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“Appetizer”

I have a finite group G ,

together with an automorphism α : G −→ G .

I am telling you that, for all x ∈ G :

α3(x) · α2(x−1) · α(x−1) · α2(x) · α(x−1) · x−1 = 1G .

Q. What can you tell me about the structure of G?
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Regular automorphisms

Thm. (Rowley ′95): A finite group G is solvable if it has an
automorphism that moves every element of G other than 1G .

Def. ∆0 := G and ∆n+1 := [∆n,∆n].

Def. G solvable if some ∆n vanishes.

Def. Such an automorphism is called regular.

This theorem has a long history, going back to work of
Gorenstein—Herstein ′61.

The solution requires the classification of the finite, simple
groups ′55—′81—′04—′08—??′.

Wolfgang Alexander Moens Identities of automorphisms



Motivation
Main result

Applications

Appetizer
Three classic theorems
3 + 1 extensions

Side note: CFSG

Figure: “These are the “building blocks” of all finite groups.”
[Image: Ivan Andrus].
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Fun fact

Figure: “In February 1981 the classification of finite simple
groups was completed.” . . . [Richard Elwes Plus Magazine:
An enormous theorem: the classification of finite simple
groups, December 7, 2006].
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Regular automorphisms of prime order

Thm. (Thompson ′59/′60): A finite group G is nilpotent if it
has a regular automorphism of prime order.

Def. Γ1 := G and Γn+1 := [Γn,G ].

Def. G nilpotent if some Γn+1 vanishes.

Def. c(G ) := min{n ∈ N|Γn+1(G ) = 1G}.

This theorem has a long history, going back to work of
Burnside and Frobenius about simply-transitive actions of
finite groups.

The solution depends on Thompson’s famous p-complement
theorem but not on the classification.
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Fun fact

Figure: The solution to the problem, known as Frobenius’ conjecture, was
reported by Prof. John G. Thompson, a 26-year-old mathematician. It
dealt with so-called “group theory” and had puzzled mathematicians for
more than fifty years . . . [NYT, April 26, 1959].
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Regular automorphisms of prime order (ctd.)

Thm. (Higman ′57; Kreknin—Kostrikin ′63): If a nilpotent
group G has a regular automorphism of prime order p, then
the nilpotency class of G is bounded:

c(G ) ≤ (p − 1)2(p−1)
.

Higman proved that there exists a minimal upper bound h(p)
that depends only on p.

Kreknin and Kostrikin later reduced the bound to
h(p) ≤ (p − 1)2(p−1)

.

The proofs all use Lie theory.

Wolfgang Alexander Moens Identities of automorphisms



Motivation
Main result

Applications

Appetizer
Three classic theorems
3 + 1 extensions

Fun fact

Figure: “The aversion of Frobenius to Klein and Sophus Lie knew no
limits . . . ” [Die Mathematik und Ihre Dozenten an der Berliner
Universität 1810− 1920].
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Monotone identities of endomorphisms

Def. If r(t) = a0 + a1 · t + · · ·+ ad · td ∈ Z[t] is a
polynomial, then we define the map

r(α) : G −→ G

by
x 7→ xa0 · α(xa1) · · ·αd(xad ).

Def. If r(α) sends every element x of G to 1G , then we
simply write

a0 + a1 · α + · · ·+ ad · αd = 1G .
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A simple observation

Obs. Consider a finite group G with a regular automorphism
α : G −→ G of order n. Then

1 + α + α2 + · · ·+ αn−1 = 1G .

Prf. :
Since α fixes only 1G , the map
(−1 + α) : G −→ G : x 7→ x−1 · α(x) is injective.
Since G is finite, this map is also surjective.
So there exists a y ∈ G such that x = y−1 · α(y), and:

x · α(x) · · ·αn−1(x) = y−1 · α(y) · α(y−1) · · ·αn(y)

= y−1 · 1G · 1G · · · 1G · αn(y)

= 1G .
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Extending these classical results ...

Thm. (Ersoy ′16): Let n be an odd number. A finite group G
is solvable if it has an automorphism α : G −→ G such that

1 + α + α2 + · · ·+ αn−1 = 1G .

Def. This is a split automorphism of index n.

The proof uses the classification.

This (partially) extends the theorem of Rowley.

The statement is false for n even.
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Extending these classical results ...

Thm. (Hughes—Thompson ′59; Kegel ′60/′61): A finite group
G is nilpotent if it has an automorphism α : G −→ G such that

1 + α + α2 + · · ·+ αp−1 = 1G .

