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”The general struggle for existence of
animate beings is not a struggle for raw
materials – these, for organisms, are air,

water and soil, all abundantly available – nor
for energy which exists in plenty in any body

in the form of heat, but a struggle for
[negative] entropy, which becomes available

through the transition of energy from the hot
sun to the cold earth.” L. Boltzmann, The
second law of thermodynamics (Theoretical

physics and philosophical problems).
Springer-Verlag New York, LLC.



”Let me say first, that if I had been catering
for them [physicists] alone I should have let

the discussion turn on free energy instead. It
is the more familiar notion in this context.

But this highly technical term seemed
linguistically too near to energy for making

the average reader alive to the contrast
between the two things.” Erwin Schrödinger,

What is Life?, 1944



Entropy in Thermodynamics
See [1].



Is entropy a measure of disorder?

Figure: Where is more order?



Is entropy a measure of disorder?

Figure: Grave of Ludwig Boltzmann [Wikipedia].

S = k logW, (1)

k - the Boltzmann constant,
W - number of microstates realizing giving (observed)
macrostate.



Is entropy a measure of reduction?

Classical description involves position and momenta of
NA ≈ 1023 particles.

Thermodynamics reduces the number of parameters
(dimension of space of states) to a few p (pressure), V
(volume), etc.

How to describe evolution of the system with such coarse level
of description?
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The first law of thermodynamics

There is internal energy U as a parameter of the system.

The state space is described by pi and vi and equations of
states, e.g., pivi = niRTi, that is U and vi after using all
relations.

There exists a work 1-form W =
∑

i pi(U, vi)dvi.

There exists a heat 1-form Q =
∑

iQi(U, vi).

The First Law of Thermodynamics

The difference Q−W is exact:

dU = Q−W. (2)

This express the conservation of energy.
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Types of processes

Process in Thermodynamics

A process is a change of sate x→ y.

A quasi-static process is represented as a path in a state space.

A non-quasi-static process cannot be represented as a path in
a state space.

An adiabatic quasi-static process Q(γ̇) = 0.

An adiabatic non-quasi-static process Q and W has no sense
since there is no path in a state space. U(x)−U(y) has sense.
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Types of processes

(1) - heating at constant volume W (γ̇) = 0, dU = Q,

(2) - quasi-static adiabatic process Q(γ̇) = 0, dU = −W ,

(3) - stirring at constant volume, adiabatic but not
quasi-static (no curve in a state space).



The Second Law of Thermodynamics

The Second Law of Thermodynamics (Caratheodory)

In every neighbourhood of every state x there are states y that are
not accessible from x via quasi-static adiabatic paths (along
which Q = 0).

...as a corollary we get:

Existence of entropy

The adiabatic distribution Q = 0 is integrable, that is,

Q

T
= dS, (3)

where T is an integrating factor called the absolute temperature.

What is more: The function S is globally defined! (Not only
locally integrable.)
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The Second Law of Thermodynamics

State space is foliated by constant-entropy (adiabatic) leaves
(integral manifolds of distribution Q = 0).

Heating/cooling in constant volume paths are orthogonal
dU = Q, W = 0 to the adiabatic leaves.

There is a straight way to introduce contact geometry.



The Second Law of Thermodynamics

Theorem

If state y results from x by an adiabatic (quasi-static or not)
process, then S(y) ≥ S(x).

This takes us closer to the more fundamental meaning of entropy...
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Entropy as an ordering relation
See [2].



The stage

Thermodynamic system

Thermodynamic system is described by a points (equilibrium
states) X,Y, Z, . . . in a state space Γ.

Additional assumptions

Thermodynamic system also fulfils:

Composition: (X,Y ) ∈ Γ1 × Γ2,

Scaling: R+ × Γ→ Γ, that is λΓ = Γ(λ), X → λX.
(extensive properties like volume, mass are scaled)
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Adiabatic accessibility

Adiabatic accessibility

Y is adiabatically accessible from X, ( X ≺ Y ) when there is an
adiabatic process that transforms X into Y .

X ≺≺ Y if X ≺ Y and not Y ≺ X,

X ∼ Y if X ≺ Y and Y ≺ X.

Adiabatic process (Planck) [2]

A state Y is adiabatically accessible from a state X, in symbols
X ≺ Y , if it is possible to change the state from X to Y by
means of an interaction with some device consisting of some
auxiliary system and a weight, in such a way that the auxiliary
system returns to its initial state at the end of the process whereas
the weight may have risen or fallen.
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Comparability

Comparability

≺ is a total order, that is for any two states X ≺ Y or Y ≺ X.

It is not usually true when chemical reactions appears.

It is assumed to holds, which we call Comparison
Hypothesis.
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Properties of ordering

Monotonicity: X ∼ X
Transitivity: X ≺ Y and Y ≺ Z then X ≺ Z
Consistency: X ≺ X ′ and Y ≺ Y ′ implies (X,Y ) ≺ (X ′, Y ′)

Scaling invariance: λ > 0 and X ≺ Y implies λX ≺ λY
Splitting recombination: X ∼ (λX, (1− λ)X)

Stability: if (X, εZ) ≺ (Y, εZ ′) then X ≺ Y for ε→ 0+.

