

The structure of groups with an automorphism satisfying a polynomial identity¹

Wolfgang Alexander Moens

University of Vienna

$\begin{bmatrix} \text{Ostrava Seminar on Mathematical Physics:} \\ 16/05/2019 \end{bmatrix}$

¹This work was supported by the Austrian Science Fund (FWF) grants: J - 3371 - N25 "Representations and gradings of solvable Lie algebras" and P30842 - N35 "Infinitesimal Lie rings: gradings and obstructions".

Appetizer Three classic theorems 3 + 1 extensions

Table of Contents

1 Motivation

- Appetizer
- Three classic theorems
- 3+1 extensions

2 Main result

- Identities of automorphisms
- Main theorem
- Defining the invariants
- Proof of main theorem

3 Applications

- Generic example
- Linear identities
- Cyclotomic identities

Appetizer Three classic theorems 3 + 1 extensions

"Appetizer"

I have a finite group G, together with an automorphism $\alpha : G \longrightarrow G$.

I am telling you that, for all $x \in G$:

 $\alpha^{3}(x) \cdot \alpha^{2}(x^{-1}) \cdot \alpha(x^{-1}) \cdot \alpha^{2}(x) \cdot \alpha(x^{-1}) \cdot x^{-1} = 1_{\mathcal{G}}.$

Q. What can you tell me about the structure of G?

Appetizer Three classic theorems 3 + 1 extensions

Regular automorphisms

<u>Thm</u>. (Rowley '95): A finite group G is *solvable* if it has an automorphism that moves every element of G other than 1_G .

- <u>**Def**</u>. $\Delta_0 := G$ and $\Delta_{n+1} := [\Delta_n, \Delta_n]$.
- **<u>Def</u>**. *G* solvable if some Δ_n vanishes.
- **<u>Def</u>**. Such an automorphism is called *regular*.
- This theorem has a long history, going back to work of Gorenstein—Herstein '61.
- The solution requires the classification of the finite, simple groups '55—'81—'04—'08—??'.

Appetizer Three classic theorems 3 + 1 extensions

Side note: CFSG

The Periodic Table Of Finite Simple Groups

6.C.Z.	Dynkin Diagrams of Simple Lie Algebras																
1		Α,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-0	Q		<i>I</i> 4	o		-0						C2
	4. (4)				· .	a ')		0				20.00	0			0.000	
As	A1(7)	8,	<u> </u>		- º	0	· ·	· ·	G2	ç ı i		$B_2(3)$	C3(3)	$D_4(2)$	$^{2}D_{4}(2^{2})$	² A ₂ (9)	c_3
60	548											25 920		174 112 400	197 496 733	6.948	3
A1(9), B1(2)'	² G ₁ (3)'	C,	$\rightarrow \rightarrow $		-0 E	en 0-	- <u>e</u>	è—è		<u>~~</u>							
As	$A_{1}(8)$											$B_{2}(4)$	C3(5)	$D_4(3)$	${}^{2}D_{4}(3^{2})$	2A2(16)	C5
243													ZIN XVI			43.430	
	~									Tex*		117,000		********	The second		
A	4.(11)	F.(2)	Ex(2)	E.(2)	E(2)	G ₂ (3)	30 (23)	28. (22)	28.(23)	25.(2)	36.(2)	B ₂ (2)	C.(3)	D.(2)	20.(22)	24.(25)	6
		20101123122		-8(-)	311135	02(0)	offer)	201042440	- offer)	× 4(m)	01(0.)		*1794.75		-3(-)	142(40)	
2 520	668	001171279-00	ALCONO.	PRINTER ST	683.364.63E	4245556	211 341 312	774 450 101 200	29120	17971200	10173 001473	1451529	624-009-008	23 499 243 548 400	21013379538480	125 000	7
A ₂ (2)				-			In call	2		20.00	2				200.00		
A8	A1(13)	E ₆ (3)	$E_{7}(3)$	E ₈ (3)	$F_4(3)$	G ₂ (4)	⁵ D ₄ (3 ⁵)	·E ₆ (3·)	-B2(2")	*F4(2')	*G2(3*)	B ₂ (5)	C3(7)	$D_4(5)$	-D ₄ (4-)	-A ₃ (9)	C11
20 160	1012			-	5706400790384 670.844790.600	251 514 500	201948 401 Met #12		32 537 630	264 925 310 409 396 176 414 400	69420-687 674340-982	4 683 800	273-007-288 604-903-636	8 1012 124 4880 000 000 4880	47334-05 105438-000	3265920	11
																	1.000
A9	A1(17)	$E_{6}(4)$	E ₇ (4)	$E_8(4)$	F4(4)	G2(5)	${}^{3}D_{4}(4^{3})$	${}^{2}E_{6}(4^{2})$	${}^{2}B_{2}(2^{7})$	${}^{2}F_{4}(2^{5})$	${}^{2}G_{2}(3^{7})$	B2(7)	C3(9)	$D_{3}(3)$	${}^{2}D_{4}(5^{2})$	$^{2}A_{2}(64)$	C13
			200220022	HEFEREN		-	17 NIC 150	BARRIER B		THE OWNER OF	250 200 100 264		5430573140	1201512700	17988 200 250		
15:140	2005					111111111	642796.800		1190,000	an le le se an	ISC SAFECULE	Presid Des del	Die (s)		02143	53137/8 mill (a)	7.
	4.10	$E_{i}(a)$	E ₂ (a)	E ₂ (a)	E-(a)	Gala	30 (3)	35 (2)	to releta	10 (10+1)	to calentia	R. (a)	C.(a)	D (a)	20 (-2)	24 (-2)	
-	Jun (1)	*****	C here	CC CCCC	14(9)	02(4)	D409)	r8(4)	addr)	14(n)	010 .)	ion(g)	CR(Q)	Da(y)	Date)	(4) J	~
Ŧ	and Barret	N. M. MO.S	Et.o II.a. a	2.2.2.2	2.2.5	14-102-0	\$51518	Service and the service of the servi	10.000	a . 64 - 6	444404-0	at-ally -a	Re-s Hores	- The line	of the Barrow	The Research	
Atensing Coops																	
Chealle	Goops		Alternates*							/(1),/(11)	MJ	ни				I. ARM. FTY	
Classical	Skrinberg Group	*	Symbol		M11	M12	M22	M23	M24	h	12	13	14	HS	MeL	He	Ru
Saraki G	and the second s		Outer?		7100	15242	463 122	10200100	244 825 042	171 540	604 902	50 232 962	01753710M	44,312,000	899129300	1010107-200	
Ree Gara	ps and Tits Gro	φ*															
Cyclic G	carego	7-9-	the groups and handles,	shrow con													
the former for the second seco																	
hat helps finden &	for a city index β_1 connected subgroup of $\mathcal{P}_2(\beta)$. It is easily given however, for type sides. For $\beta_2(\beta^*)$ is $\mathcal{L}_2(\beta^*)$.		e copt the lan-	51	0'N\$,0-5	-3	4	-1	$F_h D$	198	1.0	M(22)	M(23)	J ₃₊ , M(24)'	6	FL-Mt	
The enset starting	on the second root are	r (m. Note et		and in the same	Suz	O'N	Coz	Co2	Co1	HN	Ly	Th	Fi22	Fi23	Fi24	В	М
that props the site of the function of the Copyright () and ()	prahi naniti prop is anti-pirope anti-bairan	All A	informing completes and G ₂ (q) for q tables (G(2) and A ₂ (k) of order	allow.	117347 IPT 600	440 TES 315 120	#10.766.50b 200	42 301 421 112 000	4 137 775-905 543 540 908	273.638 912-000.068	51765179 684300000	98787943 887872088	66.762.770 676 878	4 389 429 473 210 804 880	1201200704180 645721292800		222200

