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● Category theory. Localization of an object with respect to a
class of morphisms.

● Homotopy theory. Sullivan localization of simply connected
spaces and Bousfield localization of non-simply connected spaces.

● Group theory. HR-localization of groups. The second homology
group of completions.
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Category theory
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Localizations in categories

● Let C be a category and W ⊆Mor(C).

● An object L ∈ C is local (with respect to W) if for any morphism
w ∶X → Y in W the induced map

w∗
∶ C(Y,L)

≅
ÐÐ→ C(X,L)

is a bijection.

● In other words
X Y

L

w

∀ ∃!

● L is local if it “deals” with morphisms from W as with
isomorphisms.

Sergei O. Ivanov Bousfield’s localization 3 / 27



Localizations in categories

● Let C be a category and W ⊆Mor(C).

● An object L ∈ C is local (with respect to W) if for any morphism
w ∶X → Y in W the induced map

w∗
∶ C(Y,L)

≅
ÐÐ→ C(X,L)

is a bijection.

● In other words
X Y

L

w

∀ ∃!

● L is local if it “deals” with morphisms from W as with
isomorphisms.

Sergei O. Ivanov Bousfield’s localization 3 / 27



Localizations in categories

● Let C be a category and W ⊆Mor(C).

● An object L ∈ C is local (with respect to W) if for any morphism
w ∶X → Y in W the induced map

w∗
∶ C(Y,L)

≅
ÐÐ→ C(X,L)

is a bijection.

● In other words
X Y

L

w

∀ ∃!

● L is local if it “deals” with morphisms from W as with
isomorphisms.

Sergei O. Ivanov Bousfield’s localization 3 / 27



Localizations in categories

● Let C be a category and W ⊆Mor(C).

● An object L ∈ C is local (with respect to W) if for any morphism
w ∶X → Y in W the induced map

w∗
∶ C(Y,L)

≅
ÐÐ→ C(X,L)

is a bijection.

● In other words
X Y

L

w

∀ ∃!

● L is local if it “deals” with morphisms from W as with
isomorphisms.

Sergei O. Ivanov Bousfield’s localization 3 / 27



Localizations in categories
● A localization of an object X ∈ C is a morphism

w ∶X → L,
where w ∈W and L is local.

● If a localization exists, then it is unique up to isomorphism.
● Localization X → L satisfies two universal properties:

1 For any w′ ∶X → Y from W there exists a unique ϕ ∶ Y → L such
that

X
w //

w′

&&

L

Y

ϕ ∃!

OO

2 For any f ∶X → L′, where L′ is local, there exists a unique
ψ ∶ L→ L′ such that

X
w //

f
&&

L

ψ ∃!
��
L′
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Localizations in categories

● Denote by Loc(W) the full subcategory of C consisted of W-local
objects.

● Assumption: for any X ∈ C there exists a localization X → L.

● There exists functor
L ∶ C Ð→ Loc(W)

that that
X → L(X),

is the localization of X.

● We call this functor L the reflective W-localization.

● The functor L ∶ C Ð→ Loc(W) is left adjoint to the embedding
U ∶ Loc(W)↪ C and η ∶ Id→ UL is the unit.

● In this case Loc(W) ≃ C[W−1], where C[W−1] is the usual
localization of a category C by W.
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Example: − ⊗Q ∶ Ab→ Vect(Q)

● Let Ab be the category of abelian groups and W ⊆Mor(Ab)
consists of homomorphisms w ∶ A→ B that induce an isomorphism

w ⊗Q ∶ A⊗Q ≅
ÐÐ→ B ⊗Q.

● An abelian group is W-local iff it is a Q-vector space

LocW(Ab) ≅ Vect(Q).

● The map A→ A⊗Q is the W-localization of A.

● The functor L(A) = A⊗Q is the reflective localization.

● This can be generalized to the case of arbitrary commutative ring
R and a submonoid (multiplicative system) S ⊆ R.

● Localization theory from commutative algebra gives examples for
this general categorial notion.
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Example: ab ∶ Gr → Ab

● Let C = Gr.

● W consists of homomorphisms f ∶ G→H such that fab ∶ Gab →Hab

is an isomorphism.

● Then a group is local iff it is abelian.

