Bousfield's localization of groups

Sergei O. Ivanov (joint with R. Mikhailov)

Modern algebra and applications, St. Petersburg University

Modern Algebra and Applications

• **Category theory.** Localization of an object with respect to a class of morphisms.

- **Category theory.** Localization of an object with respect to a class of morphisms.
- **Homotopy theory.** Sullivan localization of simply connected spaces and Bousfield localization of non-simply connected spaces.

- **Category theory.** Localization of an object with respect to a class of morphisms.
- **Homotopy theory.** Sullivan localization of simply connected spaces and Bousfield localization of non-simply connected spaces.
- **Group theory.** *HR*-localization of groups. The second homology group of completions.

Category theory

• Let \mathcal{C} be a category and $\mathcal{W} \subseteq \mathsf{Mor}(\mathcal{C})$.

- Let \mathcal{C} be a category and $\mathcal{W} \subseteq \mathsf{Mor}(\mathcal{C})$.
- An object $L \in C$ is **local** (with respect to W) if for any morphism $w: X \to Y$ in W the induced map

$$w^*: \mathcal{C}(Y,L) \xrightarrow{\cong} \mathcal{C}(X,L)$$

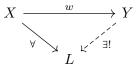
is a bijection.

- Let \mathcal{C} be a category and $\mathcal{W} \subseteq \mathsf{Mor}(\mathcal{C})$.
- An object $L \in \mathcal{C}$ is **local** (with respect to \mathcal{W}) if for any morphism $w: X \to Y$ in \mathcal{W} the induced map

$$w^*: \mathcal{C}(Y,L) \xrightarrow{\cong} \mathcal{C}(X,L)$$

is a bijection.

• In other words

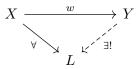


- Let \mathcal{C} be a category and $\mathcal{W} \subseteq \mathsf{Mor}(\mathcal{C})$.
- An object $L \in \mathcal{C}$ is **local** (with respect to \mathcal{W}) if for any morphism $w: X \to Y$ in \mathcal{W} the induced map

$$w^*: \mathcal{C}(Y,L) \xrightarrow{\cong} \mathcal{C}(X,L)$$

is a bijection.

• In other words



• L is local if it "deals" with morphisms from \mathcal{W} as with isomorphisms.

• A localization of an object $X \in C$ is a morphism $w: X \to L$,

where $w \in \mathcal{W}$ and L is local.

• A localization of an object $X \in C$ is a morphism

 $w: X \to L,$

where $w \in \mathcal{W}$ and L is local.

• If a localization exists, then it is unique up to isomorphism.

• A localization of an object $X \in \mathcal{C}$ is a morphism

 $w: X \to L$,

where $w \in \mathcal{W}$ and L is local.

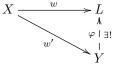
- If a localization exists, then it is unique up to isomorphism.
- Localization $X \rightarrow L$ satisfies two universal properties:

• A localization of an object $X \in \mathcal{C}$ is a morphism

 $w: X \to L,$

where $w \in \mathcal{W}$ and L is local.

- If a localization exists, then it is unique up to isomorphism.
- Localization $X \rightarrow L$ satisfies two universal properties:
 - $\textbf{0} \ \text{For any } w': X \to Y \ \text{from } \mathcal{W} \ \text{there exists a unique } \varphi: Y \to L \ \text{such that}$

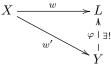


• A localization of an object $X \in C$ is a morphism

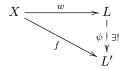
 $w: X \to L,$

where $w \in \mathcal{W}$ and L is local.

- If a localization exists, then it is unique up to isomorphism.
- Localization $X \rightarrow L$ satisfies two universal properties:
 - **1** For any $w': X \to Y$ from \mathcal{W} there exists a unique $\varphi: Y \to L$ such that



② For any $f: X \to L'$, where L' is local, there exists a unique $\psi: L \to L'$ such that



• Denote by Loc(W) the full subcategory of C consisted of W-local objects.

- Denote by Loc(W) the full subcategory of C consisted of W-local objects.
- Assumption: for any $X \in \mathcal{C}$ there exists a localization $X \to L$.

- Denote by Loc(W) the full subcategory of C consisted of W-local objects.
- Assumption: for any $X \in C$ there exists a localization $X \to L$.
- There exists functor

$$\mathcal{L}:\mathcal{C}\longrightarrow\mathsf{Loc}(\mathcal{W})$$

that that

$$X \to \mathcal{L}(X),$$

is the localization of X.

- Denote by Loc(W) the full subcategory of C consisted of W-local objects.
- Assumption: for any $X \in C$ there exists a localization $X \to L$.
- There exists functor

$$\mathcal{L}:\mathcal{C}\longrightarrow\mathsf{Loc}(\mathcal{W})$$

that that

$$X \to \mathcal{L}(X),$$

is the localization of X.

• We call this functor \mathcal{L} the reflective \mathcal{W} -localization.

- Denote by Loc(W) the full subcategory of C consisted of W-local objects.
- Assumption: for any $X \in \mathcal{C}$ there exists a localization $X \to L$.
- There exists functor

$$\mathcal{L}:\mathcal{C}\longrightarrow\mathsf{Loc}(\mathcal{W})$$

that that

$$X \to \mathcal{L}(X),$$

is the localization of X.

- We call this functor \mathcal{L} the reflective \mathcal{W} -localization.
- The functor $\mathcal{L} : \mathcal{C} \longrightarrow \mathsf{Loc}(\mathcal{W})$ is left adjoint to the embedding $U : \mathsf{Loc}(\mathcal{W}) \hookrightarrow \mathcal{C}$ and $\eta : \mathsf{Id} \to U\mathcal{L}$ is the unit.

- Denote by Loc(W) the full subcategory of C consisted of W-local objects.
- Assumption: for any $X \in \mathcal{C}$ there exists a localization $X \to L$.
- There exists functor

$$\mathcal{L}:\mathcal{C}\longrightarrow\mathsf{Loc}(\mathcal{W})$$

that that

$$X \to \mathcal{L}(X),$$

is the localization of X.

