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Definition of Young Diagrams

A Young diagram
is a collection of boxes, or cells, arranged in left-justified rows,
with a (weakly) decreasing number of boxes in each row. Listing
the number of boxes in each row gives a partition of the integer
n corresponds to a Young diagram.

Example
The partition of 16 into 6 + 4 + 4 + 2 corresponds to the Young
diagram
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Young Tableau

The purpose of writing a Young diagram instead of just the
partition, of course, is to put something in the boxes (=
numbering or filling).

A Young Tableau
is a filling that is
(1) weakly increasing across each row
(2) strictly increasing down each column

Example

1 2 2 3 3 5
2 3 5 5
4 4 6 6
5 6
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Row-insertion (the Schensted operation)

Let us row-insert 2 in
1 2 2 3
2 3 5 5
4 4 6
5 6

1 2 2 •
2 3 5 5
4 4 6
5 6

← 2 =
1 2 2 2
2 3 • 5
4 4 6
5 6

← 3

1 2 2 2
2 3 3 5
4 4 •
5 6

← 5 =
1 2 2 2
2 3 3 5
4 4 5
5 6 6
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The Product of Tableaux

Thus, the Schensted operation can be used to form a product
tableau Y1 · Y2 from any two tableaux Y1 and Y2.

Example

1 2 2 3
2 3 5 5
4 4 6
5 6

· 1 3
2

=

 1 2 2 3
2 3 5 5
4 4 6
5 6

← 2

 · 1 3

=
1 2 2 2
2 3 3 5
4 4 5
5 6 6

· 1 3 =

 1 2 2 2
2 3 3 5
4 4 5
5 6 6

← 1

 · 3

=

1 1 2 2
2 2 3 5
3 4 5
4 6 6
5

· 3 =

1 1 2 2 3
2 2 3 5
3 4 5
4 6 6
5
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Jeu de Taquin = 15 puzzle = (Loydova) Patnáctka
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A Knuth Point of View

Thus the set Y of all Young tableaux is a monoid with respect
to Schensted operation.

Knuth Transformations

y z · x = x z
y

x < y ≤ z

x z · y = x y
z

x ≤ y < z
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The Plactic Monoid

There is a nice way to formalize the Knuth result.

Let A = {1, 2, . . . , n} with 1 < 2 < · · · < n.

Then we call Pl(A) := A∗/ ≡ the plactic monoida on the
alphabet set A, where A∗ is the free monoid generated by A, ≡
is the congruence of A∗ generated by Knuth relations consist of

acb = cab (a ≤ b < c), bca = bac (a < b ≤ c).
aIt was named the "monoпde plaxique" by Lascoux and Schützenberger

(1981), who allowed any totally ordered alphabet in the definition. The
etymology of the word “plaxique” is unclear; it may refer to plate tectonics
(“tectonique des plaques” in French), as elementary relations that generate
the equivalence allow conditional commutation of generator symbols: they
can sometimes slide across each other (in apparent analogy to tectonic
plates), but not freely.
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Schensted’s column algorithm

A strictly decreasing word I ∈ A∗ is called a column.

Example
I = 875421. We also write I = (1; 1; 0; 1; 1; 0; 1; 1; 0; . . . ; 0).

Let I be a column and let x ∈ A.

x · I =
{
xI, if xI is a column;
I′ · y, otherwise

where y is the rightmost letter in I and is larger than or equal to
x, and I′ is obtained from I by replacing y with x.

Example

3 · 24678 = 3 · 24678 = 23678 · 4.
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“Lattice” Spirit of Schensted’s column algorithm

Consider two columns I and J as ordered sets {I}, {J} and set{
JI
}

:= {x ∈ {J} : y � x = 0 for any y ∈ {I}}

{JI} := {x ∈ {J} : y � x = 1 for some y ∈ {I}}

Let I be a set of all columns. Introduce binary operations
∨,∧ : I× I→ I as follows:

{I ∨ J} := I ∪ {JI}, {I ∧ J} := {JI} ,

From Schensted’s column algorithm it follows that

I · J = (I ∨ J) · (I ∧ J).
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Schensted’s column algorithm

