## Braid Spirit of Young Tableux

### Viktor Lopatkin<sup>†</sup>

#### <sup>†</sup>Laboratory of Modern Algebra and Applications, St.Petersburg State University

### Ostrava 2019

Viktor Lopatkin Braid Spirit of Young Tableux

- Young Diagrams
- The Plactic Monoid
- The Schensted column algorithm comes from the Braid Universe
- The Braid Universe
- The End

< E

### A Young diagram

is a collection of boxes, or cells, arranged in left-justified rows, with a (weakly) decreasing number of boxes in each row. Listing the number of boxes in each row gives a partition of the integer n corresponds to a Young diagram.

#### Example

The partition of 16 into 6 + 4 + 4 + 2 corresponds to the Young diagram



The purpose of writing a Young diagram instead of just the partition, of course, is to put something in the boxes (= numbering or filling).

### A Young Tableau

is a filling that is

- (1) weakly increasing across each row
- (2) strictly increasing down each column

### Example

《曰》 《圖》 《圖》 《圖》

# Row-insertion (the Schensted operation)



→ Ξ →

## Row-insertion (the Schensted operation)





Viktor Lopatkin Braid Spirit of Young Tableux

æ

## The Product of Tableaux

Thus, the Schensted operation can be used to form a product tableau  $\mathbb{Y}_1 \cdot \mathbb{Y}_2$  from any two tableaux  $\mathbb{Y}_1$  and  $\mathbb{Y}_2$ .

#### Example



Viktor Lopatkin Braid Spirit of Young Tableux

# Jeu de Taquin = 15 puzzle = (Loydova) Patnáctka





15-14-13.-THE GREAT PRESIDENTIAL PUZZLE.

Thus the set  $\mathbb {Y}$  of all Young tableaux is a monoid with respect to Schensted operation.

Thus the set  $\mathbb {Y}$  of all Young tableaux is a monoid with respect to Schensted operation.



圖 🕨 🔸 문 🕨 🔺 문 🕨 👘

# The Plactic Monoid

There is a nice way to formalize the Knuth result.

(신문) (신문)

## The Plactic Monoid

There is a nice way to formalize the Knuth result.

### Let $A = \{1, 2, ..., n\}$ with $1 < 2 < \dots < n$ .

Then we call  $Pl(A) := A^* / \equiv$  the plactic monoid<sup>a</sup> on the alphabet set A, where A<sup>\*</sup> is the free monoid generated by A,  $\equiv$  is the congruence of A<sup>\*</sup> generated by Knuth relations consist of

$$acb = cab (a \le b < c),$$
  $bca = bac (a < b \le c).$ 

<sup>a</sup>It was named the "mononde plaxique" by Lascoux and Schützenberger (1981), who allowed any totally ordered alphabet in the definition. The etymology of the word "plaxique" is unclear; it may refer to plate tectonics ("tectonique des plaques" in French), as elementary relations that generate the equivalence allow conditional commutation of generator symbols: they can sometimes slide across each other (in apparent analogy to tectonic plates), but not freely.

Viktor Lopatkin Braid Spirit of Young Tableux

A strictly decreasing word  $\mathbf{I}\in\mathbf{A}^*$  is called a column.

∃ ► < ∃ ►</p>

A strictly decreasing word  $\mathbf{I}\in\mathbf{A}^*$  is called a column.

### Example

I = 875421. We also write I = (1; 1; 0; 1; 1; 0; 1; 1; 0; ...; 0).

A strictly decreasing word  $\mathbf{I}\in\mathbf{A}^*$  is called a column.

#### Example

$$I = 875421$$
. We also write  $I = (1; 1; 0; 1; 1; 0; 1; 1; 0; ...; 0)$ .

Let I be a column and let  $x \in A$ .

$$\mathbf{x} \cdot \mathbf{I} = \begin{cases} \mathrm{xI, \ if \ xI \ is \ a \ column;} \\ \mathbf{I}' \cdot \mathbf{y}, \ otherwise \end{cases}$$

where y is the rightmost letter in I and is larger than or equal to x, and I' is obtained from I by replacing y with x.

A strictly decreasing word  $\mathbf{I}\in\mathbf{A}^*$  is called a column.

#### Example

$$I = 875421$$
. We also write  $I = (1; 1; 0; 1; 1; 0; 1; 1; 0; ...; 0)$ .

Let I be a column and let  $x \in A$ .

$$\mathbf{x} \cdot \mathbf{I} = \begin{cases} \mathbf{xI}, \text{ if } \mathbf{xI} \text{ is a column;} \\ \mathbf{I}' \cdot \mathbf{y}, \text{ otherwise} \end{cases}$$

where y is the rightmost letter in I and is larger than or equal to x, and I' is obtained from I by replacing y with x.

$$3 \cdot 24678 =$$

A strictly decreasing word  $\mathbf{I}\in\mathbf{A}^*$  is called a column.