- We call this functor \mathcal{L} the reflective \mathcal{W} -localization.
- The functor $\mathcal{L} : \mathcal{C} \longrightarrow \mathsf{Loc}(\mathcal{W})$ is left adjoint to the embedding $U : \mathsf{Loc}(\mathcal{W}) \hookrightarrow \mathcal{C}$ and $\eta : \mathsf{Id} \to U\mathcal{L}$ is the unit.
- In this case Loc(W) ≃ C[W⁻¹], where C[W⁻¹] is the usual localization of a category C by W.

• Let Ab be the category of abelian groups and $\mathcal{W} \subseteq \mathsf{Mor}(\mathsf{Ab})$ consists of homomorphisms $w : A \to B$ that induce an isomorphism

$$w\otimes \mathbb{Q}:A\otimes \mathbb{Q}\xrightarrow{\cong} B\otimes \mathbb{Q},$$

• Let Ab be the category of abelian groups and $\mathcal{W} \subseteq \mathsf{Mor}(\mathsf{Ab})$ consists of homomorphisms $w : A \to B$ that induce an isomorphism

$$w \otimes \mathbb{Q} : A \otimes \mathbb{Q} \xrightarrow{\cong} B \otimes \mathbb{Q}.$$

• An abelian group is \mathcal{W} -local iff it is a \mathbb{Q} -vector space

 $\mathsf{Loc}_{\mathcal{W}}(\mathsf{Ab}) \cong \mathsf{Vect}(\mathbb{Q}).$

• Let Ab be the category of abelian groups and $\mathcal{W} \subseteq \mathsf{Mor}(\mathsf{Ab})$ consists of homomorphisms $w : A \to B$ that induce an isomorphism

$$w \otimes \mathbb{Q} : A \otimes \mathbb{Q} \xrightarrow{\cong} B \otimes \mathbb{Q}.$$

• An abelian group is \mathcal{W} -local iff it is a \mathbb{Q} -vector space

 $\mathsf{Loc}_{\mathcal{W}}(\mathsf{Ab}) \cong \mathsf{Vect}(\mathbb{Q}).$

• The map $A \to A \otimes \mathbb{Q}$ is the *W*-localization of *A*.

• Let Ab be the category of abelian groups and $\mathcal{W} \subseteq \mathsf{Mor}(\mathsf{Ab})$ consists of homomorphisms $w : A \to B$ that induce an isomorphism

$$w \otimes \mathbb{Q} : A \otimes \mathbb{Q} \xrightarrow{\cong} B \otimes \mathbb{Q}.$$

• An abelian group is \mathcal{W} -local iff it is a \mathbb{Q} -vector space

$$Loc_{\mathcal{W}}(Ab) \cong Vect(\mathbb{Q}).$$

- The map $A \to A \otimes \mathbb{Q}$ is the *W*-localization of *A*.
- The functor $\mathcal{L}(A) = A \otimes \mathbb{Q}$ is the reflective localization.

• Let Ab be the category of abelian groups and $\mathcal{W} \subseteq \mathsf{Mor}(\mathsf{Ab})$ consists of homomorphisms $w : A \to B$ that induce an isomorphism

$$w \otimes \mathbb{Q} : A \otimes \mathbb{Q} \xrightarrow{\cong} B \otimes \mathbb{Q}.$$

• An abelian group is \mathcal{W} -local iff it is a \mathbb{Q} -vector space

$$\mathsf{Loc}_{\mathcal{W}}(\mathsf{Ab}) \cong \mathsf{Vect}(\mathbb{Q}).$$

- The map $A \to A \otimes \mathbb{Q}$ is the *W*-localization of *A*.
- The functor $\mathcal{L}(A) = A \otimes \mathbb{Q}$ is the reflective localization.
- This can be generalized to the case of arbitrary commutative ring R and a submonoid (multiplicative system) $S \subseteq R$.

• Let Ab be the category of abelian groups and $\mathcal{W} \subseteq \mathsf{Mor}(\mathsf{Ab})$ consists of homomorphisms $w : A \to B$ that induce an isomorphism

$$w \otimes \mathbb{Q} : A \otimes \mathbb{Q} \xrightarrow{\cong} B \otimes \mathbb{Q}.$$

• An abelian group is $\mathcal W\text{-local}$ iff it is a $\mathbb Q\text{-vector space}$

$$\mathsf{Loc}_{\mathcal{W}}(\mathsf{Ab}) \cong \mathsf{Vect}(\mathbb{Q}).$$

- The map $A \to A \otimes \mathbb{Q}$ is the *W*-localization of *A*.
- The functor $\mathcal{L}(A) = A \otimes \mathbb{Q}$ is the reflective localization.
- This can be generalized to the case of arbitrary commutative ring R and a submonoid (multiplicative system) $S \subseteq R$.
- Localization theory from commutative algebra gives examples for this general categorial notion.

 $Example: ab: Gr \to Ab$

• Let C = Gr.

Example: $ab : Gr \rightarrow Ab$

- Let C = Gr.
- \mathcal{W} consists of homomorphisms $f: G \to H$ such that $f_{ab}: G_{ab} \to H_{ab}$ is an isomorphism.

Example: $ab : Gr \rightarrow Ab$

- Let C = Gr.
- \mathcal{W} consists of homomorphisms $f: G \to H$ such that $f_{ab}: G_{ab} \to H_{ab}$ is an isomorphism.
- Then a group is local iff it is abelian.

Example: $ab : Gr \rightarrow Ab$

• Let C = Gr.

- \mathcal{W} consists of homomorphisms $f: G \to H$ such that $f_{ab}: G_{ab} \to H_{ab}$ is an isomorphism.
- Then a group is local iff it is abelian.
- The reflective localization is the abelianization

$$\mathsf{ab}:\mathsf{Gr}\longrightarrow\mathsf{Ab},$$

$$\mathsf{ab}(G) = G/[G,G].$$

• A full subcategory $\mathcal{D} \subseteq \mathcal{C}$ is called **reflective** if the functor of embedding $\mathcal{D} \hookrightarrow \mathcal{C}$ has an adjoint functor

 $\mathcal{L}:\mathcal{C}\to\mathcal{D}$

which is called **reflection**.

