About some generalizations of a theorem of Moens

Ivan Kaygorodov

Universidade Federal do ABC, Santo Andre, Brazil

∃ ► < ∃ ►

Unless otherwise stated, all algebras are considered to be finite-dimensional over a field ${\mathbb F}$ of characteristic 0.

2 / 28

Unless otherwise stated, all algebras are considered to be finite-dimensional over a field ${\mathbb F}$ of characteristic 0.

Lie algebras

An algebra L is called *Lie* if it satisfies the following identities:

$$[x, y] = -[y, x], \ [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.$$

Unless otherwise stated, all algebras are considered to be finite-dimensional over a field ${\mathbb F}$ of characteristic 0.

Lie algebras

An algebra L is called Lie if it satisfies the following identities:

$$[x,y] = -[y,x], \ [[x,y],z] + [[y,z],x] + [[z,x],y] = 0.$$

Derivations

 $d \in \operatorname{End}_{\mathbb{F}}(A)$ is a *derivation* of A, if

$$d(xy) = d(x)y + xd(y); \ x, y \in A.$$

Unless otherwise stated, all algebras are considered to be finite-dimensional over a field ${\mathbb F}$ of characteristic 0.

Lie algebras

An algebra L is called Lie if it satisfies the following identities:

$$[x, y] = -[y, x], \ [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.$$

Derivations

 $d \in \operatorname{End}_{\mathbb{F}}(A)$ is a *derivation* of A, if

 $d(xy) = d(x)y + xd(y); \ x, y \in A.$

The space of all derivations of an algebra A gives the structure of a Lie algebra under new multiplication $[D_1, D_2] = D_1D_2 - D_2D_1$.

Main Question

What information about the structure of an algebra is contained in its Lie algebra of derivations?

Main Question

What information about the structure of an algebra is contained in its Lie algebra of derivations?

Nilpotency

An algebra A is called *nilpotent* if there exists $n \in \mathbb{N}$ such that $A^n = 0$, where

$$A^{1} = A, A^{2} = AA, \dots, A^{i} = A^{i-1}A^{1} + A^{i-2}A^{2} + \dots + A^{2}A^{i-2} + A^{1}A^{i-1}.$$

A finite dimensional Lie algebra over a field \mathbb{F} of characteristic 0 is nilpotent if it admits an invertible derivation.

· · · · · · · · ·

A finite dimensional Lie algebra over a field \mathbb{F} of characteristic 0 is nilpotent if it admits an invertible derivation.

What about the converse statement?

A finite dimensional Lie algebra over a field \mathbb{F} of characteristic 0 is nilpotent if it admits an invertible derivation.

What about the converse statement?

1957, Dixmier, Lister – an example of nilpotent Lie algebra possessing only nilpotent derivations (characteristically nilpotent Lie algebra).

A finite dimensional Lie algebra over a field \mathbb{F} of characteristic 0 is nilpotent if it admits an invertible derivation.

What about the converse statement?

1957, Dixmier, Lister – an example of nilpotent Lie algebra possessing only nilpotent derivations (characteristically nilpotent Lie algebra).

What about generalizations?

Prederivations (Muller, 1989)

 $d \in \operatorname{End}_{\mathbb{F}}(A)$ is a *prederivation* of A, if

 $d((xy)z) = (d(x)y)z + (xd(y))z + (xy)d(z); x, y, z \in A.$

Prederivations of Lie algebra ${\mathfrak g}$ are derivations of the Lie triple system induced by ${\mathfrak g}.$

Prederivations (Muller, 1989)

 $d \in \operatorname{End}_{\mathbb{F}}(A)$ is a *prederivation* of A, if

 $d((xy)z) = (d(x)y)z + (xd(y))z + (xy)d(z); x, y, z \in A.$

Prederivations of Lie algebra ${\mathfrak g}$ are derivations of the Lie triple system induced by ${\mathfrak g}.$

Theorem (Muller, 1989)

Any prederivation of a semisimple finite-dimensional Lie algebra over a field of characteristic 0 is a derivation.

Theorem (Bajo, 1997)

A Lie algebra is nilpotent if it admits an invertible prederivation.

æ

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Bajo, 1997)

A Lie algebra is nilpotent if it admits an invertible prederivation.

What about the converse statement?

Theorem (Bajo, 1997)

A Lie algebra is nilpotent if it admits an invertible prederivation.

What about the converse statement?

Bajo, 1997, Burde, 1999 — examples of nilpotent Lie algebras possessing only nilpotent prederivations.

