Braid Spirit of Young Tableux

Viktor Lopatkin ${ }^{\dagger}$
${ }^{\dagger}$ Laboratory of Modern Algebra and Applications, St.Petersburg State University

Ostrava 2019

- Young Diagrams
- The Plactic Monoid
- The Schensted column algorithm comes from the Braid Universe
- The Braid Universe
- The End

Definition of Young Diagrams

A Young diagram

is a collection of boxes, or cells, arranged in left-justified rows, with a (weakly) decreasing number of boxes in each row. Listing the number of boxes in each row gives a partition of the integer n corresponds to a Young diagram.

Example

The partition of 16 into $6+4+4+2$ corresponds to the Young diagram

Young Tableau

The purpose of writing a Young diagram instead of just the partition, of course, is to put something in the boxes ($=$ numbering or filling).

A Young Tableau

is a filling that is
(1) weakly increasing across each row
(2) strictly increasing down each column

Example

1	2	2	3	5
2	3	5	5	
4	4	6	6	
	6			

Row-insertion (the Schensted operation)

Let us row-insert 2 in

1	2	2	3
2	3	5	5
4	4	6	
	6		

Row-insertion (the Schensted operation)

Let us row-insert 2 in

1	2	2	3
2	3	5	5
4	4	6	
	6		

1	2	2		-		2		2	2
2	3	5		5	2	3		-	$5 \leftarrow$
4	4	6			4	4		6	
5	6					6			
1	2	2		2	1	2		2	2
2	3	3		5	2	3		3	5
4	4	-		\leftarrow	4	4		5	
5	6				5	6		6	

The Product of Tableaux

Thus, the Schensted operation can be used to form a product tableau $\mathbb{Y}_{1} \cdot \mathbb{Y}_{2}$ from any two tableaux \mathbb{Y}_{1} and \mathbb{Y}_{2}.

Example

15-14-13.-THE GREAT PRESIDENTIAL PUZZLE.
Viktor Lopatkin \quad Braid Spirit of Young Tableux

A Knuth Point of View

Thus the set \mathbb{Y} of all Young tableaux is a monoid with respect to Schensted operation.

A Knuth Point of View

Thus the set \mathbb{Y} of all Young tableaux is a monoid with respect to Schensted operation.

Knuth Transformations

$$
\begin{array}{l|l|l}
\begin{array}{l|l|l|}
\hline y & z & x \\
\hline y & z & x<y \leq z \\
y & & \\
\hline x & z & y \\
\hline x & y & y \\
\hline z & x \leq y<z
\end{array}
\end{array}
$$

The Plactic Monoid

There is a nice way to formalize the Knuth result.

The Plactic Monoid

There is a nice way to formalize the Knuth result.

$$
\text { Let } \mathrm{A}=\{1,2, \ldots, \mathrm{n}\} \text { with } 1<2<\cdots<\mathrm{n} \text {. }
$$

Then we call $\mathrm{Pl}(\mathrm{A}):=\mathrm{A}^{*} / \equiv$ the plactic monoid ${ }^{\mathrm{a}}$ on the alphabet set A, where A^{*} is the free monoid generated by A, \equiv is the congruence of A^{*} generated by Knuth relations consist of

$$
\mathrm{acb}=\operatorname{cab}(\mathrm{a} \leq \mathrm{b}<\mathrm{c}), \quad \mathrm{bca}=\mathrm{bac}(\mathrm{a}<\mathrm{b} \leq \mathrm{c}) .
$$

> ${ }^{\text {a }}$ It was named the "mononde plaxique" by Lascoux and Schützenberger (1981), who allowed any totally ordered alphabet in the definition. The etymology of the word "plaxique" is unclear; it may refer to plate tectonics ("tectonique des plaques" in French), as elementary relations that generate the equivalence allow conditional commutation of generator symbols: they can sometimes slide across each other (in apparent analogy to tectonic plates), but not freely.

