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Jǐŕı Lipovský
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Description of the Model
configuration space is a graph Γ described by the set of
vertices V and the set of internal edges L and halflines L∞
corresponding Hilbert space

H =
⊕

(j ,n)∈IL

L2([0, ljn])⊕
⊕
j∈IC

L2([0,∞)).

elements of Hilbert space
ψ = (fjn : Ljn ∈ L, fj∞ : Lj∞ ∈ L∞)T .
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Coupling Conditions

second order differential operator H = −d2/dx2 + V (x) –
corresponds to the Hamiltonian of a quantum particle (using
~ = 1, m = 1/2)

domain of the Hamiltonian: functions in corresponding
Sobolev space fjn ∈W 2,2([0, ljn]), fj∞ ∈W 2,2([0,∞)), which
fulfil the coupling conditions at the vertices

for each vertex Xj one denotes the vector of functional values

Ψj = (f1(Xj), f2(Xj), . . . , fdj (Xj))T , dj = cardN (Xj)

vector of outgoing derivatives

Ψ′j = (f ′1(Xj), f
′

2(Xj), . . . , f
′
dj

(Xj))T , dj = cardN (Xj) .
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all possible couplings can be written as

(Uj − I )Ψj + i(Uj + I )Ψ′j = 0 ,

where Uj ’s are square dj × dj unitary matrices

alternative description of the coupling conditions using dj × dj
matrices Aj , Bj

AjΨj + BjΨ
′
j = 0 ,

where dj × 2 dj rectangular matrix (Aj ,Bj) has maximal rank
and matrix AjB

∗
j is self-adjoint for each vertex

relationship between A, B and U

A = C (U − I ) , B = iC (U + I )

U = −(A− iB)−1(A + iB)
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Flower-like Model

graph with finitely many internal edges can be described by a
model with only one vertex (Kuchment, 2008)

the actual topology of the graph is encoded in the matrix U

l1

l2l3

l4

lN

coupling is described by a (2N + M)× (2N + M) (N = cardL
and M = cardL∞ ) unitary block diagonal matrix U
consisting of blocks Uj as

(U − I )Ψ + i(U + I )Ψ′ = 0
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Example of the Coupling: Standard Coupling Conditions

also known as Kirchhoff coupling conditions, coupling
conditions, sometimes even called Neumann

continuity of the functional value and sum of outward
derivatives disappears

fj := fjn(j) = fjm(j) for all n,m ∈ ν(j) ,∑
n∈ν(j)

f ′jn(j) = 0.

corresponding coupling matrices

Uj =
2

dj
J − I ,

where I is unit matrix and J has all entries equal to one
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Resolvent Resonances

poles of meromorphic continuation of (H − λ id)−1

another definition: λ = k2 is a resolvent resonance if there
exists a generalized eigenfunction f ∈ L2

loc(Γ), f 6≡ 0 satisfying
−f ′′(x) = k2f (x) on all edges of the graph and fulfilling the
coupling conditions, which on all external edges behaves as
cj e

ikx .

external complex scaling: transformation
gj(x)→ Uθgj(x) = eθ/2gj(xe

θ) with an imaginary θ

non-selfadjoint operator Hθ with the domain
fjn ∈W 2,2([0, ljn]) and gjθ = Uθgj with gj ∈W 2,2(Lj∞)

Hθ

(
{gj}
{fjn}

)
=

( {−e−2θg ′′j }
{−f ′′jn + Vjnfjn}

)
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essential spectrum of the transformed Hamiltonian rotates
into the lower complex halfplane (e−2Im θ[0,∞)) and
“uncovers” the poles of the resolvent on the second sheet

0

2 Im θ

resonances – eigenvalues of Hθ
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Scattering Resonances

parametrizing all external edges by x ∈ [0,∞)

solutions on the external edges: superposition of incoming and
outgoing waves gj(x) = cje

−ikx + dje
ikx

motivation for incoming and outgoing waves: time-dependent
Schrödinger equation (−∂2

x − i∂t)uj(x , t) = 0

separating variables we can write: uj(x , t) = e−itk
2
gj(x),

where gj(x) solves time-independent Schrödinger equation

hence uj(x) = cje
−ik(x+kt) + dje

ik(x−kt)

S = S(k) which maps the vector of amplitudes of the
incoming waves c = {cn} into the vector of the amplitudes of
the outgoing waves d = {dn}
scattering resonances – complex energies where S diverges
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Equivalence of Resonances

Theorem (Exner, J. L.)

k with k2 not being eigenvalue of H is a resolvent resonance if and
only if it is a scattering resonance.

there can be eigenvalues with eigenfunctions supported on the
compact part of the grap which “cannot be seen by a
scattering matrix”

idea of the proof: condition of solvability of set of equation for
resolvent resonances and condition when the system for
S-matrix is not solvable are equivalent

S(−k) = S(k)−1 ensures that k with k2 6∈ R is not at once
zero of the denominator of the S-matrix and zero of its
nominator
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Effective Coupling on the Finite Graph

graph with semi-infinite edges with coupling given by matrix

U =

(
U1 U2

U3 U4

)
where U1 is the 2N × 2N square matrix referring to the
compact subgraph, U4 is the M ×M square matrix related to
the exterior part, and U2 and U3 are rectangular matrices

idea: replace coupling at the vertex with semi-infinite edges by
an effective coupling eliminating the external variables

after performing external complex scaling we obtain equations
for an effective coupling matrix:

Ũ(k) = U1 − (1− k)U2[(1− k)U4 − (k + 1)I ]−1U3

Ũ(k) is energy-dependent
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Weyl’s law for Asymptotics of Eigenvalues

assume a Laplacian on a Riemannian manifold; the number of
eigenvalues with the absolute value smaller than Q in the
energy plane is

N(Q) =
1

(2π)n
ωnVQ

n/2 +O
(
Q

n−1
2

)
for one dimension:

N(Q) =
1

π
VQ1/2 +O(1)

for our purposes is better to study the situation in the k-plane
(E = k2)

every eigenvalue is counted twice

N(R) =
2

π
VR +O(1)
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Asymptotics of Resonances

asymptotical behaviour of the number of resonances (including
the eigenvalues) in the circle of radius R for R →∞
Weyl’s law

N(R) =
2V

π
R +O(1) ,

where V is the size of the graph V :=
∑N

j=1 lj

simple example of a non-Weyl graph: standard condition on
the line
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Asymtotics for Standard Conditions

Theorem (Davies, Pushnitski)

Suppose that Γ is the graph with standard (Kirchhoff) coupling
conditions at all the vertices. Then

N(R) =
2

π
WR + O(1) , as R →∞,

where the coefficient W satisfies 0 ≤W ≤ vol (Γ). The behaviour
is non-Weyl (0 ≤W < vol (Γ)) iff there is a balanced vertex.

balanced vertex: number of internal edges is equal to the
number of external edges
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Asymtotics for Standard Conditions

idea of the proof: resonances are given by zeros of exponential
polynomials F (k) =

∑n
r=1 are

iσrk

zeros of such functions are situated in the strips parallel to the
real axis and their number is proportional to the difference of
the imaginary parts of the exponents

the graph has Weyl asymptotics iff coefficients of terms e±iVk

are nontrivial
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Asymptotics for General Conditions

Theorem (Davies, Exner, J.L.)

Graph is non-Weyl iff the effective coupling matrix

Ũ(k) = U1 − (1− k)U2[(1− k)U4 − (k + 1)I ]−1U3

has eigenvalue 1+k
1−k or 1−k

1+k .

the idea of the proof: determining whether the coefficient by
e±ikV is zero

permutation-symmetric coupling: U = aJ + bI , with |bj | = 1
and |bj + ajdegXj | = 1

the graph with permutation-symmetric coupling is non-Weyl
only with standard or “antiKirchhoff” conditions and at least
one vertex balanced
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Microwave Graphs

quantum graphs can be simulated by microwave graphs

the same equation: the telegrapher’s equation for microwave
graphs is formally the same as Schrödinger equation for
quantum graphs

coaxial cables, inner and outer conductor, the space between
them filled with teflon of dielectric constant ε ≈ 2.06

the optical length
√
ε-multiple of the geometrical length

losses: k = kR + iβ
√
kR, kR = 2π

c f , f is frequency,
β = 0.00762, c is the speed of light
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Experiment
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Why Has the Non-Weyl Graph Smaller Effective Size?

let `2 be the length of the shortest edge emanating from the
balanced vertex 1

let us introduce a fictitious vertex of the degree two with
standard coupling at the edge (1,4) at the distance `2 from
the vertex 1 and denote it by 6

we denote the wavefunctions on the edges (1,6) and (1,2) by
u1(x) and u2(x), respectively, with x = 0 at the vertex 1 and
the wavefunctions on the leads L∞1 and L∞2 by f1(x) and
f2(x), again with x = 0 at the vertex 1

the coupling condition yields

u1(0) = u2(0) = f1(0) = f2(0) ,

u′1(0) + u′2(0) + f ′1(0) + f ′2(0) = 0 . (1)
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introduce symmetrization and antisymmetrization of the
previously defined components of wavefunctions

v+ = 1√
2

(u1 + u2), v− = 1√
2

(u1 − u2),

g+ = 1√
2

(f1 + f2), g− = 1√
2

(f1 − f2).
(2)

from the coupling conditions at the vertex 1 it follows using
u1(0) = u2(0) and f1(0) = f2(0) that

v+(0) = 1√
2

(u1(0) + u2(0)) =
√

2 u1(0),

g+(0) = 1√
2

(f1(0) + f2(0)) =
√

2 f1(0) ,

v−(0) = 1√
2

(u1(0)− u2(0)) = 1√
2

(u1(0)− u1(0)) = 0 ,

g−(0) = 1√
2

(f1(0)− f2(0)) = 1√
2

(f1(0)− f1(0)) = 0 .

(3)

the coupling condition can be in the new functions written
(using u1(0) = f1(0)) as

v+(0) = g+(0) , v ′+(0) + g ′+(0) = 0 , v−(0) = g−(0) = 0 .
(4)
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the symmetric subspace (v+ and g+): standard condition
connecting an internal edge and a lead

in the antisymmetric subspace: Dirichlet condition

denote by h the wavefunction component on the rest of the
graph

then the map

U : (u1, u2, f1, f2, h)T 7→ (v+, v−, g+, g−, h)T (5)

is unitary and transforms the “old” Hamiltonian H to the
“new” Hamiltonian HU = UHU−1

the graph for the Hamiltonian HU connects an internal edge
of length `2 with an external lead by the standard condition

no interaction – these two edges may be replaced by one
external lead – reducing the effective size of the graph by `2

a new, more complicated, coupling condition at the real vertex
2 and the fictitious vertex 6 which joins these two vertices; it
assures that the effective size is not smaller
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Results
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