Leibniz-derivations (Moens, 2012)

A linear map $d \in \operatorname{End}_{\mathbb{F}}(A)$ is a *Leibniz-derivation of order n* of A, if

$$d(x_1(x_2(x_3...(x_{n-1}x_n)...)) = \sum_{i=1}^n (x_1(x_2(...d(x_i)...(x_{n-1}x_n)...)).$$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

1) Are the radicals invariant under Leibniz-derivations?

2) Do well-studied classes of algebras (e.g. semisimple algebras) admit nontrivial Leibniz-derivations?

3) How possessing an invertible Leibniz-derivation relates with nilpotency?

Theorem (Moens, 2013)

Let \mathfrak{g} be a Lie algebra, Rad be the solvable radical of \mathfrak{g} , d a Leibniz-derivation of \mathfrak{g} . Then $d(\text{Rad}) \subseteq \text{Rad}$.

- - E > - E >

Theorem (Moens, 2013)

Let \mathfrak{g} be a Lie algebra, Rad be the solvable radical of \mathfrak{g} , d a Leibniz-derivation of \mathfrak{g} . Then $d(\text{Rad}) \subseteq \text{Rad}$.

Theorem (Moens, 2013)

Any Leibniz-derivation of semisimple Lie algebra is a derivation.

Theorem (Moens, 2013)

Let \mathfrak{g} be a Lie algebra, Rad be the solvable radical of \mathfrak{g} , d a Leibniz-derivation of \mathfrak{g} . Then $d(\text{Rad}) \subseteq \text{Rad}$.

Theorem (Moens, 2013)

Any Leibniz-derivation of semisimple Lie algebra is a derivation.

Theorem (Moens, 2013)

A Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation.

Leibniz algebras

An algebra L is called *right Leibniz* if it satisfies the following identity:

$$[[x, y], z] = [x, [y, z]] + [[x, z], y].$$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Leibniz algebras

An algebra L is called *right Leibniz* if it satisfies the following identity:

$$[[x, y], z] = [x, [y, z]] + [[x, z], y].$$

Example (Fialowski, Khudoyberdiev, Omirov, 2013)

An example of a right Leibniz algebra admitting an invertible Leibniz derivation, but not nilpotent.

Let f be an arrangement of brackets on product of n elements. A linear map $d \in \operatorname{End}_{\mathbb{F}}(A)$ is a f-Leibniz-derivation of order n of A, if

$$d((x_1, x_2, \ldots, x_n)_f) = \sum_{i=1}^n (x_1, x_2, \ldots, d(x_i), \ldots, x_n)_f.$$

If $(x_1, x_2, \ldots, x_n)_f = ((\ldots (x_1x_2)x_3 \ldots)x_n)$, then *d* is called a *left Leibniz derivation*.

If $(x_1, x_2, \ldots, x_n)_f = (x_1(x_2(x_3 \ldots (x_{n-1}x_n) \ldots)))$, then *d* is called a *right Leibniz derivation*.

If d is a f-Leibniz derivation for all f, then d is called a *Leibniz derivation*.

Theorem (Fialowski, Khudoyberdiev, Omirov, 2013)

Solvable and nilpotent radicals of a right Leibniz algebra are invariant under its left Leibniz-derivations.

Theorem (Fialowski, Khudoyberdiev, Omirov, 2013)

A right Leibniz algebra is nilpotent if and only if it admits an invertible left Leibniz-derivation.

Alternative algebras

An algebra A is called *alternative*, if it satisfies the following identities:

$$(xy)y = xy^2, \ x(xy) = x^2y$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Alternative algebras

An algebra A is called *alternative*, if it satisfies the following identities:

$$(xy)y = xy^2, \ x(xy) = x^2y$$

Theorem (Kaygorodov, Popov, 2014)

The radical (solvable, nilpotent, \dots) of an alternative algebra is invariant under its left Leibniz-derivations.

Theorem (Kaygorodov, Popov, 2014)

An alternative algebra is nilpotent if and only if it admits an invertible left Leibniz-derivation.

< □ > < □ > < □ > < □ > < □ > < □ >

Jordan algebras

An algebra J is called *Jordan* if it satisfies the following identities:

$$xy = yx, (x^2y)x = x^2(yx).$$

Jordan algebras

An algebra J is called Jordan if it satisfies the following identities:

$$xy = yx, (x^2y)x = x^2(yx).$$

(-1,1)-algebras

An algebra A is called a (-1, 1)-algebra if it satisfies the following identities:

$$(yx)x = yx^2$$
, $(x, y, z) + (z, x, y) + (y, z, x) = 0$.

Malcev algebras

An algebra M is called *Malcev* if it satisfies the following identities:

$$[x,y] = -[y,x], J(x,y,[x,z]) = [J(x,y,z),x],$$

where

$$J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]$$

is the jacobian of elements x, y, z.