Schensted's column algorithm

Schensted's column algorithm

A strictly decreasing word $I \in A^{*}$ is called a column.

Schensted's column algorithm

A strictly decreasing word $\mathrm{I} \in \mathrm{A}^{*}$ is called a column.

> Example
> $\mathrm{I}=875421$. We also write $\mathrm{I}=(1 ; 1 ; 0 ; 1 ; 1 ; 0 ; 1 ; 1 ; 0 ; \ldots ; 0)$.

Schensted's column algorithm

A strictly decreasing word $\mathrm{I} \in \mathrm{A}^{*}$ is called a column.

Example

$I=875421$. We also write $I=(1 ; 1 ; 0 ; 1 ; 1 ; 0 ; 1 ; 1 ; 0 ; \ldots ; 0)$.
Let I be a column and let $x \in A$.

$$
\mathrm{x} \cdot \mathrm{I}=\left\{\begin{array}{l}
\mathrm{xI}, \text { if } \mathrm{xI} \text { is a column } \\
\mathrm{I}^{\prime} \cdot \mathrm{y}, \text { otherwise }
\end{array}\right.
$$

where y is the rightmost letter in I and is larger than or equal to x , and I^{\prime} is obtained from I by replacing y with x .

Schensted's column algorithm

A strictly decreasing word $\mathrm{I} \in \mathrm{A}^{*}$ is called a column.

Example

$I=875421$. We also write $I=(1 ; 1 ; 0 ; 1 ; 1 ; 0 ; 1 ; 1 ; 0 ; \ldots ; 0)$.
Let I be a column and let $x \in A$.

$$
x \cdot I=\left\{\begin{array}{l}
x I, \text { if } x I \text { is a column } \\
I^{\prime} \cdot y, \text { otherwise }
\end{array}\right.
$$

where y is the rightmost letter in I and is larger than or equal to x , and I^{\prime} is obtained from I by replacing y with x .

Example

$$
3 \cdot 24678=
$$

Schensted's column algorithm

A strictly decreasing word $\mathrm{I} \in \mathrm{A}^{*}$ is called a column.

Example

$I=875421$. We also write $I=(1 ; 1 ; 0 ; 1 ; 1 ; 0 ; 1 ; 1 ; 0 ; \ldots ; 0)$.
Let I be a column and let $x \in A$.

$$
x \cdot I=\left\{\begin{array}{l}
x I, \text { if } x I \text { is a column } \\
I^{\prime} \cdot y, \text { otherwise }
\end{array}\right.
$$

where y is the rightmost letter in I and is larger than or equal to x , and I^{\prime} is obtained from I by replacing y with x .

Example

$$
3 \cdot 24678=3 \cdot 24678=
$$

Schensted's column algorithm

A strictly decreasing word $\mathrm{I} \in \mathrm{A}^{*}$ is called a column.

Example

$I=875421$. We also write $I=(1 ; 1 ; 0 ; 1 ; 1 ; 0 ; 1 ; 1 ; 0 ; \ldots ; 0)$.
Let I be a column and let $x \in A$.

$$
x \cdot I=\left\{\begin{array}{l}
x I, \text { if } x I \text { is a column } \\
I^{\prime} \cdot y, \text { otherwise }
\end{array}\right.
$$

where y is the rightmost letter in I and is larger than or equal to x , and I^{\prime} is obtained from I by replacing y with x .

Example

$$
3 \cdot 24678=3 \cdot 24678=23678 \cdot 4
$$

"Lattice" Spirit of Schensted's column algorithm

Consider two columns I and J as ordered sets $\{\mathrm{I}\},\{\mathrm{J}\}$ and set

$$
\begin{aligned}
& \left\{\mathrm{J}^{\mathrm{I}}\right\}:=\{\mathrm{x} \in\{\mathrm{~J}\}: \mathrm{y} \rightleftarrows \mathrm{x}=0 \text { for any } \mathrm{y} \in\{\mathrm{I}\}\} \\
& \left\{\mathrm{J}_{\mathrm{I}}\right\}:=\{\mathrm{x} \in\{\mathrm{~J}\}: \mathrm{y} \rightleftarrows \mathrm{x}=1 \text { for some } \mathrm{y} \in\{\mathrm{I}\}\}
\end{aligned}
$$