Figure: "These are the "building blocks" of all finite groups." [Image: *Ivan Andrus*].

Wolfgang Alexander Moens

Identities of automorphisms

Appetizer Three classic theorems 3 + 1 extensions

Fun fact

Figure: "In February 1981 the classification of finite simple groups was completed." ... [Richard Elwes **Plus Magazine: An enormous theorem: the classification of finite simple groups**, *December 7, 2006*].

Appetizer Three classic theorems 3 + 1 extensions

Regular automorphisms of prime order

Thm. (Thompson '59/'60): A finite group G is nilpotent if it has a regular automorphism of *prime* order.

- <u>**Def**</u>. $\Gamma_1 := G$ and $\Gamma_{n+1} := [\Gamma_n, G]$.
- **<u>Def</u>**. *G* nilpotent if some Γ_{n+1} vanishes.
- <u>**Def**</u>. $c(G) := \min\{n \in \mathbb{N} | \Gamma_{n+1}(G) = 1_G\}.$
- This theorem has a long history, going back to work of Burnside and Frobenius about simply-transitive actions of finite groups.
- The solution depends on Thompson's famous *p*-complement theorem but *not* on the classification.

Appetizer Three classic theorems 3 + 1 extensions

Fun fact

Figure: The solution to the problem, known as Frobenius' conjecture, was reported by Prof. John G. Thompson, a 26-year-old mathematician. It dealt with so-called "group theory" and had puzzled mathematicians for more than fifty years ... [NYT, *April 26, 1959*].

Regular automorphisms of prime order (ctd.)

Thm. (Higman '57; Kreknin—Kostrikin '63): If a nilpotent group G has a regular automorphism of prime order p, then the nilpotency class of G is bounded:

$$c(G) \leq (p-1)^{2^{(p-1)}}$$

- Higman proved that there exists a minimal upper bound *h*(*p*) that depends only on *p*.
- Kreknin and Kostrikin later reduced the bound to $h(p) \leq (p-1)^{2^{(p-1)}}$.
- The proofs all use Lie theory.

Appetizer Three classic theorems 3 + 1 extensions

Fun fact

Figure: "The aversion of Frobenius to Klein and Sophus Lie knew no limits \dots " [Die Mathematik und Ihre Dozenten an der Berliner Universität 1810 – 1920].