• A full subcategory $\mathcal{D} \subseteq \mathcal{C}$ is called **reflective** if the functor of embedding $\mathcal{D} \hookrightarrow \mathcal{C}$ has an adjoint functor

$$\mathcal{L}:\mathcal{C}\to\mathcal{D}$$

which is called **reflection**.

• Equivalently \mathcal{D} is reflective if for any $c \in \mathcal{C}$ there exists a "universal" map

$$\varphi: c \to d$$

to an object of \mathcal{D} such that for any $\varphi': c \to d'$ there exists a unique $\alpha: d \to d'$

• Denote by $\mathcal{W}(\mathcal{L})$ the class of morphisms $w: X \to Y$ in \mathcal{C} such that $\mathcal{L}(w)$ is an isomorphism.

- Denote by $\mathcal{W}(\mathcal{L})$ the class of morphisms $w: X \to Y$ in \mathcal{C} such that $\mathcal{L}(w)$ is an isomorphism.
- For a reflective subcategory \mathcal{D} the map $X \to \mathcal{L}(X)$ is the localization of X with respect to $\mathcal{W}(\mathcal{L})$.

- Denote by $\mathcal{W}(\mathcal{L})$ the class of morphisms $w: X \to Y$ in \mathcal{C} such that $\mathcal{L}(w)$ is an isomorphism.
- For a reflective subcategory \mathcal{D} the map $X \to \mathcal{L}(X)$ is the localization of X with respect to $\mathcal{W}(\mathcal{L})$.
- For any class of morphisms $\mathcal{W} \subseteq \mathsf{Mor}(\mathcal{C})$, if the localization of any object exists, then $\mathsf{Loc}(\mathcal{W})$ is a reflective subcategory.

- Denote by $\mathcal{W}(\mathcal{L})$ the class of morphisms $w: X \to Y$ in \mathcal{C} such that $\mathcal{L}(w)$ is an isomorphism.
- For a reflective subcategory \mathcal{D} the map $X \to \mathcal{L}(X)$ is the localization of X with respect to $\mathcal{W}(\mathcal{L})$.
- For any class of morphisms $\mathcal{W} \subseteq \mathsf{Mor}(\mathcal{C})$, if the localization of any object exists, then $\mathsf{Loc}(\mathcal{W})$ is a reflective subcategory.
- The language of localizations with respect to a class of morphisms \mathcal{W} and the language of reflective subcategories are more or less equivalent.

Homotopy theory

• Let X be a simply connected space.

- Let X be a simply connected space.
- $R = \mathbb{Z}[P^{-1}]$, where P is a set of primes.

- Let X be a simply connected space.
- $R = \mathbb{Z}[P^{-1}]$, where P is a set of primes.
- $H_*(X,\mathbb{Z})$ complicated; $H_*(X,R)$ simpler.

- Let X be a simply connected space.
- $R = \mathbb{Z}[P^{-1}]$, where P is a set of primes.
- $H_*(X,\mathbb{Z})$ complicated; $H_*(X,R)$ simpler.
- We want to replace X by a "simpler" space X_R such that

 $H_*(X_R,\mathbb{Z}) = H_*(X,R).$

- Let X be a simply connected space.
- $R = \mathbb{Z}[P^{-1}]$, where P is a set of primes.
- $H_*(X,\mathbb{Z})$ complicated; $H_*(X,R)$ simpler.
- We want to replace X by a "simpler" space X_R such that

 $H_*(X_R,\mathbb{Z}) = H_*(X,R).$

• A simply connected space L is R-local if $H_*(L,\mathbb{Z})$ is an R-module.

- Let X be a simply connected space.
- $R = \mathbb{Z}[P^{-1}]$, where P is a set of primes.
- $H_*(X,\mathbb{Z})$ complicated; $H_*(X,R)$ simpler.
- We want to replace X by a "simpler" space X_R such that

$$H_*(X_R,\mathbb{Z}) = H_*(X,R).$$

- A simply connected space L is R-local if $H_*(L,\mathbb{Z})$ is an R-module.
- R-localization of X is the universal map to an R-local space

$$X \to X_R.$$

- Let X be a simply connected space.
- $R = \mathbb{Z}[P^{-1}]$, where P is a set of primes.
- $H_*(X,\mathbb{Z})$ complicated; $H_*(X,R)$ simpler.
- We want to replace X by a "simpler" space X_R such that

$$H_*(X_R,\mathbb{Z}) = H_*(X,R).$$

- A simply connected space L is R-local if $H_*(L,\mathbb{Z})$ is an R-module.
- R-localization of X is the universal map to an R-local space

$$X \to X_R.$$

•
$$\pi_*(X_R) = \pi_*(X) \otimes R$$

• A morphism in the homotopy category $w: X \to Y$ is called *R*-homological equivalence, if it induces an isomorphism

 $H_*(X,R) \cong H_*(Y,R).$

• A morphism in the homotopy category $w: X \to Y$ is called *R*-homological equivalence, if it induces an isomorphism

 $H_*(X,R) \cong H_*(Y,R).$

• Sullivan's *R*-localization is the localization with respect to the class of *R*-homological equivalences in the homotopy category of simply connected spaces.

• The theory is much more complicated for non-simply connected spaces.

- The theory is much more complicated for non-simply connected spaces.
- By definition *R*-localization

$$X \to X_R$$

- The theory is much more complicated for non-simply connected spaces.
- By definition *R*-localization

$$X \to X_R$$

of a space X is the localization with respect to R-homological equivalences.

• **Theorem** (Bousfield'75). For any space there exists the *R*-localization $X \rightarrow X_R$.