Let \mathfrak{M} be a variety of Jordan, (-1,1) or Malcev algebras.

æ

イロト イ団ト イヨト イヨト

Let ${\mathfrak M}$ be a variety of Jordan, (-1,1) or Malcev algebras.

Theorem (Kaygorodov & Popov)

Let $A \in \mathfrak{M}$, Rad be its (solvable, nilpotent) radical, d be a left Leibniz-derivation of A. Then $d(\text{Rad}) \subseteq \text{Rad}$.

Let \mathfrak{M} be a variety of Jordan, (-1,1) or Malcev algebras.

Theorem (Kaygorodov & Popov)

Let $A \in \mathfrak{M}$, Rad be its (solvable, nilpotent) radical, d be a left Leibniz-derivation of A. Then $d(\text{Rad}) \subseteq \text{Rad}$.

Theorem (Kaygorodov & Popov)

Any left Leibniz-derivation of a semisimple algebra $A \in \mathfrak{M}$ is a derivation.

Let \mathfrak{M} be a variety of Jordan, (-1,1) or Malcev algebras.

Theorem (Kaygorodov & Popov)

Let $A \in \mathfrak{M}$, Rad be its (solvable, nilpotent) radical, d be a left Leibniz-derivation of A. Then $d(\text{Rad}) \subseteq \text{Rad}$.

Theorem (Kaygorodov & Popov)

Any left Leibniz-derivation of a semisimple algebra $A \in \mathfrak{M}$ is a derivation.

Theorem (Kaygorodov & Popov)

An algebra $A \in \mathfrak{M}$ is nilpotent if and only if it admits an invertible left Leibniz-derivation.

Noncommutative Jordan algebras

An algebra A is called a *noncommutative Jordan algebra*, if in it the following operator identities hold:

$$[R_x, L_y] = [L_x, R_y],$$

$$[R_{x \circ y}, L_z] + [R_{y \circ z}, L_x] + [R_{z \circ x}, L_y] = 0.$$

A is noncommutative Jordan algebra if and only if it is flexible (satisfies the identity (x, y, x) = 0) and $A^{(+)}$ is a Jordan algebra.

Malcev-admissible algebras

An algebra A is called Malcev-admissible if $A^{(-)}$ is a Malcev algebra.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Malcev-admissible algebras

An algebra A is called Malcev-admissible if $A^{(-)}$ is a Malcev algebra.

Corollary

A noncommutative Jordan Malcev-admissible algebra is nilpotent if and only if it admits an invertible Leibniz-derivation.

· · · · · · · · ·

Mutations

Let (A, \cdot) be an algebra over the field F, $\lambda \in \mathbb{F}$. Then $(A, \cdot_{\lambda}), x \cdot_{\lambda} y = \lambda x \cdot y + (1 - \lambda)y \cdot x$ is called a λ -mutation of A and denoted by $A^{(\lambda)}$.

Quasiassociative and quasialternative algebras

The algebra A is said to be *quasiassociative* (*quasialternative*), if the algebra $A^{(\lambda)}$ is associative (alternative).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mutations

Let (A, \cdot) be an algebra over the field F, $\lambda \in \mathbb{F}$. Then $(A, \cdot_{\lambda}), x \cdot_{\lambda} y = \lambda x \cdot y + (1 - \lambda)y \cdot x$ is called a λ -mutation of A and denoted by $A^{(\lambda)}$.

Quasiassociative and quasialternative algebras

The algebra A is said to be *quasiassociative* (*quasialternative*), if the algebra $A^{(\lambda)}$ is associative (alternative).

Corollary

A quasiassociative (quasialternative) algebra A is nilpotent if and only if it admits an invertible Leibniz-derivation.

・ロト ・聞ト ・ヨト ・ヨト

Zinbiel algebras

An algebra A is called a Zinbiel algebra, if in it the following identity hold:

$$x(yz)=(xy+yx)z.$$

· · · · · · · · ·

Zinbiel algebras

An algebra A is called a Zinbiel algebra, if in it the following identity hold:

$$x(yz)=(xy+yx)z.$$

Dzhumadildaev (2005) proved that every finite-dimensional Zinbiel algebra over a field of characteristic 0 is nilpotent. Now, the Theorem of Moens is true for Zinbiel algebras.

Example (Dorofeev, 1970)

$$A = \operatorname{span}(a, b, c, d, e),$$

$$b = -ba = ae = -ea = db = -bd = -c,$$

$$ac = d, bc = e.$$

æ

イロト イポト イヨト イヨト

Example (Dorofeev, 1970)

$$A = \operatorname{span}(a, b, c, d, e),$$

$$b = -ba = ae = -ea = db = -bd = -c,$$

$$ac = d, bc = e.$$

Algebra A possesses an invertible derivation, but is not nilpotent!

