Non-Weyl Quantum and Microwave Graphs

Jirí Lipovský
University of Hradec Králové, Faculty of Science jiri.lipovsky@uhk.cz
joint work with E.B. Davies, P. Exner, M. Ławniczak, L. Sirko

Ostrava, May 15th, 2019

Univerzita Hradec Králové
Přírodovědeckā fakulta

Description of the Model

- configuration space is a graph Γ described by the set of vertices \mathcal{V} and the set of internal edges \mathcal{L} and halflines \mathcal{L}_{∞}
- corresponding Hilbert space

$$
\mathcal{H}=\bigoplus_{(j, n) \in I_{\mathcal{L}}} L^{2}\left(\left[0, l_{j n}\right]\right) \oplus \bigoplus_{j \in I_{\mathcal{C}}} L^{2}([0, \infty))
$$

- elements of Hilbert space

$$
\psi=\left(f_{j n}: \mathcal{L}_{j n} \in \mathcal{L}, f_{j \infty}: \mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}\right)^{T}
$$

Coupling Conditions

- second order differential operator $H=-\mathrm{d}^{2} / \mathrm{d} x^{2}+V(x)-$ corresponds to the Hamiltonian of a quantum particle (using $\hbar=1, m=1 / 2$)
- domain of the Hamiltonian: functions in corresponding Sobolev space $f_{j n} \in W^{2,2}\left(\left[0, \iota_{j n}\right]\right), f_{j \infty} \in W^{2,2}([0, \infty))$, which fulfil the coupling conditions at the vertices
- for each vertex \mathcal{X}_{j} one denotes the vector of functional values

$$
\Psi_{j}=\left(f_{1}\left(\mathcal{X}_{j}\right), f_{2}\left(\mathcal{X}_{j}\right), \ldots, f_{d_{j}}\left(\mathcal{X}_{j}\right)\right)^{T}, \quad d_{j}=\operatorname{card} \mathcal{N}\left(\mathcal{X}_{j}\right)
$$

- vector of outgoing derivatives

$$
\Psi_{j}^{\prime}=\left(f_{1}^{\prime}\left(\mathcal{X}_{j}\right), f_{2}^{\prime}\left(\mathcal{X}_{j}\right), \ldots, f_{d_{j}}^{\prime}\left(\mathcal{X}_{j}\right)\right)^{T}, \quad d_{j}=\operatorname{card} \mathcal{N}\left(\mathcal{X}_{j}\right)
$$

- all possible couplings can be written as

$$
\left(U_{j}-I\right) \Psi_{j}+i\left(U_{j}+I\right) \Psi_{j}^{\prime}=0
$$

where U_{j} 's are square $d_{j} \times d_{j}$ unitary matrices

- alternative description of the coupling conditions using $d_{j} \times d_{j}$ matrices A_{j}, B_{j}

$$
A_{j} \Psi_{j}+B_{j} \Psi_{j}^{\prime}=0
$$

where $d_{j} \times 2 d_{j}$ rectangular matrix $\left(A_{j}, B_{j}\right)$ has maximal rank and matrix $A_{j} B_{j}^{*}$ is self-adjoint for each vertex

- relationship between A, B and U

$$
\begin{gathered}
A=C(U-I), \quad B=i C(U+I) \\
U=-(A-i B)^{-1}(A+i B)
\end{gathered}
$$

Flower-like Model

- graph with finitely many internal edges can be described by a model with only one vertex (Kuchment, 2008)
- the actual topology of the graph is encoded in the matrix U

- coupling is described by a $(2 N+M) \times(2 N+M)(N=\operatorname{card} \mathcal{L}$ and $\left.M=\operatorname{card} \mathcal{L}_{\infty}\right)$ unitary block diagonal matrix U consisting of blocks U_{j} as

$$
(U-I) \Psi+i(U+I) \Psi^{\prime}=0
$$

Example of the Coupling: Standard Coupling Conditions

- also known as Kirchhoff coupling conditions, coupling conditions, sometimes even called Neumann
- continuity of the functional value and sum of outward derivatives disappears

$$
\begin{aligned}
f_{j}:=f_{j n}(j) & =f_{j m}(j) \quad \text { for all } n, m \in \nu(j) \\
\sum_{n \in \nu(j)} f_{j n}^{\prime}(j) & =0
\end{aligned}
$$

