d,\pm 1,\pm 1,\ldots,\pm 1), \quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

We proved that

$$\boxed{n=2d+2} \tag{1}$$

in each of the following cases:

- *d* is even integer *d* is half-integer
- 2*d* ∉ ℕ₀

whenever *d* is not an odd integer;

• n-1 is prime;

$$(d,\pm 1,\pm 1,\ldots,\pm 1),\quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

We proved that

$$\boxed{n=2d+2} \tag{1}$$

in each of the following cases:

- *d* is even integer *d* is half-integer
- $2d \notin \mathbb{N}_0$

whenever *d* is not an odd integer;

- n-1 is prime;
- *C* is symmetric.

$$(d,\pm 1,\pm 1,\ldots,\pm 1),\quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

▶ We proved that

$$\boxed{n=2d+2} \tag{1}$$

in each of the following cases:

- d is even integer
 d is half-integer
 2d ∉ ℕ₀
- n-1 is prime;
- *C* is symmetric.

• Conjecture: Relation (1) is valid for any diagonal value $d \ge 0$.

$$(d,\pm 1,\pm 1,\ldots,\pm 1),\quad d\geq 0.$$

If C has orthogonal rows, find a relation between d and n.

Results:

We proved that

$$\boxed{n=2d+2} \tag{1}$$

in each of the following cases:

- d is even integer
 d is half-integer
 2d ∉ ℕ₀
- n-1 is prime;
- *C* is symmetric.
- Conjecture: Relation (1) is valid for any diagonal value $d \ge 0$.
- We found all matrices C satisfying (1).

Thank you for your attention!