● The reflective localization is the abelianization

ab ∶ Gr Ð→ Ab,

ab(G) = G/[G,G].
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Reflective subcategories

● A full subcategory D ⊆ C is called reflective if the functor of
embedding D ↪ C has an adjoint functor

L ∶ C → D

which is called reflection.

● Equivalently D is reflective if for any c ∈ C there exists a
“universal” map

ϕ ∶ c→ d

to an object of D such that for any ϕ′ ∶ c→ d′ there exists a unique
α ∶ d→ d′

c d

d′

ϕ

ϕ′
α
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Reflective subcategories

● Denote by W(L) the class of morphisms w ∶X → Y in C such that
L(w) is an isomorphism.

● For a reflective subcategory D the map X → L(X) is the
localization of X with respect to W(L).

● For any class of morphisms W ⊆Mor(C), if the localization of any
object exists, then Loc(W) is a reflective subcategory.

● The language of localizations with respect to a class of morphisms
W and the language of reflective subcategories are more or less
equivalent.
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Homotopy theory
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Sullivan’s R-localization of simply connected spaces

● Let X be a simply connected space.

● R = Z[P−1], where P is a set of primes.

● H∗(X,Z) – complicated; H∗(X,R) – simpler.

● We want to replace X by a “simpler” space XR such that

H∗(XR,Z) =H∗(X,R).

● A simply connected space L is R-local if H∗(L,Z) is an R-module.

● R-localization of X is the universal map to an R-local space

X →XR.

● π∗(XR) = π∗(X)⊗R
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Sullivan’s R-localization of simply connected spaces

● A morphism in the homotopy category w ∶X → Y is called
R-homological equivalence, if it induces an isomorphism

H∗(X,R) ≅H∗(Y,R).

● Sullivan’s R-localization is the localization with respect to the
class of R-homological equivalences in the homotopy category of
simply connected spaces.
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Bousfield’s R-localization of non-simply connected
spaces

● The theory is much more complicated for non-simply connected
spaces.

● By definition R-localization

X →XR

of a space X is the localization with respect to R-homological
equivalences.

● Theorem (Bousfield’75). For any space there exists the
R-localization X →XR.

● H∗(X,R) ≅H∗(XR,R)

● π∗(XR) =?? (complicated and interesting even for R = Z).

● BGL(A)+ = BGL(A)Z and K∗(A) = π∗(BGL(A)Z).

● R = Z[P−1] and R = Z/p.
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Bousfield’s R-localization of non-simply connected
spaces

● π1(XR) =?

● There is a functor LHR ∶ Gr → Gr such that

π1(XR) ≅ LHR(π1(X)).

● So, π1(XR) depends only on the group π1(X).

● We are interested in the functor

LHR ∶ Gr → Gr,

which is called HR-localization of a group.
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Group theory
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Bousfield’s HR-localization of groups

● A homomorphism f ∶ G→ G′ is called R-2-connected, if
H1(G,R)→H1(G

′,R) is iso and H2(G,R)→H2(G
′,R) is epi.

● Let C = Gr and WR is the class of R-2-connected homomorphisms.

● HR-localization of a group is the localization with respect to the
class of R-2-connected homomorphisms.
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Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.
2 Via 2-connected homomorphisms (historically the first)
3 As the algebraic closure with respect to “Γ-systems of equations”.
4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.
2 Via 2-connected homomorphisms (historically the first)
3 As the algebraic closure with respect to “Γ-systems of equations”.
4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.

2 Via 2-connected homomorphisms (historically the first)
3 As the algebraic closure with respect to “Γ-systems of equations”.
4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.
2 Via 2-connected homomorphisms (historically the first)

3 As the algebraic closure with respect to “Γ-systems of equations”.
4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.
2 Via 2-connected homomorphisms (historically the first)
3 As the algebraic closure with respect to “Γ-systems of equations”.

4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.
2 Via 2-connected homomorphisms (historically the first)
3 As the algebraic closure with respect to “Γ-systems of equations”.
4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HR-localization of groups

● We will discuss in details HZ-localization of groups.

● There are 4 different equivalent definitions of HZ-localization

1 Via description of the class of HZ-local groups.
2 Via 2-connected homomorphisms (historically the first)
3 As the algebraic closure with respect to “Γ-systems of equations”.
4 Via explicit transfinite construction by relative central extensions.