- corresponding coupling matrices

$$
U_{j}=\frac{2}{d_{j}} J-I
$$

where I is unit matrix and J has all entries equal to one

Resolvent Resonances

- poles of meromorphic continuation of $(H-\lambda i d)^{-1}$
- another definition: $\lambda=k^{2}$ is a resolvent resonance if there exists a generalized eigenfunction $f \in L_{\mathrm{loc}}^{2}(\Gamma), f \not \equiv 0$ satisfying $-f^{\prime \prime}(x)=k^{2} f(x)$ on all edges of the graph and fulfilling the coupling conditions, which on all external edges behaves as $c_{j} \mathrm{e}^{i k x}$.
- external complex scaling: transformation $g_{j}(x) \rightarrow U_{\theta} g_{j}(x)=\mathrm{e}^{\theta / 2} g_{j}\left(x \mathrm{e}^{\theta}\right)$ with an imaginary θ
- non-selfadjoint operator H_{θ} with the domain

$$
f_{j n} \in W^{2,2}\left(\left[0, l_{j n}\right]\right) \text { and } g_{j \theta}=U_{\theta} g_{j} \text { with } g_{j} \in W^{2,2}\left(\mathcal{L}_{j \infty}\right)
$$

$$
H_{\theta}\binom{\left\{g_{j}\right\}}{\left\{f_{j n}\right\}}=\binom{\left\{-\mathrm{e}^{-2 \theta} g_{j}^{\prime \prime}\right\}}{\left\{-f_{j n}^{\prime \prime}+V_{j n} f_{j n}\right\}}
$$

- essential spectrum of the transformed Hamiltonian rotates into the lower complex halfplane ($\mathrm{e}^{-2 \operatorname{Im} \theta}[0, \infty)$) and "uncovers" the poles of the resolvent on the second sheet

- resonances - eigenvalues of H_{θ}

Scattering Resonances

- parametrizing all external edges by $x \in[0, \infty)$
- solutions on the external edges: superposition of incoming and outgoing waves $g_{j}(x)=c_{j} \mathrm{e}^{-i k x}+d_{j} \mathrm{e}^{i k x}$
- motivation for incoming and outgoing waves: time-dependent Schrödinger equation $\left(-\partial_{x}^{2}-i \partial_{t}\right) u_{j}(x, t)=0$
- separating variables we can write: $u_{j}(x, t)=\mathrm{e}^{-i t k^{2}} g_{j}(x)$, where $g_{j}(x)$ solves time-independent Schrödinger equation
- hence $u_{j}(x)=c_{j} \mathrm{e}^{-i k(x+k t)}+d_{j} \mathrm{e}^{i k(x-k t)}$
- $S=S(k)$ which maps the vector of amplitudes of the incoming waves $c=\left\{c_{n}\right\}$ into the vector of the amplitudes of the outgoing waves $d=\left\{d_{n}\right\}$
- scattering resonances - complex energies where S diverges

Scattering Resonances

- parametrizing all external edges by $x \in[0, \infty)$
- solutions on the external edges: superposition of incoming and outgoing waves $g_{j}(x)=c_{j} \mathrm{e}^{-i k x}+d_{j} \mathrm{e}^{i k x}$
- motivation for incoming and outgoing waves: time-dependent Schrödinger equation $\left(-\partial_{x}^{2}-i \partial_{t}\right) u_{j}(x, t)=0$
- separating variables we can write: $u_{j}(x, t)=\mathrm{e}^{-i t k^{2}} g_{j}(x)$, where $g_{j}(x)$ solves time-independent Schrödinger equation
- hence $u_{j}(x)=c_{j} \mathrm{e}^{-i k(x+k t)}+d_{j} \mathrm{e}^{i k(x-k t)}$
- $S=S(k)$ which maps the vector of amplitudes of the incoming waves $c=\left\{c_{n}\right\}$ into the vector of the amplitudes of the outgoing waves $d=\left\{d_{n}\right\}$
- scattering resonances - complex energies where S diverges