#### Example

$$I = 875421$$
. We also write  $I = (1; 1; 0; 1; 1; 0; 1; 1; 0; ...; 0)$ .

Let I be a column and let  $x \in A$ .

$$\mathbf{x} \cdot \mathbf{I} = \begin{cases} \mathbf{xI}, \text{ if } \mathbf{xI} \text{ is a column;} \\ \mathbf{I}' \cdot \mathbf{y}, \text{ otherwise} \end{cases}$$

where y is the rightmost letter in I and is larger than or equal to x, and I' is obtained from I by replacing y with x.

$$3 \cdot 24678 = 3 \cdot 24678 =$$

A strictly decreasing word  $\mathbf{I}\in\mathbf{A}^*$  is called a column.

#### Example

$$I = 875421$$
. We also write  $I = (1; 1; 0; 1; 1; 0; 1; 1; 0; ...; 0)$ .

Let I be a column and let  $x \in A$ .

$$\mathbf{x} \cdot \mathbf{I} = \begin{cases} \mathbf{xI}, \text{ if } \mathbf{xI} \text{ is a column;} \\ \mathbf{I}' \cdot \mathbf{y}, \text{ otherwise} \end{cases}$$

where y is the rightmost letter in I and is larger than or equal to x, and I' is obtained from I by replacing y with x.

$$3 \cdot 24678 = \mathbf{3} \cdot 24678 = \mathbf{23}678 \cdot \mathbf{4}.$$

## "Lattice" Spirit of Schensted's column algorithm

Consider two columns I and J as ordered sets  $\{I\}$ ,  $\{J\}$  and set

$$\begin{split} \left\{J^{I}\right\} &:= \left\{x \in \{J\} : y \rightleftarrows x = 0 \text{ for any } y \in \{I\}\right\} \\ \left\{J_{I}\right\} &:= \left\{x \in \{J\} : y \rightleftarrows x = 1 \text{ for some } y \in \{I\}\right\} \end{split}$$

- - E

## "Lattice" Spirit of Schensted's column algorithm

Consider two columns I and J as ordered sets  $\{I\}$ ,  $\{J\}$  and set

$$\begin{split} \left\{J^{I}\right\} &:= \left\{x \in \{J\} : y \rightleftarrows x = 0 \text{ for any } y \in \{I\}\right\} \\ \left\{J_{I}\right\} &:= \left\{x \in \{J\} : y \rightleftarrows x = 1 \text{ for some } y \in \{I\}\right\} \end{split}$$

Let  $\mathbb{I}$  be a set of all columns. Introduce binary operations  $\lor, \land : \mathbb{I} \times \mathbb{I} \to \mathbb{I}$  as follows:

$$\{I \lor J\} := I \cup \{J^I\}, \qquad \{I \land J\} := \{J_I\},$$

## "Lattice" Spirit of Schensted's column algorithm

Consider two columns I and J as ordered sets {I}, {J} and set

$$\begin{split} \left\{J^{I}\right\} &:= \left\{x \in \{J\} : y \rightleftarrows x = 0 \text{ for any } y \in \{I\}\right\} \\ \left\{J_{I}\right\} &:= \left\{x \in \{J\} : y \rightleftarrows x = 1 \text{ for some } y \in \{I\}\right\} \end{split}$$

Let  $\mathbb{I}$  be a set of all columns. Introduce binary operations  $\lor, \land : \mathbb{I} \times \mathbb{I} \to \mathbb{I}$  as follows:

$$\{I \lor J\} := I \cup \{J^I\}, \qquad \{I \land J\} := \{J_I\}\,,$$

From Schensted's column algorithm it follows that

$$\mathbf{I} \cdot \mathbf{J} = (\mathbf{I} \lor \mathbf{J}) \cdot (\mathbf{I} \land \mathbf{J}).$$