- The theory is much more complicated for non-simply connected spaces.
- By definition *R*-localization

$$X \to X_R$$

- **Theorem** (Bousfield'75). For any space there exists the R-localization $X \rightarrow X_R$.
- $H_*(X,R) \cong H_*(X_R,R)$

- The theory is much more complicated for non-simply connected spaces.
- By definition *R*-localization

$$X \to X_R$$

- **Theorem** (Bousfield'75). For any space there exists the R-localization $X \rightarrow X_R$.
- $H_*(X,R) \cong H_*(X_R,R)$
- $\pi_*(X_R) = ??$ (complicated and interesting even for $R = \mathbb{Z}$).

- The theory is much more complicated for non-simply connected spaces.
- By definition *R*-localization

$$X \to X_R$$

- **Theorem** (Bousfield'75). For any space there exists the *R*-localization $X \rightarrow X_R$.
- $H_*(X,R) \cong H_*(X_R,R)$
- $\pi_*(X_R) = ??$ (complicated and interesting even for $R = \mathbb{Z}$).
- $BGL(A)^+ = BGL(A)_{\mathbb{Z}}$ and $K_*(A) = \pi_*(BGL(A)_{\mathbb{Z}})$.

- The theory is much more complicated for non-simply connected spaces.
- By definition *R*-localization

$$X \to X_R$$

- **Theorem** (Bousfield'75). For any space there exists the *R*-localization $X \rightarrow X_R$.
- $H_*(X,R) \cong H_*(X_R,R)$
- $\pi_*(X_R) = ??$ (complicated and interesting even for $R = \mathbb{Z}$).
- $BGL(A)^+ = BGL(A)_{\mathbb{Z}}$ and $K_*(A) = \pi_*(BGL(A)_{\mathbb{Z}})$.
- $R = \mathbb{Z}[P^{-1}]$ and $R = \mathbb{Z}/p$.

•
$$\pi_1(X_R) = ?$$

• $\pi_1(X_R) = ?$

• There is a functor $L_{HR}: \mathsf{Gr} \to \mathsf{Gr}$ such that

 $\pi_1(X_R) \cong L_{HR}(\pi_1(X)).$

- $\pi_1(X_R) = ?$
- There is a functor $L_{HR}: \mathsf{Gr} \to \mathsf{Gr}$ such that

$$\pi_1(X_R) \cong L_{HR}(\pi_1(X)).$$

• So, $\pi_1(X_R)$ depends only on the group $\pi_1(X)$.

- $\pi_1(X_R) = ?$
- There is a functor $L_{HR}: \mathsf{Gr} \to \mathsf{Gr}$ such that

$$\pi_1(X_R) \cong L_{HR}(\pi_1(X)).$$

- So, $\pi_1(X_R)$ depends only on the group $\pi_1(X)$.
- We are interested in the functor

$$L_{HR}$$
 : Gr \rightarrow Gr,

which is called HR-localization of a group.

Group theory

• A homomorphism $f: G \to G'$ is called *R*-2-connected, if $H_1(G, R) \to H_1(G', R)$ is iso and $H_2(G, R) \to H_2(G', R)$ is epi.

- A homomorphism $f: G \to G'$ is called *R*-2-connected, if $H_1(G, R) \to H_1(G', R)$ is iso and $H_2(G, R) \to H_2(G', R)$ is epi.
- Let C = Gr and W_R is the class of *R*-2-connected homomorphisms.

- A homomorphism $f: G \to G'$ is called *R*-2-connected, if $H_1(G, R) \to H_1(G', R)$ is iso and $H_2(G, R) \to H_2(G', R)$ is epi.
- Let C = Gr and W_R is the class of *R*-2-connected homomorphisms.
- *HR*-localization of a group is the localization with respect to the class of *R*-2-connected homomorphisms.

• We will discuss in details $H\mathbb{Z}$ -localization of groups.

- We will discuss in details $H\mathbb{Z}\text{-localization}$ of groups.
- There are 4 different equivalent definitions of $H\mathbb{Z}$ -localization

- We will discuss in details $H\mathbb{Z}$ -localization of groups.
- There are 4 different equivalent definitions of HZ-localization
 1 Via description of the class of HZ-local groups.

- We will discuss in details $H\mathbb{Z}$ -localization of groups.
- There are 4 different equivalent definitions of $H\mathbb{Z}$ -localization
 - **1** Via description of the class of $H\mathbb{Z}$ -local groups.
 - 2 Via 2-connected homomorphisms (historically the first)

- We will discuss in details $H\mathbb{Z}$ -localization of groups.
- There are 4 different equivalent definitions of $H\mathbb{Z}$ -localization
 - **1** Via description of the class of $H\mathbb{Z}$ -local groups.
 - 2 Via 2-connected homomorphisms (historically the first)
 - **3** As the algebraic closure with respect to "Γ-systems of equations".

- We will discuss in details $H\mathbb{Z}$ -localization of groups.
- There are 4 different equivalent definitions of $H\mathbb{Z}$ -localization
 - **1** Via description of the class of $H\mathbb{Z}$ -local groups.
 - 2 Via 2-connected homomorphisms (historically the first)
 - **3** As the algebraic closure with respect to " Γ -systems of equations".
 - **4** Via explicit transfinite construction by relative central extensions.

- We will discuss in details $H\mathbb{Z}$ -localization of groups.
- There are 4 different equivalent definitions of $H\mathbb{Z}$ -localization
 - **1** Via description of the class of $H\mathbb{Z}$ -local groups.
 - **2** Via 2-connected homomorphisms (historically the first)
 - **3** As the algebraic closure with respect to " Γ -systems of equations".
 - **4** Via explicit transfinite construction by relative central extensions.
- (1)⇔ (2) proved by Bousfield'77. (2)⇔ (4) proved by Bousfield'77 but it was formulated in different terms and reformulated by -, R.Mikhailov'16. (3)⇔ (1) proved by Farjoun, Orr, Shelah'89.

• **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

 $G \to LG.$

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

$$G \rightarrow LG.$$

• Nilpotent groups are $H\mathbb{Z}$ -local.

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

$$G \rightarrow LG.$$

- Nilpotent groups are $H\mathbb{Z}$ -local.
- A finitely generated group is $H\mathbb{Z}$ -local iff it is nilpotent.

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

$$G \rightarrow LG$$
.