Scattering Resonances

- parametrizing all external edges by $x \in[0, \infty)$
- solutions on the external edges: superposition of incoming and outgoing waves $g_{j}(x)=c_{j} \mathrm{e}^{-i k x}+d_{j} \mathrm{e}^{i k x}$
- motivation for incoming and outgoing waves: time-dependent Schrödinger equation $\left(-\partial_{x}^{2}-i \partial_{t}\right) u_{j}(x, t)=0$
- separating variables we can write: $u_{j}(x, t)=\mathrm{e}^{-i t k^{2}} g_{j}(x)$, where $g_{j}(x)$ solves time-independent Schrödinger equation
- hence $u_{j}(x)=c_{j} \mathrm{e}^{-i k(x+k t)}+d_{j} \mathrm{e}^{i k(x-k t)}$
- $S=S(k)$ which maps the vector of amplitudes of the incoming waves $c=\left\{c_{n}\right\}$ into the vector of the amplitudes of the outgoing waves $d=\left\{d_{n}\right\}$
- scattering resonances - complex energies where S diverges

Scattering Resonances

- parametrizing all external edges by $x \in[0, \infty)$
- solutions on the external edges: superposition of incoming and outgoing waves $g_{j}(x)=c_{j} \mathrm{e}^{-i k x}+d_{j} \mathrm{e}^{i k x}$
- motivation for incoming and outgoing waves: time-dependent Schrödinger equation $\left(-\partial_{x}^{2}-i \partial_{t}\right) u_{j}(x, t)=0$
- separating variables we can write: $u_{j}(x, t)=\mathrm{e}^{-i t k^{2}} g_{j}(x)$, where $g_{j}(x)$ solves time-independent Schrödinger equation
- hence $u_{j}(x)=c_{j} \mathrm{e}^{-i k(x+k t)}+d_{j} \mathrm{e}^{i k(x-k t)}$
- $S=S(k)$ which maps the vector of amplitudes of the incoming waves $c=\left\{c_{n}\right\}$ into the vector of the amplitudes of the outgoing waves $d=\left\{d_{n}\right\}$
- scattering resonances - complex energies where S diverges

Equivalence of Resonances

Theorem (Exner, J. L.)

k with k^{2} not being eigenvalue of H is a resolvent resonance if and only if it is a scattering resonance.

- there can be eigenvalues with eigenfunctions supported on the compact part of the grap which "cannot be seen by a scattering matrix"
- idea of the proof: condition of solvability of set of equation for resolvent resonances and condition when the system for S-matrix is not solvable are equivalent
- $S(-k)=S(k)^{-1}$ ensures that k with $k^{2} \notin \mathbb{R}$ is not at once zero of the denominator of the S-matrix and zero of its nominator

Effective Coupling on the Finite Graph

- graph with semi-infinite edges with coupling given by matrix

$$
U=\left(\begin{array}{ll}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right)
$$

where U_{1} is the $2 N \times 2 N$ square matrix referring to the compact subgraph, U_{4} is the $M \times M$ square matrix related to the exterior part, and U_{2} and U_{3} are rectangular matrices

- idea: replace coupling at the vertex with semi-infinite edges by an effective coupling eliminating the external variables
- after performing external complex scaling we obtain equations for an effective coupling matrix:

$$
\tilde{U}(k)=U_{1}-(1-k) U_{2}\left[(1-k) U_{4}-(k+1) /\right]^{-1} U_{3}
$$

- $\tilde{U}(k)$ is energy-dependent

Weyl's law for Asymptotics of Eigenvalues

- assume a Laplacian on a Riemannian manifold; the number of eigenvalues with the absolute value smaller than Q in the energy plane is

$$
N(Q)=\frac{1}{(2 \pi)^{n}} \omega_{n} V Q^{n / 2}+\mathcal{O}\left(Q^{\frac{n-1}{2}}\right)
$$