 $863 \cdot 87642 = 87632 \cdot 864.$ 

i.e.,  $\{863\} \lor \{87642\} = \{87632\}, \{863\} \land \{87642\} = \{864\}.$ 

### a Young Tableau = a Normal Form





Viktor Lopatkin Braid Spirit of Young Tableux

< Ξ > < Ξ >

1

#### Theorem

 $^{\rm a}$  For any three columns  $I_{\rm a}, I_{\rm b}, I_{\rm c},$  the following formulas are true

$$\begin{split} I_{a} &\vee (I_{b} \vee I_{c}) = (I_{a} \vee I_{b}) \vee ((I_{a} \wedge I_{b}) \vee I_{c}), \\ (I_{a} \wedge (I_{b} \vee I_{c})) &\vee (I_{b} \wedge I_{c}) = (I_{a} \vee I_{b}) \wedge ((I_{a} \wedge I_{b}) \vee I_{c}) \\ &(I_{a} \wedge (I_{b} \vee I_{c})) \wedge (I_{b} \wedge I_{c}) = (I_{a} \wedge I_{b}) \wedge I_{c}. \end{split}$$

<sup>a</sup>V. Lopatkin, Cohomology rings of the plactic monoid algebra via a Gröbner–Shirshov basis, Journal of Algebra and its Applications. 15(4), (2016), 30pp.

∃ >

## Let the Magic begin!



Viktor Lopatkin Braid Spirit of Young Tableux

《曰》 《聞》 《臣》 《臣》

E

## Patrick Dehornoy is real.





Patrick Dehornoy with François Digne Eddy Godelle Daan Krammer Jean Michel

Foundations of Garside Theory



### Definition

The braid group on n strands (denoted  $B_n$ ), also knows as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids.

We will use as generators for  $B_n$  the set of positive crossings, that is, the crossings between two (necessary adjacent) strands, with the front strand having a positive slope. We denote these generators by  $\sigma_1, \ldots, \sigma_{n-1}$ .

### These generators are subject to the following relations:

$$\begin{cases} \sigma_i \sigma_j = \sigma_j \sigma_i, \text{ if } |i - j| > 1, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}. \end{cases}$$

# Braids and Permutations

One obvious invariant of an isotopy of a braid is the permutation it induces on the order of the strands



We thus have a homomorphism  $p: B_n \to \mathfrak{S}_n$ , where  $\mathfrak{S}_n$  is the symmetric group. The generator  $\sigma_i$  is mapped to the transposition

$$s_i := (i, i+1) := \begin{pmatrix} 1 & \cdots & i-1 & i & i+1 & i+2 & \cdots & n \\ 1 & \cdots & i-1 & i+1 & i & i+2 & \cdots & n \end{pmatrix}$$

We want

to define an inverse map  $p^{-1}: {\mathfrak S}_n \to B_n$ 

Each permutation  $\pi \in \mathfrak{S}_n$  gives rise to a total order relation  $\leq_{\pi}$  on  $\{1, \ldots, n\}$  with  $i \leq_{\pi} j$  if  $\pi(i) < \pi(j)$ .

#### We set

$$R_{\pi} := \{(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,n\} | i < j, \, \pi(i) > \pi(j)\}.$$

#### Non-repeating braid.

We call a positive braid non-repeating (=simple) if any two of its strands cross at most once. We define  $\text{Div}(\Delta_n) \subset B_n^+$  to be the set of classes of non-repeating braids.

# W. Thurston point of view, 1

### Example

Take the following permutation  $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 1 & 5 & 3 \end{pmatrix} \in \mathfrak{S}_6.$ We have

$$\pi(1) > \pi(2), \pi(1) > \pi(4), \pi(1) > \pi(6), \pi(2) > \pi(4), \\ \pi(3) > \pi(4), \pi(3) > \pi(5), \pi(3) > \pi(6), \pi(5) > \pi(6).$$

hence  $R_{\pi} = \{(1,2), (1,4), (1,6), (2,4), (3,4), (3,5), (3,6), (5,6)\},\$ 



#### Lemma

<sup>a</sup> A set R of pairs (i, j), with i < j, comes from some permutation if and only if the following two conditions are satisfied:

- If  $(i, j) \in R$  and  $(j, k) \in R$ , then  $(i, k) \in R$ .
- If  $(i, k) \in \mathbb{R}$ , then  $(i, j) \in \mathbb{R}$  or  $(j, k) \in \mathbb{R}$  for every j with i < j < k.

<sup>a</sup>Lemma 9.1.6, D.B.A. Epstein, I.W. Cannon, D.E. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, INC., 1992.

## The Garside Braid

Viktor Lopatkin Braid Spirit of Young Tableux

> < 프 > < 프 >

# The Garside Braid

We can define a partial order in  $\mathfrak{S}_n$  by setting  $\pi \geq \tau$  if  $R_{\pi} \supset R_{\tau}$ .

E ► < E ►</p>

## The Garside Braid

We can define a partial order in  $\mathfrak{S}_n$  by setting  $\pi \geq \tau$  if  $R_{\pi} \supset R_{\tau}$ .

The identity  $\epsilon$  is the smallest element of  $\mathfrak{S}_n$ .