1

2

3

4

5

6

7

8

9

863 · 87642 = 87632 · 864.

i.e., {863} ∨ {87642} = {87632}, {863} ∧ {87642} = {864}.
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a Young Tableau = a Normal Form

1 2 2 3 3 5
2 3 5 5
4 4 6 6
5 6

6
5
4
3
2
1
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Theorem
a For any three columns Ia, Ib, Ic, the following formulas are true

Ia ∨ (Ib ∨ Ic) = (Ia ∨ Ib) ∨ ((Ia ∧ Ib) ∨ Ic),
(Ia ∧ (Ib ∨ Ic)) ∨ (Ib ∧ Ic) = (Ia ∨ Ib) ∧ ((Ia ∧ Ib) ∨ Ic),

(Ia ∧ (Ib ∨ Ic)) ∧ (Ib ∧ Ic) = (Ia ∧ Ib) ∧ Ic.

aV. Lopatkin, Cohomology rings of the plactic monoid algebra via a
Gröbner–Shirshov basis, Journal of Algebra and its Applications. 15(4),
(2016), 30pp.
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Let the Magic begin!

Ia Ib Ic

Ia∨Ib Ia∧Ib Ic

Ia∨Ib (Ia∧Ib)∨Ic (Ia∧Ib)∧Ic

(Ia∨Ib)
∨((Ia∧Ib)∨Ic)

(Ia∨Ib)
∧((Ia∧Ib)∨Ic)

(Ia∧Ib)∧Ic

Ia Ib Ic

Ia Ib∨Ic Ib∧Ic

Ia∨(Ib∨Ic) Ia∧(Ib∨Ic) Ib∧Ic

Ia∨(Ib∨Ic) (Ia∧(Ib∨Ic))
∨(Ib∧Ic)

(Ia∧(Ib∨Ic))
∧(Ib∧Ic)
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Patrick Dehornoy is real.
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Braids; definitions and concepts.

Definition
The braid group on n strands (denoted Bn), also knows as the
Artin braid group, is the group whose elements are equivalence
classes of n-braids (e.g. under ambient isotopy), and whose
group operation is composition of braids.

We will use as generators for Bn the set of positive crossings,
that is, the crossings between two (necessary adjacent) strands,
with the front strand having a positive slope. We denote these
generators by σ1, . . . , σn−1.

These generators are subject to the following relations:{
σiσj = σjσi, if |i− j| > 1,
σiσi+1σi = σi+1σiσi+1.
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Braids and Permutations

One obvious invariant of an isotopy of a braid is the
permutation it induces on the order of the strands

Example

1 2 3 4 5 6

1 2 3 4 5 6

Figure: The simple braid Rπ, where π =
(

1 2 3 4 5 6
4 2 6 1 5 3

)
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From permutations to braids

We thus have a homomorphism p : Bn → Sn, where Sn is the
symmetric group. The generator σi is mapped to the
transposition

si := (i, i + 1) :=
(
1 · · · i− 1 i i + 1 i + 2 · · · n
1 · · · i− 1 i + 1 i i + 2 · · · n

)

We want
to define an inverse map p−1 : Sn → Bn
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W. Thurston point of view, 0

Each permutation π ∈ Sn gives rise to a total order relation ≤π
on {1, . . . , n} with i ≤π j if π(i) < π(j).

We set
Rπ := {(i, j) ∈ {1, . . . , n} × {1, . . . , n}|i < j, π(i) > π(j)}.

Non-repeating braid.
We call a positive braid non-repeating (=simple) if any two of
its strands cross at most once. We define Div(∆n) ⊂ B+

n to be
the set of classes of non-repeating braids.
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W. Thurston point of view, 1

Example

Take the following permutation π =
(
1 2 3 4 5 6
4 2 6 1 5 3

)
∈ S6.