Hughes and Thompson used a famous paper of Hall and
Higman ′56 to prove that G is solvable.

Kegel later showed that the solvability of G implies its
nilpotency.

This extends the theorem of Thompson.
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Extending these classical results ...

Thm. (Khukhro ′86): There exists a map Kh : N × P −→ N
with the following property. If a finite group G has an auto-
morphism α : G −→ G such that

1 + α + α2 + · · ·+ αp−1 = 1G ,

then the nilpotency class c(G ) of G is bounded by

c(G ) ≤ Kh(d(G ), p),

where d(G ) is the minimal number of elements needed to gen-
erate G .

Rmk. Examples show that the upper bound must depend on
d(G ).
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Summary ...

Theorem Identity Assumption Conclusion

Rowley −1 + αn = 1G regularity solvable

Ersoy 1 + α + · · ·+ αn−1 = 1G n odd solvable

Thompson −1 + αp = 1G regularity nilpotent

H-T; Kegel 1 + α + · · ·+ αp−1 = 1G - nilpotent

Higman −1 + αp = 1G regularity bd. class

Khukhro 1 + α + · · ·+ αp−1 = 1G - bd. class

The results in this table were motivated by the
Gorenstein—Herstein conjecture and by the Frobenius
conjecture∗ and the Higman conjecture∗.

But the latter can also be motivated by the Burnside
problems.
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The Restricted Burnside problem

Rmk. There is more than one Burnside problem and the
terminology is used inconsistently in the literature.

Restricted Burnside problem RB(d , e): There exists a map

RB : N× N −→ N

such that every d-generated group G of exponent e satisfies

|G | ≤ RB(d , e) or |G | = +∞.

Such groups are either “very small” or “very large.”
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Fun fact

Figure: “. . . one of the best known Cambridge athletes of his day . . . ”
[Obituary of W. Burnside in The Times, 1927].
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Fun fact

Figure: “. . . and my math was O.K, I guess . . . ”
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The Restricted Burnside problem: proof

Let e = pm1
1 · · · p

mk
k be the prime factorisation of e.

Thm. (Hall—Higman ′56): If the statement holds for

RB(d , pm1
1 ), . . . ,RB(d , pmk

k ),

then it also holds for RB(d , e).

The theorem is conditional on the classification of the finite
simple groups!

So we have reduced the restricted Burnside problem to
prime-power exponent, say RB(d , pm).
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Fun fact

Figure: “In finite group theory, the outstanding paper on the p-length of
the p-soluble groups, written with P. Hall, played an essential part in the
great breakthrough of 1963 when Feit and Thompson proved that all
groups of odd order are soluble.” [Professor Graham Higman,
Telegraph, 26/05/2008][Pict.: Normal Blamey, 1984].
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The Restricted Burnside problem: proof

Obs. For a finite group G of exponent pm on d generators,
we have

c(G ) ≤ |G | ≤ (pm)(1+dc(G)).

Re-formulation of RBP(d , pm):

Find a map
RBC : N× P∗ −→ N

such that every finite group G of exponent pm on d gen-
erators satisfies

c(G ) ≤ RBC(d , pm).

Wolfgang Alexander Moens Identities of automorphisms



Motivation
Main result

Applications

Appetizer
Three classic theorems
3 + 1 extensions

The Restricted Burnside problem: proof

Thm. (Kostrikin ′58/′59): There exists an upper bound
RBC(d , p) for the class of every finite, d-generated group G
of prime exponent p.

The proof uses Lie theory.

By the reduction theorem of Hall—Higman ′56, we have a
positive solution for the RBP in square-free exponent.
We note that the automorphism 1G : G −→ G : x 7→ x
satisfies

1 + 1G + · · ·+ 1
p−1
G = 1G .

So we see that Kostrikin’s theorem is a special case of
Khukhro’s theorem!
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The Restricted Burnside problem: proof

Thm. (Zel’manov ′90/′91): There exists an upper bound
RBC(d , pm) for the class of every finite, d-generated group
G of prime-power exponent pm.

The proof uses Lie theory.

By Hall—Higman ′56, we have a positive solution for the
restricted Burnside problem in arbitrary exponent.
We again note that automorphism 1G : G −→ G : x 7→ x
satisfies

1 + 1G + · · ·+ 1
pn−1
G = 1G .

And Zel’manov’s theorem is a special case of ...
... another theorem of Zel’manov.
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The compact Burnside problem / the Platonov conjecture

Conj. “If a group is compact and periodic, then it is locally-
finite.”