< E

### The Garside Braid

We can define a partial order in  $\mathfrak{S}_n$  by setting  $\pi \geq \tau$  if  $R_{\pi} \supset R_{\tau}$ .

The identity  $\epsilon$  is the smallest element of  $\mathfrak{S}_n$ .

The largest element is 
$$\omega := \begin{pmatrix} 1 & \cdots & n \\ n & \cdots & 1 \end{pmatrix}$$

### The Garside Braid

We can define a partial order in  $\mathfrak{S}_n$  by setting  $\pi \geq \tau$  if  $R_{\pi} \supset R_{\tau}$ .

The identity  $\epsilon$  is the smallest element of  $\mathfrak{S}_n$ .

The largest element is 
$$\omega := \begin{pmatrix} 1 & \cdots & n \\ n & \cdots & 1 \end{pmatrix}$$



### The Garside Braid and the Flip Involution.



### The maximal common braid

For any two permutations  $\pi_1, \pi_2 \in \mathfrak{S}_n$ , and corresponding simple braid  $R_{\pi_1}, R_{\pi_2}$ , we define  $R_{\pi_1} \wedge R_{\pi_2}$  as follows:

$$\begin{array}{rcl} R_{\pi_1} \wedge R_{\pi_2} &:= & \{(i,k) \in R_{\pi_1} \cap R_{\pi_2}, \, | \, (i,j) \in R_{\pi_1} \cap R_{\pi_2} \\ & & \text{ or } (j,k) \in R_{\pi_1} \cap R_{\pi_2} \text{ for all } j \text{ with } i < j < k \}. \end{array}$$

### The Complement of a braid

For a permutation  $\pi \in \mathfrak{S}_n$ , we set

$$\neg \mathbf{R}_{\pi} := \mathbf{R}_{\omega\pi} = \Delta \setminus \mathbf{R}_{\pi}.$$

### Example

$$\neg \mathbf{R}_{\epsilon} = \Delta_{\mathbf{n}}, \qquad \neg \Delta_{\mathbf{n}} = \mathbf{R}_{\epsilon}.$$

Viktor Lopatkin Braid Spirit of Young Tableux

### $R_a \cap R_b \neq \emptyset$ does not imply that $R_a \wedge R_b \neq \emptyset$



$$\neg \mathbf{R}_{\pi}^{*} = \{(1,4), (2,3), (2,4), (3,4)\} \\ \mathbf{R}_{\mathbf{b}} = \{(1,2), (1,3), (1,4), (3,4)\}$$

Viktor Lopatkin Braid Spirit of Young Tableux

· < 문 > · < 문 > · ·

< 一型

æ

### $R_a \cap R_b \neq \emptyset$ does not imply that $R_a \wedge R_b \neq \emptyset$



$$\neg \mathbf{R}_{\pi}^{*} = \{(1, 4), (2, 3), (2, 4), (3, 4)\} \\ \mathbf{R}_{b} = \{(1, 2), (1, 3), (1, 4), (3, 4)\}$$

· < 문 > · < 문 > · ·

< 一型

æ

The necessary and sufficient condition for a set of pairs to be a non-repeating (=simple) braid.

#### Lemma

<sup>a</sup> A set R of pairs (i, j), with i < j, comes from some permutation if and only if the following two conditions are satisfied:

(1) if  $(i, j) \in R$  and  $(j, k) \in R$ , then  $(i, k) \in R$ ,

(2) if  $(i, k) \in \mathbb{R}$ , then  $(i, j) \in \mathbb{R}$  or  $(j, k) \in \mathbb{R}$  for every j with i < j < k.

<sup>a</sup>Lemma 9.1.6, D.B.A. Epstein, I.W. Cannon, D.E. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, INC., 1992.

## The Thurston Automaton (a sketch)



## The Thurston Automaton (a sketch)



→ ∃ →

## The Thurston Automaton (a sketch)



# The Thurston Automaton (an example)

Let us consider the following permutations:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}.$$

# The Thurston Automaton (an example)

Let us consider the following permutations:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}.$$

We have



Figure: Simple braids  $R_{\pi}$  (left),  $R_{\tau}$  (right).

## The Thurston Automaton (an example)



A braid w is in (left) greedy canonical form if it has a decomposition  $w = \Delta^m R_{\pi_1} \cdots R_{\pi_k}$  where  $\neg R^*_{\pi_{i-1}} \wedge R_{\pi_i} = \emptyset$ . for all  $1 \leq i \leq k-1$ .



★ E ► ★ E ►

### The Greedy Normal Form and Young Tableaux





# Thank you!!! Velmi děkui za Vaši pozornost!!!