- Nilpotent groups are $H\mathbb{Z}$ -local.
- A finitely generated group is $H\mathbb{Z}$ -local iff it is nilpotent.
- We denote by $\gamma_n = \gamma_n(G)$ the lower central series and by γ_α the transfinite lower central series.

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

$$G \rightarrow LG$$
.

- Nilpotent groups are $H\mathbb{Z}$ -local.
- A finitely generated group is $H\mathbb{Z}$ -local iff it is nilpotent.
- We denote by $\gamma_n = \gamma_n(G)$ the lower central series and by γ_α the transfinite lower central series.
- Pronilpotent completion $\hat{G} = \lim_{n \to \infty} G/\gamma_n$ is $H\mathbb{Z}$ -local.

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

$$G \rightarrow LG$$
.

- Nilpotent groups are $H\mathbb{Z}$ -local.
- A finitely generated group is $H\mathbb{Z}$ -local iff it is nilpotent.
- We denote by $\gamma_n = \gamma_n(G)$ the lower central series and by γ_α the transfinite lower central series.
- Pronilpotent completion $\hat{G} = \lim_{n \to \infty} G/\gamma_n$ is $H\mathbb{Z}$ -local.
- Usually G → Ĝ is not HZ-localization (but is it difficult to prove it for concrete examples).

- **Theorem** (Bousfield'77). The class of HZ-local groups is the minimal nonempty class closed with respect to central extensions and small limits.
- $H\mathbb{Z}$ -localization is the universal map to an $H\mathbb{Z}$ -local group

$$G \rightarrow LG$$
.

- Nilpotent groups are $H\mathbb{Z}$ -local.
- A finitely generated group is $H\mathbb{Z}$ -local iff it is nilpotent.
- We denote by $\gamma_n = \gamma_n(G)$ the lower central series and by γ_α the transfinite lower central series.
- Pronilpotent completion $\hat{G} = \lim_{n \to \infty} G/\gamma_n$ is $H\mathbb{Z}$ -local.
- Usually $G \rightarrow \hat{G}$ is not $H\mathbb{Z}$ -localization (but is it difficult to prove it for concrete examples).
- If G is finitely generated, then

$$LG/\gamma_{\omega} = \hat{G}.$$

$$LG/\gamma_{\omega} = \hat{G}.$$

• If G is finitely generated, then

$$LG/\gamma_{\omega} = \hat{G}.$$

• Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$H_2(G,\mathbb{Z}) \to H_2(\hat{G},\mathbb{Z}) \to LG/\gamma_{\omega+1} \to \hat{G} \to 1$$

• If G is finitely generated, then

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$H_2(G,\mathbb{Z}) \to H_2(\hat{G},\mathbb{Z}) \to LG/\gamma_{\omega+1} \to \hat{G} \to 1$$

• $F = F_n$ is the free group $2 \le n < \infty$.

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$H_2(G,\mathbb{Z}) \to H_2(\hat{G},\mathbb{Z}) \to LG/\gamma_{\omega+1} \to \hat{G} \to 1$$

- $F = F_n$ is the free group $2 \le n < \infty$.
- Theorem (Bousfield'77). $H_2(\hat{F}, \mathbb{Z})$ is uncountable.

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$H_2(G,\mathbb{Z}) \to H_2(\hat{G},\mathbb{Z}) \to LG/\gamma_{\omega+1} \to \hat{G} \to 1$$

- $F = F_n$ is the free group $2 \le n < \infty$.
- Theorem (Bousfield'77). $H_2(\hat{F}, \mathbb{Z})$ is uncountable.
- Hence $LF \notin \hat{F}$ and $\gamma_{\omega}(LF) \neq \gamma_{\omega+1}(LF)$.

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$H_2(G,\mathbb{Z}) \to H_2(\hat{G},\mathbb{Z}) \to LG/\gamma_{\omega+1} \to \hat{G} \to 1$$

- $F = F_n$ is the free group $2 \le n < \infty$.
- **Theorem** (Bousfield'77). $H_2(\hat{F}, \mathbb{Z})$ is uncountable.
- Hence $LF \notin \hat{F}$ and $\gamma_{\omega}(LF) \neq \gamma_{\omega+1}(LF)$.
- **Theorem** (-, R.Mikhailov'16). $\gamma_{\omega+1}(LF) \neq \gamma_{\omega+2}(LF)$.

$$LG/\gamma_{\omega} = \hat{G}.$$

- Any $H\mathbb{Z}$ -local group is transfinitely nilpotent.
- We try to understand LG/γ_{α} for $\alpha = \omega + 1, \omega + 2, \dots$

$$H_2(G,\mathbb{Z}) \to H_2(\hat{G},\mathbb{Z}) \to LG/\gamma_{\omega+1} \to \hat{G} \to 1$$

- $F = F_n$ is the free group $2 \le n < \infty$.
- **Theorem** (Bousfield'77). $H_2(\hat{F}, \mathbb{Z})$ is uncountable.
- Hence $LF \notin \hat{F}$ and $\gamma_{\omega}(LF) \neq \gamma_{\omega+1}(LF)$.
- **Theorem** (-, R.Mikhailov'16). $\gamma_{\omega+1}(LF) \neq \gamma_{\omega+2}(LF)$.
- Conjecture. $\gamma_{\alpha}(LF) \neq \gamma_{\alpha+1}(LF)$ for $\alpha < \omega^2$.

• Pro-*p*-group is an inverse limit of finite *p*-groups.

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

• Probably, over fields things go better than over Z?

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Probably, over fields things go better than over Z?
- **Bousfield's problem**: it this true that $L_pG = \hat{G}_p$ for f.p. G?

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Probably, over fields things go better than over Z?
- **Bousfield's problem**: it this true that $L_pG = \hat{G}_p$ for f.p. G?
- **Theorem**(-,R.Mikhailov'17). $H_2(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p)$ is uncountable.