The ordering is a ’pullback’ of ordering from the ordering of the
real numbers...
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Entropy

Entropy

S : Γ→ R is called entropy if it fulfils

Monotonicity: X ≺ Y ⇔ S(X) ≤ S(Y )

Additivity: S(X,Y ) = S(X) + S(Y )

Extensibility: S(λX) = λS(X)

...as a conclusion:

If X ∼ Y then S(X) = S(Y ).

If X ≺≺ Y then S(X) < S(Y ).

...for adiabatic processes.
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Entropy

Theorem 4 [2]

The relation ≺ defines uniquely entropy S up to multiplicative and
additive constant.

Lets reformulate it as pre-ordered sets...
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Entropy in category theory
See [3].



Poset

Poset (as a category)

Poset (pre-ordered set) (P,≺) is a set P with total order relation
≺ with arrow x→ y when x ≺ y.
If there is a group acting on poset then relating structure we call
G-poset.

Mappings that preserve structure are monotone mappings. More
strictly:

Order-preserving mappings

Let C = (C,4) and D = (D,v) are two posets then the mapping
(functor) F : C → D is

monotone if for any x, y ∈ C, if x 4 y, then Fx v Fy;

order-embedding if for all x, y ∈ C, x 4 y ⇔ Fx v Fy;

order-isomorphism iff F is surjective order-embedding;
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Galois’ connection

Galois’ connection [4]

Suppose that C = (C,4) and D = (D,v) are two posets, and let
F : C → D and G : D → C be a pair of functors such that for all
c ∈ C, d ∈ D,

Fc v d ⇔ c 4 Gd. (4)

Then F and G form a Galois connection between C and D. When
this holds, we write F a G, and F is said to be the left adjoint of
G, and G is the right adjoint of F .

In other words, the Galois connection is ’a minimal posets mapping
that respects their order structure’.
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3 two posets → Galios (Landauer’s) connection between them.
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Ladnauer’s functors

Entropy system

The entropy system is the object of G-Pos category, which objects
are G = (Γ,4), with preserving ordering group (R+, ·, 1) action,
where the (partial or) total order is given by the entropy function
S : Γ→ R.

Galois connection in terms of entropy

In terms of the entropy the condition

Fc v d ⇔ c 4 Gd (5)

is given as
S2(Fc) ≤ S2(d)⇔ S1(c) ≤ S1(Gd). (6)

We name the functors F and G the Landauer’s functors.
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Processes

Adiabatic reversible/irreversible processes

An entropy system map, that is a poset map f : Γ→ Γ is
reversible at p ∈ Γ, if p = f(p), that is S(p) = S(f(p)), i.e. f at p
preserves entropy. Otherwise f is irreversible at p.

Note:

This is definition for ANY poset which is induced from
’entropy’ structure.

It should work for any system, not necessary thermodynamic
one.



Main Theorem

Main Theorem

For two entropy systems G1 = (Γ1,4) and G2 = (Γ2,v), and
functors F : G1 → G2 and G : G2 → G1, we have following
possibilities for Landauer-Galois’ connections

1

Possibilities
Γ2

reversible
Γ2

irreversible

Γ1 reversible YES YES

Γ1 irreversible NO YES

for which F a G,

2 transpose above table for G a F ,

3

Possibilities
Γ2

reversible
Γ2

irreversible

Γ1 reversible YES NO

Γ1 irreversible NO YES

for which F,G are

order-embeddings; If the functors are surjective, then they are
order-isomorphisms.



Applications
See [3].



Toy example

Two systems: Γ1 = (R>0, S) and Γ2 = (N>0, S) with
S(x) = x.

Consider F : Γ1 → Γ2 defined as F (z) = d z3e and
G : Γ2 → Γ1 given by G(z) = 3z.

We have obviously F a G, i.e.⌈x
3

⌉
≤ y ⇔ x ≤ 3y. (7)

Take f : Γ1 → Γ1 given by a simple shift f(z) = z + 0.2.
Irreversibility of f at x = 1: S(x) = 1. Then x̄ = f(x) = 1.2
and S(f(x)) = 1.2,
Reversibility of image map: y = F (x) = 1 with S(y) = 1,
and ȳ = F (x̄) = Ff(x̄) = 1 with S(ȳ) = 1
If we take f(x) = x then reversible (trivial) process in Γ1 is
mapped to reversible process in Γ2.
No irreversible process in Γ2 can be realized by a reversible
process in Γ1.

We restored F a G case from The Main Theorem.
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We restored F a G case from The Main Theorem.
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Landuauer’s explanation of Maxwell’s Demon

The heat (Landauer’s heat) expelled is greater or equal to the work
done during expansion:

W = kBT

∫ V

V/2

dV

V
= kBT ln 2. (8)



DNA computing



Evolution

(P,⊆) - population with p ⊆ q if the animal species p is also
the animal species q in the sense of specificity on the Tree of
life;

(G,≤) describes gene polls and the ordering has the following
meaning: a ≤ b when the gene pool b can be generated by the
gene pool a.

i : P → G sends each population to the gene pool that
defines it.

cl : G→ P sends each gene pool to the set of animals that
can be obtained by recombination of the given gene pool.

i a cl
Reversing the process, we can define entropy of genes and
populations. We can even define Landauer’s heat of evolution.

For more interesting examples, see [5].
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It is an attempt to categorify entropy and relations between
different entropy systems.

Galois connection relates models (of theory) with their
implementations.

Entropy helps to describe a system without full data/variables
- this ’propagates along’ Galois connection.
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