Consider two columns I and J as ordered sets $\{\mathrm{I}\},\{\mathrm{J}\}$ and set

$$
\begin{aligned}
& \left\{\mathrm{J}^{\mathrm{I}}\right\}:=\{\mathrm{x} \in\{\mathrm{~J}\}: \mathrm{y} \rightleftarrows \mathrm{x}=0 \text { for any } \mathrm{y} \in\{\mathrm{I}\}\} \\
& \left\{\mathrm{J}_{\mathrm{I}}\right\}:=\{\mathrm{x} \in\{\mathrm{~J}\}: \mathrm{y} \rightleftarrows \mathrm{x}=1 \text { for some } \mathrm{y} \in\{\mathrm{I}\}\}
\end{aligned}
$$

Let \mathbb{I} be a set of all columns. Introduce binary operations $\vee, \wedge: \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{I}$ as follows:

$$
\{\mathrm{I} \vee \mathrm{~J}\}:=\mathrm{I} \cup\left\{\mathrm{~J}^{\mathrm{I}}\right\}, \quad\{\mathrm{I} \wedge \mathrm{~J}\}:=\left\{\mathrm{J}_{\mathrm{I}}\right\}
$$

Consider two columns I and J as ordered sets $\{\mathrm{I}\},\{\mathrm{J}\}$ and set

$$
\begin{aligned}
& \left\{\mathrm{J}^{\mathrm{I}}\right\}:=\{\mathrm{x} \in\{\mathrm{~J}\}: \mathrm{y} \rightleftarrows \mathrm{x}=0 \text { for any } \mathrm{y} \in\{\mathrm{I}\}\} \\
& \left\{\mathrm{J}_{\mathrm{I}}\right\}:=\{\mathrm{x} \in\{\mathrm{~J}\}: \mathrm{y} \rightleftarrows \mathrm{x}=1 \text { for some } \mathrm{y} \in\{\mathrm{I}\}\}
\end{aligned}
$$

Let \mathbb{I} be a set of all columns. Introduce binary operations $\vee, \wedge: \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{I}$ as follows:

$$
\{\mathrm{I} \vee \mathrm{~J}\}:=\mathrm{I} \cup\left\{\mathrm{~J}^{\mathrm{I}}\right\}, \quad\{\mathrm{I} \wedge \mathrm{~J}\}:=\left\{\mathrm{J}_{\mathrm{I}}\right\}
$$

From Schensted's column algorithm it follows that

$$
\mathrm{I} \cdot \mathrm{~J}=(\mathrm{I} \vee \mathrm{~J}) \cdot(\mathrm{I} \wedge \mathrm{~J})
$$

Schensted's column algorithm

$863 \cdot 87642=87632 \cdot 864$.
i.e., $\{863\} \vee\{87642\}=\{87632\},\{863\} \wedge\{87642\}=\{864\}$.

Theorem

${ }^{\text {a }}$ For any three columns $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{c}}$, the following formulas are true