- for one dimension:

$$
N(Q)=\frac{1}{\pi} V Q^{1 / 2}+\mathcal{O}(1)
$$

- for our purposes is better to study the situation in the k-plane ($E=k^{2}$)
- every eigenvalue is counted twice

$$
N(R)=\frac{2}{\pi} V R+\mathcal{O}(1)
$$

Asymptotics of Resonances

- asymptotical behaviour of the number of resonances (including the eigenvalues) in the circle of radius R for $R \rightarrow \infty$
- Weyl's law

$$
N(R)=\frac{2 V}{\pi} R+\mathcal{O}(1)
$$

where V is the size of the graph $V:=\sum_{j=1}^{N} l_{j}$

- simple example of a non-Weyl graph: standard condition on the line

Asymtotics for Standard Conditions

Theorem (Davies, Pushnitski)

Suppose that 「 is the graph with standard (Kirchhoff) coupling conditions at all the vertices. Then

$$
N(R)=\frac{2}{\pi} W R+O(1), \quad \text { as } R \rightarrow \infty
$$

where the coefficient W satisfies $0 \leq W \leq \operatorname{vol}(\Gamma)$. The behaviour is non-Weyl $(0 \leq W<\operatorname{vol}(\Gamma))$ iff there is a balanced vertex.

- balanced vertex: number of internal edges is equal to the number of external edges

Asymtotics for Standard Conditions

- idea of the proof: resonances are given by zeros of exponential polynomials $F(k)=\sum_{r=1}^{n} a_{r} \mathrm{e}^{i \sigma_{r} k}$
- zeros of such functions are situated in the strips parallel to the real axis and their number is proportional to the difference of the imaginary parts of the exponents
- the graph has Weyl asymptotics iff coefficients of terms $\mathrm{e}^{ \pm i V k}$ are nontrivial

Asymptotics for General Conditions

Theorem (Davies, Exner, J.L.)

Graph is non-Weyl iff the effective coupling matrix

$$
\tilde{U}(k)=U_{1}-(1-k) U_{2}\left[(1-k) U_{4}-(k+1) I\right]^{-1} U_{3}
$$

has eigenvalue $\frac{1+k}{1-k}$ or $\frac{1-k}{1+k}$.

- the idea of the proof: determining whether the coefficient by $\mathrm{e}^{ \pm i k V}$ is zero
- permutation-symmetric coupling: $U=a J+b l$, with $\left|b_{j}\right|=1$ and $\left|b_{j}+a_{j} \operatorname{deg} \mathcal{X}_{j}\right|=1$
- the graph with permutation-symmetric coupling is non-Weyl only with standard or "antiKirchhoff" conditions and at least one vertex balanced

Microwave Graphs

- quantum graphs can be simulated by microwave graphs
- the same equation: the telegrapher's equation for microwave graphs is formally the same as Schrödinger equation for quantum graphs
- coaxial cables, inner and outer conductor, the space between them filled with teflon of dielectric constant $\varepsilon \approx 2.06$
- the optical length $\sqrt{\varepsilon}$-multiple of the geometrical length
- losses: $k=k_{\mathrm{R}}+i \beta \sqrt{k_{\mathrm{R}}}, k_{\mathrm{R}}=\frac{2 \pi}{c} f, f$ is frequency, $\beta=0.00762, c$ is the speed of light

Experiment

Why Has the Non-Weyl Graph Smaller Effective Size?

- let ℓ_{2} be the length of the shortest edge emanating from the balanced vertex 1
- let us introduce a fictitious vertex of the degree two with standard coupling at the edge $(1,4)$ at the distance ℓ_{2} from the vertex 1 and denote it by 6
- we denote the wavefunctions on the edges $(1,6)$ and $(1,2)$ by $u_{1}(x)$ and $u_{2}(x)$, respectively, with $x=0$ at the vertex 1 and the wavefunctions on the leads L_{1}^{∞} and L_{2}^{∞} by $f_{1}(x)$ and $f_{2}(x)$, again with $x=0$ at the vertex 1
- the coupling condition yields

$$
\begin{gather*}
u_{1}(0)=u_{2}(0)=f_{1}(0)=f_{2}(0) \\
u_{1}^{\prime}(0)+u_{2}^{\prime}(0)+f_{1}^{\prime}(0)+f_{2}^{\prime}(0)=0 \tag{1}
\end{gather*}
$$