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Probably, over fields things go better than over Z?
- **Bousfield's problem**: it this true that $L_pG = \hat{G}_p$ for f.p. G?
- **Theorem**(-,R.Mikhailov'17). $H_2(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p)$ is uncountable.
- Hence $L_p F \neq \hat{F}_{\text{pro}-p}$

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Probably, over fields things go better than over Z?
- **Bousfield's problem**: it this true that $L_pG = \hat{G}_p$ for f.p. G?
- **Theorem**(-,R.Mikhailov'17). $H_2(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p)$ is uncountable.
- Hence $L_p F \neq \hat{F}_{\text{pro}-p}$
- **Theorem**(Bousfield'92). $H_i(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p) \neq 0$ for some $i \in \{2, 3\}$.

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Probably, over fields things go better than over Z?
- **Bousfield's problem**: it this true that $L_pG = \hat{G}_p$ for f.p. G?
- **Theorem**(-,R.Mikhailov'17). $H_2(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p)$ is uncountable.
- Hence $L_p F \neq \hat{F}_{\text{pro}-p}$
- **Theorem**(Bousfield'92). $H_i(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p) \neq 0$ for some $i \in \{2, 3\}$.
- Negative answer on the following conjecture.
 Conjecture (Fernandez-Alcober, Kazatchkov, Remeslennikov, Symonds): For a finitely presented pro-p group G

$$H_2^{\operatorname{disc}}(\mathcal{G},\mathbb{Z}/p)\cong H_2^{\operatorname{cont}}(\mathcal{G},\mathbb{Z}/p).$$

- Pro-*p*-group is an inverse limit of finite *p*-groups.
- If G is finitely generated,

$$L_p G / \gamma^p_\omega = \hat{G}_{\text{pro}-p}$$

- Probably, over fields things go better than over \mathbb{Z} ?
- **Bousfield's problem**: it this true that $L_pG = \hat{G}_p$ for f.p. G?
- **Theorem**(-,R.Mikhailov'17). $H_2(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p)$ is uncountable.
- Hence $L_p F \neq \hat{F}_{\text{pro}-p}$
- **Theorem**(Bousfield'92). $H_i(\hat{F}_{\text{pro}-p}, \mathbb{Z}/p) \neq 0$ for some $i \in \{2, 3\}$.
- Negative answer on the following conjecture.
 Conjecture (Fernandez-Alcober, Kazatchkov, Remeslennikov, Symonds): For a finitely presented pro-p group G

$$H_2^{\operatorname{disc}}(\mathcal{G},\mathbb{Z}/p)\cong H_2^{\operatorname{cont}}(\mathcal{G},\mathbb{Z}/p).$$

• We use results of Nikolov and Segal about profinite groups.

Malcev's completion is the extension of the functor - ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

 $L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}}=\hat{G}_{\mathbb{Q}}.$

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

• Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

- Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?
- Bousfield's problem: Is it true that $L_{\mathbb{Q}}G = \hat{G}_{\mathbb{Q}}$ for f.p. G?

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

- Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?
- Bousfield's problem: Is it true that $L_{\mathbb{Q}}G = \hat{G}_{\mathbb{Q}}$ for f.p. G?
- **Theorem**(-, R. Mikhailov'17). $H_2(\hat{F}_{\mathbb{Q}}, \mathbb{Q})$ is uncountable.

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

- Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?
- Bousfield's problem: Is it true that $L_{\mathbb{Q}}G = \hat{G}_{\mathbb{Q}}$ for f.p. G?
- **Theorem**(-, R. Mikhailov'17). $H_2(\hat{F}_{\mathbb{Q}}, \mathbb{Q})$ is uncountable.
- Hence $L_{\mathbb{Q}}F \notin \hat{F}_{\mathbb{Q}}$.

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

- Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?
- Bousfield's problem: Is it true that $L_{\mathbb{Q}}G = \hat{G}_{\mathbb{Q}}$ for f.p. G?
- **Theorem**(-, R. Mikhailov'17). $H_2(\hat{F}_{\mathbb{Q}}, \mathbb{Q})$ is uncountable.
- Hence $L_{\mathbb{Q}}F \notin \hat{F}_{\mathbb{Q}}$.
- Rational homotopy theory works not only for simply connected spaces but for Q-good spaces.

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

- Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?
- Bousfield's problem: Is it true that $L_{\mathbb{Q}}G = \hat{G}_{\mathbb{Q}}$ for f.p. G?
- **Theorem**(-, R. Mikhailov'17). $H_2(\hat{F}_{\mathbb{Q}}, \mathbb{Q})$ is uncountable.
- Hence $L_{\mathbb{Q}}F \notin \hat{F}_{\mathbb{Q}}$.
- Rational homotopy theory works not only for simply connected spaces but for Q-good spaces.
- There was a conjecture that any finite CW-complex is \mathbb{Q} -good.

- Malcev's completion is the extension of the functor ⊗ Q from the category of nilpotent groups to itself, which sends short exact sequences to short exact sequences.
- $\hat{G}_{\mathbb{Q}} = \lim_{\longleftarrow} G/\gamma_n \otimes \mathbb{Q}.$
- If G is finitely generated

$$L_{\mathbb{Q}}G/\gamma_{\omega}^{\mathbb{Q}} = \hat{G}_{\mathbb{Q}}.$$

- Probably over \mathbb{Q} things go better then over \mathbb{Z} and \mathbb{Z}/p ?
- Bousfield's problem: Is it true that $L_{\mathbb{Q}}G = \hat{G}_{\mathbb{Q}}$ for f.p. G?
- **Theorem**(-, R. Mikhailov'17). $H_2(\hat{F}_{\mathbb{Q}}, \mathbb{Q})$ is uncountable.
- Hence $L_{\mathbb{Q}}F \notin \hat{F}_{\mathbb{Q}}$.
- Rational homotopy theory works not only for simply connected spaces but for Q-good spaces.
- There was a conjecture that any finite CW-complex is \mathbb{Q} -good.
- Corollary(-, R.Mikhailov'17). $S^1 \vee S^1$ is \mathbb{Q} -bad.

R-good and R-bad spaces

Theorem (Bousfield'77+Bousfield'92+ Mikhailov and I'17) $S^1 \vee S^1$ is *R*-bad for any $R \in \{\mathbb{Z}, \mathbb{Z}/p, \mathbb{Q}\}.$

In all 3 cases it was the first known example of a finite R-bad space.