Rmk.

Compact means compact and Hausdorff.

Periodic means that every element has some finite order.

Locally-finite means that every finite subset generates a finite
subgroup.
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The compact Burnside problem

Proof of the restricted and compact Burnside problems are
similar.

Restricted Burnside problem Compact Burnside problem

Hall—Higman ′56 Wilson ′83
use the CFSG to reduce uses the CFSG to reduce
the problem to p-groups the problem to pro-p groups

Zel’manov ′90/′91 Zel’manov ′92
uses Lie theory to prove that uses Lie theory to prove that

1 + 1G + · · ·+ 1
pn−1
G = 1G 1 + α + · · ·+ αpn−1 = 1G

implies that implies that
c(G ) ≤ RBC(d(G ), pn). c(G ) ≤ Z(d(G ), pn, ...).
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Summary ...

Theorem Identity Assumption Conclusion

Ro −1 + αn = 1G regular solvable

Er 1 + α + · · ·+ αn−1 = 1G n odd solvable

Th −1 + αp = 1G regular nilpotent

HuTh;Ke 1 + α + · · ·+ αp−1 = 1G - nilpotent

Hi;KrKo −1 + αp = 1G regular bd. class

Kh 1 + α + · · ·+ αp−1 = 1G - bd. class

Ko 1 + 1G + · · ·+ 1
p−1
G = 1G p-group bd. class

Ze 1 + 1G + · · ·+ 1
pn−1
G = 1G p-group bd. class

Ze 1 + α + · · ·+ αpn−1 = 1G p-group bd. class
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Identities of automorphisms

Def. We say that a polynomial r(t) ∈ Z[t] is an identity of an
endomorphism γ : G −→ G if and only if there exists an
additive decomposition

r(t) = s1(t) + s2(t) + · · ·+ sk(t)

of r(t) into terms s1(t), . . . , sk(t) ∈ Z[t] such that the map
G −→ G defined by

x 7→ x s1(γ) · x s2(γ) · · · x sk (γ)

sends every element of G to 1G .

Rmk. The identities of γ form an ideal of Z[t].
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Example: the discrete Heisenberg group

Ex. Consider the discrete Heisenberg group H ⊆ GL3(Z).
Then the map 1 a c

0 1 b
0 0 1

 7→
 1 b a · b + b·(b−1)

2 − c
0 1 a + b
0 0 1


defines an automorphism α : H −→ H of H. We can verify
that, for every x ∈ H, we have

α3(x)︸ ︷︷ ︸
s1(t)=t3

·α2(x−1)︸ ︷︷ ︸
s2(t)=−t2

·α(x−1) · α2(x)︸ ︷︷ ︸
s3(t)=−t+t2

· α(x−1)︸ ︷︷ ︸
s4(t)=−t

· x−1︸ ︷︷ ︸
s5(t)=−1

= 1H .

So r(t) := s1(t) + · · ·+ s5(t) = t3− 2t − 1 is an identity of α.
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Identities of endomorphisms

Our main results can be grouped together into two categories:

Existence theorems.

Easy, but not part of this talk.

Structure theorems.

Not-so-easy, but the focus of this talk.
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Structure theorem

To each polynomial r(t) ∈ Z[t], we will assign invariants
ι1, ι2, ι3, ι4 ∈ Z and h ∈ N ∪ {+∞} — to be defined later in
the talk.

Main Theorem (′18): Consider a finite group G , together
with an automorphism α : G −→ G and an identity r(t).
Then

gcd(|G |, ι1 · ι2 · ι3 · ι4) 6= 1

or
[[[[G ,G ],G ], ...],G ]︸ ︷︷ ︸

h+1

= {1G}.
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The invariants ι1 and ι2

Def. ι1 := r(1) ∈ Z.
If α(x) = x , then x r(1) = 1G .
If gcd(|G |, ι1) = 1 then α is regular.

Def. For every u, j ∈ N, we consider the partial sum

ru,j(t) :=
∑

i≡j mod u

ai · t i ∈ Z[t],

so that r(t) = ru,0(t) + ru,1(t) + · · ·+ ru,u−1(t).

Def. We define ι2 to be the (unique) non-negative generator
of the principal Z-ideal

Z ∩
⋂
u>1

(ru,0(t) · Z[t] + · · ·+ ru,u−1(t) · Z[t]).
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Example: r(t) := t3 − 2t − 1 ∈ Z[t].