We have

π(1) > π(2), π(1) > π(4), π(1) > π(6), π(2) > π(4),
π(3) > π(4), π(3) > π(5), π(3) > π(6), π(5) > π(6).

hence Rπ = {(1, 2), (1, 4), (1, 6), (2, 4), (3, 4), (3, 5), (3, 6), (5, 6)},

1 2 3 4 5 6

1 2 3 4 5 6
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W.Thurston point of view, 2

Lemma
a A set R of pairs (i, j), with i < j, comes from some permutation
if and only if the following two conditions are satisfied:

If (i, j) ∈ R and (j, k) ∈ R, then (i, k) ∈ R.
If (i, k) ∈ R, then (i, j) ∈ R or (j, k) ∈ R for every j with
i < j < k.

aLemma 9.1.6, D.B.A. Epstein, I.W. Cannon, D.E. Holt, S.V.F. Levy,
M.S. Paterson and W.P. Thurston, Word Processing in Groups, Jones and
Bartlett Publishers, INC., 1992.
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The Garside Braid

We can define a partial order in Sn by setting π ≥ τ if Rπ ⊃ Rτ .

The identity ε is the smallest element of Sn.

The largest element is ω :=
(
1 · · · n
n · · · 1

)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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The Garside Braid and the Flip Involution.

1 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 5
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Thurston Operations of non-repeating (=simple) braids.

The maximal common braid
For any two permutations π1, π2 ∈ Sn, and corresponding
simple braid Rπ1 , Rπ2 , we define Rπ1 ∧ Rπ2 as follows:

Rπ1 ∧ Rπ2 := {(i, k) ∈ Rπ1 ∩ Rπ2 , | (i, j) ∈ Rπ1 ∩ Rπ2

or (j, k) ∈ Rπ1 ∩ Rπ2 for all j with i < j < k}.

The Complement of a braid
For a permutation π ∈ Sn, we set

¬Rπ := Rωπ = ∆ \ Rπ.

Example

¬Rε = ∆n, ¬∆n = Rε.
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Ra ∩ Rb 6= ∅ does not imply that Ra ∧ Rb 6= ∅

1 2 3 4

1 2 3 4

1 2 3 4

Rπ =

Rτ =

1 2 3 4

= ¬R∗π ∩ Rτ

¬R∗π = {(1, 4), (2, 3), (2, 4), (3, 4)}
Rb = {(1, 2), (1, 3), (1, 4), (3, 4)}
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The necessary and sufficient condition for a set of pairs to
be a non-repeating (=simple) braid.

Lemma
a A set R of pairs (i, j), with i < j, comes from some permutation
if and only if the following two conditions are satisfied:
(1) if (i, j) ∈ R and (j, k) ∈ R, then (i, k) ∈ R,
(2) if (i, k) ∈ R, then (i, j) ∈ R or (j, k) ∈ R for every j with

i < j < k.
aLemma 9.1.6, D.B.A. Epstein, I.W. Cannon, D.E. Holt, S.V.F. Levy,

M.S. Paterson and W.P. Thurston, Word Processing in Groups, Jones and
Bartlett Publishers, INC., 1992.
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The Thurston Automaton (a sketch)

A

B
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The Thurston Automaton (a sketch)

A

B

A

B

¬A∗ ∧ B
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The Thurston Automaton (a sketch)

A

B

A

B

¬A∗ ∧ B

H(AB)

T(AB)

Viktor Lopatkin Braid Spirit of Young Tableux



The Thurston Automaton (an example)

Let us consider the following permutations:

π =
(
1 2 3 4 5
3 4 5 2 1

)
, τ =

(
1 2 3 4 5
4 2 5 1 3

)
.

We have

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure: Simple braids Rπ (left), Rτ (right).
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The Thurston Automaton (an example)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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The Greedy Normal Form

A braid w is in (left) greedy canonical form if it has a
decomposition w = ∆mRπ1 · · ·Rπk where ¬R∗πi−1

∧ Rπi = ∅. for
all 1 ≤ i ≤ k− 1.

Example

1
2
3
4

1
2
3
4
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The Greedy Normal Form and Young Tableaux

6
5
4
3
2
1

1
2
3
4

1
2
3
4
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Thank you!!!
Velmi děkui za Vaši pozornost!!!
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