$$
\begin{gathered}
\mathrm{I}_{\mathrm{a}} \vee\left(\mathrm{I}_{\mathrm{b}} \vee \mathrm{I}_{\mathrm{c}}\right)=\left(\mathrm{I}_{\mathrm{a}} \vee \mathrm{I}_{\mathrm{b}}\right) \vee\left(\left(\mathrm{I}_{\mathrm{a}} \wedge \mathrm{I}_{\mathrm{b}}\right) \vee \mathrm{I}_{\mathrm{c}}\right), \\
\left(\mathrm{I}_{\mathrm{a}} \wedge\left(\mathrm{I}_{\mathrm{b}} \vee \mathrm{I}_{\mathrm{c}}\right)\right) \vee\left(\mathrm{I}_{\mathrm{b}} \wedge \mathrm{I}_{\mathrm{c}}\right)=\left(\mathrm{I}_{\mathrm{a}} \vee \mathrm{I}_{\mathrm{b}}\right) \wedge\left(\left(\mathrm{I}_{\mathrm{a}} \wedge \mathrm{I}_{\mathrm{b}}\right) \vee \mathrm{I}_{\mathrm{c}}\right), \\
\left(\mathrm{I}_{\mathrm{a}} \wedge\left(\mathrm{I}_{\mathrm{b}} \vee \mathrm{I}_{\mathrm{c}}\right)\right) \wedge\left(\mathrm{I}_{\mathrm{b}} \wedge \mathrm{I}_{\mathrm{c}}\right)=\left(\mathrm{I}_{\mathrm{a}} \wedge \mathrm{I}_{\mathrm{b}}\right) \wedge \mathrm{I}_{\mathrm{c}} .
\end{gathered}
$$

[^0]
Let the Magic begin!

Patrick Dehornoy is real.

Tracts in Mathematics 22

Patrick Dehornoy with François Digne Eddy Godelle
Daan Krammer Jean Michel

Foundations of

 Garside Theory
Braids; definitions and concepts.

Definition

The braid group on n strands (denoted B_{n}), also knows as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids.

We will use as generators for B_{n} the set of positive crossings, that is, the crossings between two (necessary adjacent) strands, with the front strand having a positive slope. We denote these generators by $\sigma_{1}, \ldots, \sigma_{\mathrm{n}-1}$.

These generators are subject to the following relations:

$$
\left\{\begin{array}{l}
\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}=\sigma_{\mathrm{j}} \sigma_{\mathrm{i}}, \text { if }|\mathrm{i}-\mathrm{j}|>1, \\
\sigma_{\mathrm{i}} \sigma_{\mathrm{i}+1} \sigma_{\mathrm{i}}=\sigma_{\mathrm{i}+1} \sigma_{\mathrm{i}} \sigma_{\mathrm{i}+1}
\end{array}\right.
$$

Braids and Permutations

One obvious invariant of an isotopy of a braid is the permutation it induces on the order of the strands

Example

x x

Figure: The simple braid R_{π}, where $\pi=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 1 & 5 & 3\end{array}\right)$

From permutations to braids

We thus have a homomorphism $\mathrm{p}: \mathrm{B}_{\mathrm{n}} \rightarrow \mathfrak{S}_{\mathrm{n}}$, where $\mathfrak{S}_{\mathrm{n}}$ is the symmetric group. The generator σ_{i} is mapped to the transposition
$\mathrm{s}_{\mathrm{i}}:=(\mathrm{i}, \mathrm{i}+1):=\left(\begin{array}{cccccccc}1 & \cdots & \mathrm{i}-1 & \mathrm{i} & \mathrm{i}+1 & \mathrm{i}+2 & \cdots & \mathrm{n} \\ 1 & \cdots & \mathrm{i}-1 & \mathrm{i}+1 & \mathrm{i} & \mathrm{i}+2 & \cdots & \mathrm{n}\end{array}\right)$

We want

to define an inverse map $\mathrm{p}^{-1}: \mathfrak{S}_{\mathrm{n}} \rightarrow \mathrm{B}_{\mathrm{n}}$

W. Thurston point of view, 0

Each permutation $\pi \in \mathfrak{S}_{\mathrm{n}}$ gives rise to a total order relation \leq_{π} on $\{1, \ldots, n\}$ with $\mathrm{i} \leq_{\pi} \mathrm{j}$ if $\pi(\mathrm{i})<\pi(\mathrm{j})$.

We set
$\mathrm{R}_{\pi}:=\{(\mathrm{i}, \mathrm{j}) \in\{1, \ldots, \mathrm{n}\} \times\{1, \ldots, \mathrm{n}\} \mid \mathrm{i}<\mathrm{j}, \pi(\mathrm{i})>\pi(\mathrm{j})\}$.