Then r2,0(t) := −1 and r2,1(t) := −2t + t3, so that

Z ∩ (r2,0(t) · Z[t] + r2,1(t) · Z[t]) = Z.

Then r3,0(t) := −1 + t3 and r3,1(t) := −2t and r3,2(t) := 0,
so that

Z ∩ (r3,0(t) · Z[t] + r3,1(t) · Z[t] + r3,2(t) · Z[t]) = 2 · Z.

For u ≥ 4, we have ru,0(t) := −1, ru,1(t) := −2t, ru,2(t) := 0,
and ru,3(t) := t3, so that

Z ∩ (ru,0(t) · Z[t] + · · ·+ ru,u−1(t) · Z[t]) = Z.

Since Z ∩ 2 · Z ∩ Z = 2 · Z, we have ι2 := 2.
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Aux. Thm. (′18) If gcd(|G |, ι1 · ι2) = 1, then G is nilpotent.

The proof generalises Higman’s contribution to the Frobenius
conjecture.
It also uses Thompson’s p-complement theorem.
But it does not require the classification of the finite simple
groups.

Rmk. This settles the nilpotency of our group G , but it does
not give us abound on the nilpotency class of G .
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The invariants ι3 and ι4

If r(t) is constant, then we set ι3 := r(t) ∈ Z and ι4 := 1.

Else, the polynomial r(t) factorises over the complex numbers
as

r(t) := ad ·
∏

1≤i≤l
(t − λi )mi .

Def.

ι3 := a1+2d2

d · (m − 1)! ·
∏

1≤i ,j≤l
i 6=j

(λi − λj)m,

where m := max(m1, . . . ,ml).
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The invariants ι3 and ι4

Def.

ι4 := a2d3

d ·
∏

1≤i ,j≤l
r(λi ·λj )6=0

r(λi · λj)

= a2d3

d ·
∏

1≤i ,j ,k≤l
r(λi ·λj )6=0

ad · (λi · λj − λk)mk .

Lem. If r(t) ∈ Z[t] \ {0} then also ι3, ι4 ∈ Z \ {0}.
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Example: r(t) = t3 − 2t − 1 ∈ Z[t].

The roots are λ1 := 1−
√

5
2 , λ2 := 1+

√
5

2 , and λ3 := −1. So

ι3 := −5.

Since r(λi · λj) = 0 if and only if {i , j} = {1, 2}, we have

ι4 := −27 · 5.

Rmk. We can compute the invariants without having to
compute the roots of the polynomial.
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The invariant h

Def. A finite subset X of a group (K , ·) is arithmetically-free
if and only if, for every λ, µ ∈ X , we have

{λ, λ · µ, λ · µ2, λ · µ3, . . .} 6⊆ X .

Ex.

X := {+1,−1} is not an arithmetically-free subset of (Q×, ·).
X := {2, 4, 8} is an arithmetically-free subset of (Q×, ·).

Lem. If ι1 · ι2 6= 0, then the roots of r(t) form an

arithmetically-free subset X of (Q×, ·).
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Example: r(t) = t3 − 2t − 1 ∈ Z[t].

Let λ1 := 1−
√

5
2 , λ2 := 1+

√
5

2 , and λ3 := −1 be the roots.

Then λ1 · λ1, λ1 · λ2
2, λ1 · λ3 6∈ {λ1, λ2, λ3}.

Then λ2 · λ2
1, λ2 · λ2, λ2 · λ3 6∈ {λ1, λ2, λ3}.

Then λ3 · λ1, λ3 · λ2, λ3 · λ3 6∈ {λ1, λ2, λ3}.

So the set X := {λ1, λ2, λ3} is an arithmetically-free subset of

the group (Q×, ·).

Alternatively: ι1 · ι2 = (−2) · (2) 6= 0, so that X is an A.F.

subset of Q×.
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The invariant h comes from Lie theory

For every finite, arithmetically-free subset X of the
multiplicative group (K×, ·) of a field K , there exists a

minimal natural number h ≤ |X |2
|X |

with the following
property.

Thm. (′17) If a Lie ring L is graded by (K×, ·) and supported
by X , then L is nilpotent and

Γh+1(L) := [L, L, . . . , L]︸ ︷︷ ︸
h+1

= {0L}.

Rmk. L =
⊕

λ∈K× Lλ with [Lλ, Lµ] ⊆ Lλ·µ and Lν = {0} if
ν ∈ K× \ X .
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Example: the roots X := {λ1, λ2, λ3} of t3 − 2t − 1

We consider a grading

L =
⊕
λ∈Q×

Lλ

of a Lie ring L by the group (Q×, ·) and we suppose that this
grading is supported by X .