● (1)⇔ (2) proved by Bousfield’77. (2)⇔ (4) proved by Bousfield’77
but it was formulated in different terms and reformulated by -,
R.Mikhailov’16. (3)⇔ (1) proved by Farjoun, Orr, Shelah’89.

Sergei O. Ivanov Bousfield’s localization 17 / 27



Bousfield’s HZ-localization of groups
● Theorem (Bousfield’77).The class of HZ-local groups is the
minimal nonempty class closed with respect to central extensions
and small limits.

● HZ-localization is the universal map to an HZ-local group

G→ LG.

● Nilpotent groups are HZ-local.

● A finitely generated group is HZ-local iff it is nilpotent.

● We denote by γn = γn(G) the lower central series and by γα the
transfinite lower central series.

● Pronilpotent completion Ĝ = lim
←Ð

G/γn is HZ-local.

● Usually G→ Ĝ is not HZ-localization
(but is it difficult to prove it for concrete examples).

● If G is finitely generated, then

LG/γω = Ĝ.
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Sergei O. Ivanov Bousfield’s localization 18 / 27



Bousfield’s HZ-localization of groups
● Theorem (Bousfield’77).The class of HZ-local groups is the
minimal nonempty class closed with respect to central extensions
and small limits.

● HZ-localization is the universal map to an HZ-local group

G→ LG.

● Nilpotent groups are HZ-local.

● A finitely generated group is HZ-local iff it is nilpotent.

● We denote by γn = γn(G) the lower central series and by γα the
transfinite lower central series.

● Pronilpotent completion Ĝ = lim
←Ð

G/γn is HZ-local.
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Bousfield’s HZ-localization of groups

● If G is finitely generated, then

LG/γω = Ĝ.

● Any HZ-local group is transfinitely nilpotent.

● We try to understand LG/γα for α = ω + 1, ω + 2, . . . .

●

H2(G,Z)→H2(Ĝ,Z)→ LG/γω+1 → Ĝ→ 1

● F = Fn is the free group 2 ≤ n <∞.

● Theorem (Bousfield’77). H2(F̂ ,Z) is uncountable.

● Hence LF /≅ F̂ and γω(LF ) ≠ γω+1(LF ).

● Theorem (-, R.Mikhailov’16). γω+1(LF ) ≠ γω+2(LF ).

● Conjecture. γα(LF ) ≠ γα+1(LF ) for α < ω2.
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● Any HZ-local group is transfinitely nilpotent.

● We try to understand LG/γα for α = ω + 1, ω + 2, . . . .

●
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H2(G,Z)→H2(Ĝ,Z)→ LG/γω+1 → Ĝ→ 1
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Bousfield’s HZ/p-localization and profinite groups
● Pro-p-group is an inverse limit of finite p-groups.

● If G is finitely generated,

LpG/γpω = Ĝpro−p

● Probably, over fields things go better than over Z?

● Bousfield’s problem: it this true that LpG = Ĝp for f.p. G?

● Theorem(-,R.Mikhailov’17). H2(F̂pro−p,Z/p) is uncountable.

● Hence LpF ≠ F̂pro−p
● Theorem(Bousfield’92). Hi(F̂pro−p,Z/p) ≠ 0 for some i ∈ {2,3}.

● Negative answer on the following conjecture.
Conjecture (Fernandez-Alcober, Kazatchkov, Remeslennikov,
Symonds): For a finitely presented pro-p group G

Hdisc
2 (G,Z/p) ≅Hcont

2 (G,Z/p).

● We use results of Nikolov and Segal about profinite groups.
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● Probably, over fields things go better than over Z?

● Bousfield’s problem: it this true that LpG = Ĝp for f.p. G?

● Theorem(-,R.Mikhailov’17). H2(F̂pro−p,Z/p) is uncountable.

● Hence LpF ≠ F̂pro−p
● Theorem(Bousfield’92). Hi(F̂pro−p,Z/p) ≠ 0 for some i ∈ {2,3}.

● Negative answer on the following conjecture.
Conjecture (Fernandez-Alcober, Kazatchkov, Remeslennikov,
Symonds): For a finitely presented pro-p group G

Hdisc
2 (G,Z/p) ≅Hcont

2 (G,Z/p).

● We use results of Nikolov and Segal about profinite groups.