- introduce symmetrization and antisymmetrization of the previously defined components of wavefunctions

$$
\begin{align*}
& v_{+}=\frac{1}{\sqrt{2}}\left(u_{1}+u_{2}\right), \quad v_{-}=\frac{1}{\sqrt{2}}\left(u_{1}-u_{2}\right), \tag{2}\\
& g_{+}=\frac{1}{\sqrt{2}}\left(f_{1}+f_{2}\right), \quad g_{-}=\frac{1}{\sqrt{2}}\left(f_{1}-f_{2}\right) .
\end{align*}
$$

- from the coupling conditions at the vertex 1 it follows using $u_{1}(0)=u_{2}(0)$ and $f_{1}(0)=f_{2}(0)$ that

$$
\begin{align*}
& v_{+}(0)=\frac{1}{\sqrt{2}}\left(u_{1}(0)+u_{2}(0)\right)=\sqrt{2} u_{1}(0) \\
& g_{+}(0)=\frac{1}{\sqrt{2}}\left(f_{1}(0)+f_{2}(0)\right)=\sqrt{2} f_{1}(0) \tag{3}\\
& v_{-}(0)=\frac{1}{\sqrt{2}}\left(u_{1}(0)-u_{2}(0)\right)=\frac{1}{\sqrt{2}}\left(u_{1}(0)-u_{1}(0)\right)=0 \\
& g_{-}(0)=\frac{1}{\sqrt{2}}\left(f_{1}(0)-f_{2}(0)\right)=\frac{1}{\sqrt{2}}\left(f_{1}(0)-f_{1}(0)\right)=0
\end{align*}
$$

- the coupling condition can be in the new functions written (using $u_{1}(0)=f_{1}(0)$) as
$v_{+}(0)=g_{+}(0), \quad v_{+}^{\prime}(0)+g_{+}^{\prime}(0)=0, \quad v_{-}(0)=g_{-}(0)=0$.
- the symmetric subspace $\left(v_{+}\right.$and $\left.g_{+}\right)$: standard condition connecting an internal edge and a lead
- in the antisymmetric subspace: Dirichlet condition
- denote by h the wavefunction component on the rest of the graph
- then the map

$$
\begin{equation*}
U:\left(u_{1}, u_{2}, f_{1}, f_{2}, h\right)^{\mathrm{T}} \mapsto\left(v_{+}, v_{-}, g_{+}, g_{-}, h\right)^{\mathrm{T}} \tag{5}
\end{equation*}
$$

is unitary and transforms the "old" Hamiltonian H to the "new" Hamiltonian $H_{U}=U H U^{-1}$

- the graph for the Hamiltonian H_{U} connects an internal edge of length ℓ_{2} with an external lead by the standard condition
- no interaction - these two edges may be replaced by one external lead - reducing the effective size of the graph by ℓ_{2}
- a new, more complicated, coupling condition at the real vertex 2 and the fictitious vertex 6 which joins these two vertices; it assures that the effective size is not smaller

Results

References

E.B.Davies, A. Pushnitski: Non-Weyl Resonance Asymptotics for Quantum Graphs, Analysis \& PDE 4, no. 5, 729-756 (2011). arXiv:1003.0051.
E.B. Davies, P. Exner, J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions J. Phys. A43 (2010), 474013. arXiv: 1004.0856.
M. Ławniczak, J. Lipovský, and L. Sirko: Non-Weyl microwave graphs, Phys. Rev. Lett. 122, 140503 (2019). arXiv: 1904.06905

Thank you for your attention!

References

E.B.Davies, A. Pushnitski: Non-Weyl Resonance Asymptotics for Quantum Graphs, Analysis \& PDE 4, no. 5, 729-756 (2011). arXiv:1003.0051.
E.B. Davies, P. Exner, J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions J. Phys. A43 (2010), 474013. arXiv: 1004.0856.
M. Ławniczak, J. Lipovský, and L. Sirko: Non-Weyl microwave graphs, Phys. Rev. Lett. 122, 140503 (2019). arXiv: 1904.06905

Thank you for your attention!