Bousfield's problem for metabelian groups

• **Theorem** (-, R.Mikhailov'14). If G is metabelian and finitely presented, then

$$L_p G = \hat{G}_{\text{pro}-p}, \qquad L_{\mathbb{Q}} G = \hat{G}_{\mathbb{Q}}.$$

Bousfield's problem for metabelian groups

• **Theorem** (-, R.Mikhailov'14). If G is metabelian and finitely presented, then

$$L_p G = \hat{G}_{\text{pro}-p}, \qquad L_{\mathbb{Q}} G = \hat{G}_{\mathbb{Q}}.$$

• For finitely generated groups this is not true.

Bousfield's problem for metabelian groups

• **Theorem** (-, R.Mikhailov'14). If G is metabelian and finitely presented, then

$$L_p G = \hat{G}_{\text{pro}-p}, \qquad L_{\mathbb{Q}} G = \hat{G}_{\mathbb{Q}}.$$

- For finitely generated groups this is not true.
- $G \coloneqq C \ltimes \mathbb{Z}[C]$, where C is the infinite cyclic group.

$$G = \langle x, y \mid [y, y^{x^i}] = 1, i \in \mathbb{Z} \rangle.$$

Then $L_pG \notin \hat{G}_{\text{pro}-p}$ and $L_{\mathbb{Q}}G \notin \hat{G}_{\mathbb{Q}}$.

• Hopf like formulas:

- Hopf like formulas:
- (Hopf's formula) If $H \triangleleft F$, then

$$H_2(F/H) = \frac{H \cap [F,F]}{[H,F]}$$

- Hopf like formulas:
- (Hopf's formula) If $H \triangleleft F$, then

$$H_2(F/H) = \frac{H \cap [F,F]}{[H,F]}$$

• If G is a group and $H \triangleleft G$, then

$$H_2(G) \longrightarrow H_2(G/H) \longrightarrow \frac{H \cap [G,G]}{[H,G]} \longrightarrow 0$$

$$H_2(G, \mathbb{Z}/p) \longrightarrow H_2(G/H, \mathbb{Z}/p) \longrightarrow \frac{H \cap [G, G]G^p}{[H, G]H^p} \longrightarrow 0$$

- Hopf like formulas:
- (Hopf's formula) If $H \triangleleft F$, then

$$H_2(F/H) = \frac{H \cap [F,F]}{[H,F]}$$

• If G is a group and
$$H \triangleleft G$$
, then

$$H_2(G) \longrightarrow H_2(G/H) \longrightarrow \frac{H \cap [G,G]}{[H,G]} \longrightarrow 0$$

$$H_2(G, \mathbb{Z}/p) \longrightarrow H_2(G/H, \mathbb{Z}/p) \longrightarrow \frac{H \cap [G, G]G^p}{[H, G]H^p} \longrightarrow 0$$

- If ${\mathcal G}$ is a profinite group and ${\mathcal H}$ is a normal closed subgroup, then

$$H_2^{\text{cont}}(\mathcal{G},\mathbb{Z}/p) \longrightarrow H_2^{\text{cont}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) \longrightarrow \frac{\mathcal{H} \cap \overline{[\mathcal{G},\mathcal{G}]\mathcal{G}^p}}{\overline{[\mathcal{H},\mathcal{G}]\mathcal{H}^p}} \longrightarrow 0$$

Theorem(Nikolov, Segal, 2007, Ann. of Math.) Let G be a finitely generated profinite group and H be a normal closed subgroup. Then [H,G] and [H,G]H^p are closed.

- Theorem(Nikolov, Segal, 2007, Ann. of Math.) Let G be a finitely generated profinite group and H be a normal closed subgroup. Then [H,G] and [H,G]H^p are closed.
- Then the following cokernels coincide

$$\begin{array}{cccc} H_{2}^{\mathsf{disc}}(\mathcal{G},\mathbb{Z}/p) & \longrightarrow & H_{2}^{\mathsf{disc}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) & \longrightarrow & Q^{\mathsf{disc}} & \longrightarrow & 0 \\ & & & & \downarrow^{\varphi_{2}} & & \downarrow^{\cong} \\ H_{2}^{\mathsf{cont}}(\mathcal{G},\mathbb{Z}/p) & \longrightarrow & H_{2}^{\mathsf{cont}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) & \longrightarrow & Q^{\mathsf{cont}} & \longrightarrow & 0 \end{array}$$

- Theorem(Nikolov, Segal, 2007, Ann. of Math.) Let G be a finitely generated profinite group and H be a normal closed subgroup. Then [H,G] and [H,G]H^p are closed.
- Then the following cokernels coincide

$$\begin{array}{ccc} H_{2}^{\mathsf{disc}}(\mathcal{G},\mathbb{Z}/p) & \longrightarrow & H_{2}^{\mathsf{disc}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) & \longrightarrow & Q^{\mathsf{disc}} & \longrightarrow & 0 \\ & & & & \downarrow^{\varphi_{2}} & & \downarrow^{\cong} \\ H_{2}^{\mathsf{cont}}(\mathcal{G},\mathbb{Z}/p) & \longrightarrow & H_{2}^{\mathsf{cont}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) & \longrightarrow & Q^{\mathsf{cont}} & \longrightarrow & 0 \end{array}$$

• If \mathcal{G} is a finitely generated pro-p group and $\mathcal{G} = \mathcal{F}/\mathcal{R}$ is its pro-p-presentation, then

$$H_2^{\mathsf{disc}}(\mathcal{F},\mathbb{Z}/p)\longrightarrow H_2^{\mathsf{disc}}(\mathcal{G},\mathbb{Z}/p)\longrightarrow H_2^{\mathsf{cont}}(\mathcal{G},\mathbb{Z}/p)\longrightarrow 0.$$