Sergei O. Ivanov Bousfield’s localization 20 / 27



Bousfield’s HZ/p-localization and profinite groups
● Pro-p-group is an inverse limit of finite p-groups.

● If G is finitely generated,

LpG/γpω = Ĝpro−p
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● Theorem(-,R.Mikhailov’17). H2(F̂pro−p,Z/p) is uncountable.

● Hence LpF ≠ F̂pro−p
● Theorem(Bousfield’92). Hi(F̂pro−p,Z/p) ≠ 0 for some i ∈ {2,3}.

● Negative answer on the following conjecture.
Conjecture (Fernandez-Alcober, Kazatchkov, Remeslennikov,
Symonds): For a finitely presented pro-p group G

Hdisc
2 (G,Z/p) ≅Hcont

2 (G,Z/p).

● We use results of Nikolov and Segal about profinite groups.

Sergei O. Ivanov Bousfield’s localization 20 / 27



Bousfield’s HZ/p-localization and profinite groups
● Pro-p-group is an inverse limit of finite p-groups.

● If G is finitely generated,

LpG/γpω = Ĝpro−p
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Bousfield’s HQ-localization and rational homotopy
theory

● Malcev’s completion is the extension of the functor − ⊗Q from the
category of nilpotent groups to itself, which sends short exact
sequences to short exact sequences.

● ĜQ = lim
←Ð

G/γn ⊗Q.
● If G is finitely generated

LQG/γQω = ĜQ.

● Probably over Q things go better then over Z and Z/p ?
● Bousfield’s problem: Is it true that LQG = ĜQ for f.p. G?
● Theorem(-, R. Mikhailov’17). H2(F̂Q,Q) is uncountable.
● Hence LQF /≅ F̂Q.
● Rational homotopy theory works not only for simply connected

spaces but for Q-good spaces.
● There was a conjecture that any finite CW -complex is Q-good.
● Corollary(-, R.Mikhailov’17). S1 ∨ S1 is Q-bad.
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● ĜQ = lim
←Ð

G/γn ⊗Q.
● If G is finitely generated

LQG/γQω = ĜQ.
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● ĜQ = lim
←Ð

G/γn ⊗Q.
● If G is finitely generated

LQG/γQω = ĜQ.
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● Theorem(-, R. Mikhailov’17). H2(F̂Q,Q) is uncountable.
● Hence LQF /≅ F̂Q.
● Rational homotopy theory works not only for simply connected

spaces but for Q-good spaces.
● There was a conjecture that any finite CW -complex is Q-good.
● Corollary(-, R.Mikhailov’17). S1 ∨ S1 is Q-bad.

Sergei O. Ivanov Bousfield’s localization 21 / 27



R-good and R-bad spaces

Theorem (Bousfield’77+Bousfield’92+ Mikhailov and I’17)

S1 ∨ S1 is R-bad for any R ∈ {Z,Z/p,Q}.

In all 3 cases it was the first known example of a finite R-bad space.
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Bousfield’s problem for metabelian groups

● Theorem (-, R.Mikhailov’14). If G is metabelian and finitely
presented, then

LpG = Ĝpro−p, LQG = ĜQ.

● For finitely generated groups this is not true.

● G ∶= C ⋉Z[C], where C is the infinite cyclic group.

G = ⟨x, y ∣ [y, yx
i

] = 1, i ∈ Z⟩.

Then LpG /≅ Ĝpro−p and LQG /≅ ĜQ.
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Then LpG /≅ Ĝpro−p and LQG /≅ ĜQ.
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Sketch of the proof for R = Z/p.
● Hopf like formulas:

● (Hopf’s formula) If H ◁ F, then

H2(F /H) =
H ∩ [F,F ]

[H,F ]

● If G is a group and H ◁G, then

H2(G)Ð→H2(G/H)Ð→
H ∩ [G,G]

[H,G]
Ð→ 0

H2(G,Z/p)Ð→H2(G/H,Z/p)Ð→
H ∩ [G,G]Gp

[H,G]Hp
Ð→ 0

● If G is a profinite group and H is a normal closed subgroup, then

Hcont
2 (G,Z/p)Ð→Hcont

2 (G/H,Z/p)Ð→
H ∩ [G,G]Gp

[H,G]Hp
Ð→ 0
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Sketch of the proof for R = Z/p = Fp.
● Theorem(Nikolov, Segal, 2007, Ann. of Math.) Let G be a

finitely generated profinite group and H be a normal closed
subgroup. Then [H,G] and [H,G]Hp are closed.