Non-repeating braid.

We call a positive braid non-repeating (=simple) if any two of its strands cross at most once. We define $\operatorname{Div}\left(\Delta_{\mathrm{n}}\right) \subset \mathrm{B}_{\mathrm{n}}^{+}$to be the set of classes of non-repeating braids.

W. Thurston point of view, 1

Example

Take the following permutation $\pi=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 1 & 5 & 3\end{array}\right) \in \mathfrak{S}_{6}$.
We have

$$
\begin{aligned}
& \pi(1)>\pi(2), \pi(1)>\pi(4), \pi(1)>\pi(6), \pi(2)>\pi(4), \\
& \pi(3)>\pi(4), \pi(3)>\pi(5), \pi(3)>\pi(6), \pi(5)>\pi(6) .
\end{aligned}
$$

hence $\mathrm{R}_{\pi}=\{(1,2),(1,4),(1,6),(2,4),(3,4),(3,5),(3,6),(5,6)\}$,

W.Thurston point of view, 2

Lemma

${ }^{\text {a }}$ A set R of pairs (i, j), with $\mathrm{i}<\mathrm{j}$, comes from some permutation if and only if the following two conditions are satisfied:

- If $(\mathrm{i}, \mathrm{j}) \in \mathrm{R}$ and $(\mathrm{j}, \mathrm{k}) \in \mathrm{R}$, then $(\mathrm{i}, \mathrm{k}) \in \mathrm{R}$.
- If $(i, k) \in R$, then $(i, j) \in R$ or $(j, k) \in R$ for every j with $\mathrm{i}<\mathrm{j}<\mathrm{k}$.
${ }^{\text {a }}$ Lemma 9.1.6, D.B.A. Epstein, I.W. Cannon, D.E. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, INC., 1992.

The Garside Braid

The Garside Braid

We can define a partial order in $\mathfrak{S}_{\mathrm{n}}$ by setting $\pi \geq \tau$ if $\mathrm{R}_{\pi} \supset \mathrm{R}_{\tau}$.

The Garside Braid

We can define a partial order in $\mathfrak{S}_{\mathrm{n}}$ by setting $\pi \geq \tau$ if $\mathrm{R}_{\pi} \supset \mathrm{R}_{\tau}$.
The identity ϵ is the smallest element of $\mathfrak{S}_{\mathrm{n}}$.

The Garside Braid

We can define a partial order in $\mathfrak{S}_{\mathrm{n}}$ by setting $\pi \geq \tau$ if $\mathrm{R}_{\pi} \supset \mathrm{R}_{\tau}$.
The identity ϵ is the smallest element of $\mathfrak{S}_{\mathrm{n}}$.
The largest element is $\omega:=\left(\begin{array}{lll}1 & \cdots & n \\ \mathrm{n} & \cdots & 1\end{array}\right)$

The Garside Braid

We can define a partial order in $\mathfrak{S}_{\mathrm{n}}$ by setting $\pi \geq \tau$ if $\mathrm{R}_{\pi} \supset \mathrm{R}_{\tau}$.
The identity ϵ is the smallest element of $\mathfrak{S}_{\mathrm{n}}$.
The largest element is $\omega:=\left(\begin{array}{lll}1 & \cdots & n \\ \mathrm{n} & \cdots & 1\end{array}\right)$

The Garside Braid and the Flip Involution.

Thurston Operations of non-repeating (=simple) braids.