- Theorem(Nikolov, Segal, 2007, Ann. of Math.) Let G be a finitely generated profinite group and H be a normal closed subgroup. Then [H,G] and [H,G]H^p are closed.
- Then the following cokernels coincide

$$\begin{array}{ccc} H_{2}^{\mathsf{disc}}(\mathcal{G},\mathbb{Z}/p) & \longrightarrow & H_{2}^{\mathsf{disc}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) & \longrightarrow & Q^{\mathsf{disc}} & \longrightarrow & 0 \\ & & & & \downarrow^{\varphi_{2}} & & \downarrow^{\cong} \\ H_{2}^{\mathsf{cont}}(\mathcal{G},\mathbb{Z}/p) & \longrightarrow & H_{2}^{\mathsf{cont}}(\mathcal{G}/\mathcal{H},\mathbb{Z}/p) & \longrightarrow & Q^{\mathsf{cont}} & \longrightarrow & 0 \end{array}$$

• If \mathcal{G} is a finitely generated pro-p group and $\mathcal{G} = \mathcal{F}/\mathcal{R}$ is its pro-p-presentation, then

$$H_2^{\mathsf{disc}}(\mathcal{F},\mathbb{Z}/p)\longrightarrow H_2^{\mathsf{disc}}(\mathcal{G},\mathbb{Z}/p)\longrightarrow H_2^{\mathsf{cont}}(\mathcal{G},\mathbb{Z}/p)\longrightarrow 0.$$

• We need to find a group ${\mathcal G}$ such that the kernel of

$$H_2^{\operatorname{disc}}(\mathcal{G},\mathbb{Z}/p) \xrightarrow{\varphi_2} H_2^{\operatorname{cont}}(\mathcal{G},\mathbb{Z}/p)$$

is uncountable.

Sergei O. Ivanov

• The following map is well defined

$$\mathbb{Z}_p \longrightarrow \mathbb{F}_p[[x]], \qquad \alpha \mapsto (1+x)^{\alpha},$$

where $\mathbb{Z}_p = \lim_{i \to \infty} \mathbb{Z}/p^i$ is the group of *p*-adic integers.

• The following map is well defined

$$\mathbb{Z}_p \longrightarrow \mathbb{F}_p[[x]], \qquad \alpha \mapsto (1+x)^{\alpha},$$

where $\mathbb{Z}_p = \lim_{i \to \infty} \mathbb{Z}/p^i$ is the group of *p*-adic integers.

• We take the pro-*p*-completion of the double version of *p*-lamplighter group

$$\mathcal{G} = \mathbb{F}_p[[x]]^2 \rtimes \mathbb{Z}_p.$$

• The following map is well defined

$$\mathbb{Z}_p \longrightarrow \mathbb{F}_p[[x]], \qquad \alpha \mapsto (1+x)^{\alpha},$$

where $\mathbb{Z}_p = \lim_{i \to \infty} \mathbb{Z}/p^i$ is the group of *p*-adic integers.

• We take the pro-*p*-completion of the double version of *p*-lamplighter group

$$\mathcal{G} = \mathbb{F}_p[[x]]^2 \rtimes \mathbb{Z}_p.$$

• Using the spectral sequence of the extension we obtain

• The following map is well defined

$$\mathbb{Z}_p \longrightarrow \mathbb{F}_p[[x]], \qquad \alpha \mapsto (1+x)^{\alpha},$$

where $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^i$ is the group of *p*-adic integers.

• We take the pro-*p*-completion of the double version of *p*-lamplighter group

$$\mathcal{G} = \mathbb{F}_p[[x]]^2 \rtimes \mathbb{Z}_p.$$

• Using the spectral sequence of the extension we obtain

• It is enough to prove that the kernel of the map

$$\mathbb{F}_p[[x]] \otimes_{\mathbb{F}_p[\mathbb{Z}_p]} \mathbb{F}_p[[x]] \longrightarrow \mathbb{F}_p[[x]]$$

is uncountable.

Sergei O. Ivanov

• In order to proof that the kernel of

$$\mathbb{F}_p[[x]] \otimes_{\mathbb{F}_p[\mathbb{Z}_p]} \mathbb{F}_p[[x]] \longrightarrow \mathbb{F}_p[[x]]$$

is uncountable, we need the following lemma.

• In order to proof that the kernel of

$$\mathbb{F}_p[[x]] \otimes_{\mathbb{F}_p[\mathbb{Z}_p]} \mathbb{F}_p[[x]] \longrightarrow \mathbb{F}_p[[x]]$$

is uncountable, we need the following lemma.

• Lemma. Let $\mathbb{F}_p((x))$ be the field of Laurent power series and K be the subfield generated by the image of \mathbb{Z}_p . Then $[\mathbb{F}_p((x)) : K]$ is uncountable.

• In order to proof that the kernel of

$$\mathbb{F}_p[[x]] \otimes_{\mathbb{F}_p[\mathbb{Z}_p]} \mathbb{F}_p[[x]] \longrightarrow \mathbb{F}_p[[x]]$$

is uncountable, we need the following lemma.

- Lemma. Let $\mathbb{F}_p((x))$ be the field of Laurent power series and K be the subfield generated by the image of \mathbb{Z}_p . Then $[\mathbb{F}_p((x)):K]$ is uncountable.
- In order to prove this lemma we consider $\mathbb{F}_p[[x]]$ as a complete metric space and use the **<u>Baire theorem</u>** about countable unions of nowhere dense subsets.

• In order to proof that the kernel of

$$\mathbb{F}_p[[x]] \otimes_{\mathbb{F}_p[\mathbb{Z}_p]} \mathbb{F}_p[[x]] \longrightarrow \mathbb{F}_p[[x]]$$

is uncountable, we need the following lemma.

- Lemma. Let $\mathbb{F}_p((x))$ be the field of Laurent power series and K be the subfield generated by the image of \mathbb{Z}_p . Then $[\mathbb{F}_p((x)):K]$ is uncountable.
- In order to prove this lemma we consider $\mathbb{F}_p[[x]]$ as a complete metric space and use the **<u>Baire theorem</u>** about countable unions of nowhere dense subsets.
- We use the theory of profinite groups, field extensions and metric spaces.