● Then the following cokernels coincide

Hdisc
2 (G,Z/p) Hdisc

2 (G/H,Z/p) Qdisc 0

Hcont
2 (G,Z/p) Hcont

2 (G/H,Z/p) Qcont 0

ϕ2 ϕ2 ≅

● If G is a finitely generated pro-p group and G = F/R is its
pro-p-presentation, then

Hdisc
2 (F ,Z/p)Ð→Hdisc

2 (G,Z/p)Ð→Hcont
2 (G,Z/p)Ð→ 0.

● We need to find a group G such that the kernel of

Hdisc
2 (G,Z/p)

ϕ2
Ð→Hcont

2 (G,Z/p)

is uncountable.
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Sketch of the proof for R = Z/p = Fp.
● The following map is well defined

Zp Ð→ Fp[[x]], α ↦ (1 + x)α,

where Zp = lim
←Ð

Z/pi is the group of p-adic integers.

● We take the pro-p-completion of the double version of
p-lamplighter group

G = Fp[[x]]2 ⋊Zp.
● Using the spectral sequence of the extension we obtain

Fp[[x]]⊗Fp[Zp] Fp[[x]] Fp[[x]]

Hdisc
2 (G,Z/p) Hcont

2 (G,Z/p)

● It is enough to prove that the kernel of the map

Fp[[x]]⊗Fp[Zp] Fp[[x]]Ð→ Fp[[x]]

is uncountable.
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● Using the spectral sequence of the extension we obtain

Fp[[x]]⊗Fp[Zp] Fp[[x]] Fp[[x]]

Hdisc
2 (G,Z/p) Hcont

2 (G,Z/p)

● It is enough to prove that the kernel of the map

Fp[[x]]⊗Fp[Zp] Fp[[x]]Ð→ Fp[[x]]

is uncountable.

Sergei O. Ivanov Bousfield’s localization 26 / 27



Sketch of the proof for R = Z/p = Fp.
● The following map is well defined

Zp Ð→ Fp[[x]], α ↦ (1 + x)α,

where Zp = lim
←Ð

Z/pi is the group of p-adic integers.
● We take the pro-p-completion of the double version of
p-lamplighter group

G = Fp[[x]]2 ⋊Zp.
● Using the spectral sequence of the extension we obtain

Fp[[x]]⊗Fp[Zp] Fp[[x]] Fp[[x]]

Hdisc
2 (G,Z/p) Hcont

2 (G,Z/p)

● It is enough to prove that the kernel of the map

Fp[[x]]⊗Fp[Zp] Fp[[x]]Ð→ Fp[[x]]

is uncountable.

Sergei O. Ivanov Bousfield’s localization 26 / 27



Sketch of the proof for R = Z/p = Fp.
● The following map is well defined

Zp Ð→ Fp[[x]], α ↦ (1 + x)α,

where Zp = lim
←Ð

Z/pi is the group of p-adic integers.
● We take the pro-p-completion of the double version of
p-lamplighter group

G = Fp[[x]]2 ⋊Zp.
● Using the spectral sequence of the extension we obtain

Fp[[x]]⊗Fp[Zp] Fp[[x]] Fp[[x]]

Hdisc
2 (G,Z/p) Hcont

2 (G,Z/p)

● It is enough to prove that the kernel of the map

Fp[[x]]⊗Fp[Zp] Fp[[x]]Ð→ Fp[[x]]

is uncountable.
Sergei O. Ivanov Bousfield’s localization 26 / 27



Sketch of the proof for R = Z/p.

● In order to proof that the kernel of

Fp[[x]]⊗Fp[Zp] Fp[[x]]Ð→ Fp[[x]]

is uncountable, we need the following lemma.

● Lemma. Let Fp((x)) be the field of Laurent power series and K
be the subfield generated by the image of Zp. Then [Fp((x)) ∶K] is
uncountable.

● In order to prove this lemma we consider Fp[[x]] as a complete
metric space and use the Baire theorem about countable unions
of nowhere dense subsets.

● We use the theory of profinite groups, field extensions and metric
spaces.
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