The maximal common braid

For any two permutations $\pi_{1}, \pi_{2} \in \mathfrak{S}_{\mathrm{n}}$, and corresponding simple braid $R_{\pi_{1}}, R_{\pi_{2}}$, we define $R_{\pi_{1}} \wedge R_{\pi_{2}}$ as follows:

$$
\begin{aligned}
R_{\pi_{1}} \wedge R_{\pi_{2}}:= & \left\{(i, k) \in R_{\pi_{1}} \cap R_{\pi_{2}}, \mid(i, j) \in R_{\pi_{1}} \cap R_{\pi_{2}}\right. \\
& \text { or } \left.(j, k) \in R_{\pi_{1}} \cap R_{\pi_{2}} \text { for all } j \text { with } i<j<k\right\} .
\end{aligned}
$$

The Complement of a braid

For a permutation $\pi \in \mathfrak{S}_{\mathrm{n}}$, we set

$$
\neg \mathrm{R}_{\pi}:=\mathrm{R}_{\omega \pi}=\Delta \backslash \mathrm{R}_{\pi}
$$

Example

$$
\neg \mathrm{R}_{\epsilon}=\Delta_{\mathrm{n}}, \quad \neg \Delta_{\mathrm{n}}=\mathrm{R}_{\epsilon} .
$$

$\mathrm{R}_{\mathrm{a}} \cap \mathrm{R}_{\mathrm{b}} \neq \varnothing$ does not imply that $\mathrm{R}_{\mathrm{a}} \wedge \mathrm{R}_{\mathrm{b}} \neq \varnothing$

(

$$
\begin{aligned}
\neg \mathrm{R}_{\pi}^{*} & =\{(1,4),(2,3),(2,4),(3,4)\} \\
\mathrm{R}_{\mathrm{b}} & =\{(1,2),(1,3),(1,4),(3,4)\}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{a}} \cap \mathrm{R}_{\mathrm{b}} \neq \varnothing$ does not imply that $\mathrm{R}_{\mathrm{a}} \wedge \mathrm{R}_{\mathrm{b}} \neq \varnothing$

有

$$
\begin{aligned}
\neg \mathrm{R}_{\pi}^{*} & =\{(1,4),(2,3),(2,4),(3,4)\} \\
\mathrm{R}_{\mathrm{b}} & =\{(1,2),(1,3),(1,4),(3,4)\}
\end{aligned}
$$

The necessary and sufficient condition for a set of pairs to be a non-repeating (=simple) braid.

Lemma

${ }^{a}$ A set R of pairs (i, j), with $i<j$, comes from some permutation if and only if the following two conditions are satisfied:
(1) if $(i, j) \in R$ and $(j, k) \in R$, then $(i, k) \in R$,
(2) if $(i, k) \in R$, then $(i, j) \in R$ or $(j, k) \in R$ for every j with $\mathrm{i}<\mathrm{j}<\mathrm{k}$.
${ }^{\text {a }}$ Lemma 9.1.6, D.B.A. Epstein, I.W. Cannon, D.E. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, INC., 1992.

The Thurston Automaton (a sketch)

The Thurston Automaton (a sketch)

The Thurston Automaton (a sketch)

The Thurston Automaton (an example)

Let us consider the following permutations:

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 2 & 1
\end{array}\right), \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 5 & 1 & 3
\end{array}\right) .
$$

The Thurston Automaton (an example)

Let us consider the following permutations:

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 2 & 1
\end{array}\right), \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 5 & 1 & 3
\end{array}\right)
$$

We have

Figure: Simple braids R_{π} (left), R_{τ} (right).

The Thurston Automaton (an example)

The Greedy Normal Form

A braid w is in (left) greedy canonical form if it has a decomposition $\mathrm{w}=\Delta^{\mathrm{m}} \mathrm{R}_{\pi_{1}} \cdots \mathrm{R}_{\pi_{\mathrm{k}}}$ where $\neg \mathrm{R}_{\pi_{\mathrm{i}-1}}^{*} \wedge \mathrm{R}_{\pi_{\mathrm{i}}}=\varnothing$. for all $1 \leq \mathrm{i} \leq \mathrm{k}-1$.

Example

The Greedy Normal Form and Young Tableaux

Thank you!!!
 Velmi děkui za Vaši pozornost!!!

[^0]: ${ }^{\text {a }}$ V. Lopatkin, Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis, Journal of Algebra and its Applications. 15(4), (2016), 30pp.