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Right alternative algebras

An algebra A is called *right alternative*, if it satisfies the following identity:

$$(xy)y = xy^2$$

Right alternative algebras

An algebra A is called *right alternative*, if it satisfies the following identity:

$$(xy)y = xy^2$$

Right nilpotency

An algebra A is called *right nilpotent* if there exists $n \in \mathbb{N}$ such that

 $(\ldots(x_1x_2)\ldots)x_n)=0, \ x_i\in A.$

Theorem

A right alternative algebra is right nilpotent if it admits an invertible Leibniz-derivation.

- 4 B b - 4 B b

The case of prime characteristic

For any algebra A over a field of characteristic p the identity operator id_A is a Leibniz-derivation of order (p + 1):

$$(x_1,\ldots,x_{p+1})_q = \sum_{i=1}^{p+1} (x_1,\ldots,x_{p+1})_q$$

for any arrangement of brackets q.

The case of prime characteristic

For any algebra A over a field of characteristic p the identity operator id_A is a Leibniz-derivation of order (p + 1):

$$(x_1,\ldots,x_{p+1})_q = \sum_{i=1}^{p+1} (x_1,\ldots,x_{p+1})_q$$

for any arrangement of brackets q.

There are simple Lie algebras of prime characteristic with invertible derivations (Kuznetsov, Benkart, Kostrikin, 1995).

Restricted Lie algebra is a Lie algebra over a field of characteristic p with an additional operation (p-exponentiation).

- 4 B b - 4 B b

Restricted Lie algebra is a Lie algebra over a field of characteristic p with an additional operation (p-exponentiation).

Theorem (Jacobson, 1955)

A restricted Lie algebra is nilpotent if it admits an invertible derivation.

Restricted Lie algebra is a Lie algebra over a field of characteristic p with an additional operation (p-exponentiation).

Theorem (Jacobson, 1955)

A restricted Lie algebra is nilpotent if it admits an invertible derivation.

A Moens' theorem for restricted Lie algebras?

The case of infinite dimension

Let $A = \mathbb{F}[x_1, \ldots, x_k]$ be a free [associative, alternative, Lie, Malcev, Jordan, etc] algebra. We define a derivation d as $d(x_i) = x_i$. Then d is an invertible derivation of A, but A is not nilpotent.

An *n*-ary anticommutative algebra is called Filippov (*n*-Lie) algebra if it satisfies the *n*-ary Jacobi identity:

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n] = \sum [x_1,\ldots,[x_i,y_2,\ldots,y_n],\ldots,x_n]$$

An *n*-ary anticommutative algebra is called Filippov (*n*-Lie) algebra if it satisfies the *n*-ary Jacobi identity:

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n] = \sum [x_1,\ldots,[x_i,y_2,\ldots,y_n],\ldots,x_n].$$

An example: a simple *n*-Lie algebra D_{n+1} of dimension n+1 with the product

$$[e_1,\ldots,\hat{e}_i,\ldots,e_{n+1}]=(-1)^{n+i-1}e_i$$

- - E > - E >

An *n*-ary anticommutative algebra is called Filippov (*n*-Lie) algebra if it satisfies the *n*-ary Jacobi identity:

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n] = \sum [x_1,\ldots,[x_i,y_2,\ldots,y_n],\ldots,x_n].$$

An example: a simple *n*-Lie algebra D_{n+1} of dimension n+1 with the product

$$[e_1,\ldots,\hat{e_i},\ldots,e_{n+1}]=(-1)^{n+i-1}e_i.$$

For any n > 2 the algebra D_{n+1} has an invertible derivation.

An *n*-ary anticommutative algebra is called Filippov (*n*-Lie) algebra if it satisfies the *n*-ary Jacobi identity:

$$[[x_1,\ldots,x_n],y_2,\ldots,y_n] = \sum [x_1,\ldots,[x_i,y_2,\ldots,y_n],\ldots,x_n].$$

An example: a simple *n*-Lie algebra D_{n+1} of dimension n+1 with the product

$$[e_1,\ldots,\hat{e_i},\ldots,e_{n+1}]=(-1)^{n+i-1}e_i.$$

For any n > 2 the algebra D_{n+1} has an invertible derivation. A simple 8-dimensional ternary Malcev algebra (Pozhidaev) also admits an invertible derivation. Thank you for your attention!

3

イロト イ団ト イヨト イヨト