We note that [L, L] ⊆
∑

1≤i ,j≤3[Lλi , Lλj ] ⊆ Lλ3 and

[[L, L], L] ⊆
∑

1≤k≤3

[Lλ3 , Lλk ] = {0L}.

So h ≤ 2.

Wolfgang Alexander Moens Identities of automorphisms



Motivation
Main result

Applications

Identities of automorphisms
Main theorem
Defining the invariants
Proof of main theorem

The invariant h

This result can “naturally” be lifted from Lie rings to groups:

Aux. Thm. (′18) Consider a nilpotent group G with an
automorphism and an identity r(t). If the roots of r(t) form

an arithmetically-free subset of (Q×, ·), then

[G ,G , . . . ,G ]︸ ︷︷ ︸
h+1

is a (ι3 · ι4)-group.
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Proof of the main theorem

Prf.

We assume that gcd(|G |, ι1 · ι2 · ι3 · ι4) = 1.

Aux. Thm. 1: G is nilpotent.

Lem. root set X is arithmetically-free in Q×.

Aux. Thm. 2: Γh+1 := [G ,G , . . . ,G ]︸ ︷︷ ︸
h+1

is a (ι3 · ι4)-group.

By assumption, G has no (ι3 · ι4)-torsion, so that

Γh+1 = [G ,G , . . . ,G ]︸ ︷︷ ︸
h+1

= {1G}.
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Fav. example: r(t) := t3 − 2t − 1

Cor. Consider a finite group G with an automorphism
α : G −→ G and suppose that, for all x ∈ G , we have:

α3(x) · α2(x−1) · α(x−1) · α2(x) · α(x−1) · x−1 = 1G .

Then:

G has an element of order 2, or
G has an element of order 5, or
Γ3 := [[G ,G ],G ] = {1G}.

Prf.

r(t) := t3 − t2 − t + t2 − t − 1 = t3 − 2t − 1.
ι1 · ι2 · ι3 · ι4 = (−2) · (2) · (−5) · (−27 · 5), and
h = 2.
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Linear polynomials a0 + a1 · t

Cor. Consider a finite group G with an automorphism with
a linear identity r(t) := a0 + a1 · t. Then

gcd(|G |, a0 · (a0 + a1)) 6= 1

or G is abelian.

Prf. (ι1 · ι2 · ι3 · ι4) divides a natural power of a0 · (a0 + a1)
and we have h = 1.

Rmk. classic results of Baer, Schenkmann—Wade, and
Alperin about universal power automorphisms.
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Cyclotomic polynomials Φn(t)

Def. Let us say that an automorphism α : G −→ G is
cyclotomic of natural index n > 1 if the cyclotomic polynomial
Φn(t) is a monotone identity of α:

Φn(α) = 1G .

Let us say that α is cyclotomic if it is cyclotomic of some
index n > 1.

Cor. A residually-finite group is locally-nilpotent if it admits
a cyclotomic automorphism.

Wolfgang Alexander Moens Identities of automorphisms



Motivation
Main result

Applications

Generic example
Linear identities
Cyclotomic identities

Cyclotomic polynomials Φn(t)

Final remarks:

This generalises the theorems of Thompson and
Hughes—Thompson and Kegel in several ways.

We can similarly extend the theorems of Higman and
Kreknin—Kostrikin and Khukhro.

We can derive results of Jabara ′08 (about automorphisms
with finite Reidemeister number) without using the CFSG.
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Summary of results

Theorem Identity Assumpt. Concl.

Th −1 + αp = 1G regular nilp.

HuTh;Ke 1 + α + · · ·+ αp−1 = 1G - nilp.

Mo Φn(α) = 1G n 6= 1 nilp.

Hi;KrKo −1 + αp = 1G regular bd. cl.

Kh 1 + α + · · ·+ αp−1 = 1G - bd. cl.

Mo Φn(α) = 1G n 6= 1 bd. cl.

Ko 1 + 1G + · · ·+ 1
p−1
G = 1G p-group bd. cl.

Ze 1 + 1G + · · ·+ 1
pn−1
G = 1G p-group bd. cl.

Ze 1 + α + · · ·+ αpn−1 = 1G p-group bd. cl.

A;B;SW a0 + α = 1G ... ...

Mo a0 + a1 · α = 1G co-prime abelian
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