Appetizer Three classic theorems 3 + 1 extensions

Monotone identities of endomorphisms

Def. If
$$r(t) = a_0 + a_1 \cdot t + \cdots + a_d \cdot t^d \in \mathbb{Z}[t]$$
 is a polynomial, then we define the map

$$r(\alpha): G \longrightarrow G$$

by

$$x \mapsto x^{a_0} \cdot \alpha(x^{a_1}) \cdots \alpha^d(x^{a_d}).$$

<u>Def</u>. If $r(\alpha)$ sends every element x of G to 1_G , then we simply write

$$a_0 + a_1 \cdot \alpha + \cdots + a_d \cdot \alpha^d = 1_G$$

Appetizer Three classic theorems 3 + 1 extensions

A simple observation

<u>Obs</u>. Consider a finite group *G* with a regular automorphism $\alpha : G \longrightarrow G$ of order *n*. Then

$$1 + \alpha + \alpha^2 + \dots + \alpha^{n-1} = 1_{\mathcal{G}}.$$

<u>Prf</u>. :

- Since α fixes only 1_G , the map $(-1+\alpha): G \longrightarrow G: x \mapsto x^{-1} \cdot \alpha(x)$ is injective.
- Since G is finite, this map is also surjective.
- So there exists a $y \in G$ such that $x = y^{-1} \cdot \alpha(y)$, and:

$$\begin{aligned} x \cdot \alpha(x) \cdots \alpha^{n-1}(x) &= y^{-1} \cdot \alpha(y) \cdot \alpha(y^{-1}) \cdots \alpha^n(y) \\ &= y^{-1} \cdot \mathbf{1}_G \cdot \mathbf{1}_G \cdots \mathbf{1}_G \cdot \alpha^n(y) \\ &= \mathbf{1}_G. \end{aligned}$$

Appetizer Three classic theorems 3 + 1 extensions

Extending these classical results ...

<u>Thm</u>. (Ersoy '16): Let *n* be an *odd* number. A finite group *G* is solvable if it has an automorphism $\alpha : G \longrightarrow G$ such that

$$1 + \alpha + \alpha^2 + \dots + \alpha^{n-1} = 1_{\mathcal{G}}.$$

- **<u>Def</u>**. This is a *split automorphism* of index *n*.
- The proof uses the classification.
- This (partially) extends the theorem of Rowley.
- The statement is false for *n* even.

Extending these classical results ...

<u>Thm</u>. (Hughes—Thompson '59; Kegel '60/'61): A finite group G is nilpotent if it has an automorphism $\alpha : G \longrightarrow G$ such that

$$1 + \alpha + \alpha^2 + \dots + \alpha^{p-1} = 1_{\mathcal{G}}.$$

- Hughes and Thompson used a famous paper of Hall and Higman '56 to prove that G is solvable.
- Kegel later showed that the solvability of *G* implies its nilpotency.
- This extends the theorem of Thompson.

3 + 1 extensions

Extending these classical results ...

Thm. (Khukhro '86): There exists a map $Kh : \mathbb{N} \times \mathbb{P} \longrightarrow \mathbb{N}$ with the following property. If a finite group G has an automorphism $\alpha: G \longrightarrow G$ such that

$$1 + \alpha + \alpha^2 + \dots + \alpha^{p-1} = 1_{\mathcal{G}},$$

then the nilpotency class c(G) of G is bounded by

 $c(G) < \operatorname{Kh}(d(G), p),$

where d(G) is the minimal number of elements needed to generate G.

Rmk. Examples show that the upper bound must depend on d(G).

Appetizer Three classic theorems 3 + 1 extensions

Summary ...

Theorem	Identity	Assumption	Conclusion	
Rowley	$-1 + \alpha^n = 1_G$	regularity	solvable	
Ersoy	$1 + \alpha + \dots + \alpha^{n-1} = 1_{\mathcal{G}}$	<i>n</i> odd	solvable	
Thompson	$-1 + \alpha^{p} = 1_{G}$	regularity	nilpotent	
H-T; Kegel	$1 + \alpha + \dots + \alpha^{p-1} = 1_{\mathcal{G}}$	-	nilpotent	
Higman	$-1 + \alpha^{p} = 1_{G}$	regularity	bd. class	
Khukhro	$1 + \alpha + \dots + \alpha^{p-1} = 1_{\mathcal{G}}$	-	bd. class	

- The results in this table were motivated by the Gorenstein—Herstein conjecture and by the Frobenius conjecture* and the Higman conjecture*.
- But the latter can also be motivated by the *Burnside problems*.

Appetizer Three classic theorems 3 + 1 extensions

The Restricted Burnside problem

<u>**Rmk**</u>. There is more than one Burnside problem and the terminology is used inconsistently in the literature.

Restricted Burnside problem RB(d, e): There exists a map

 $\mathsf{RB}:\mathbb{N}\times\mathbb{N}\longrightarrow\mathbb{N}$

such that every d-generated group G of exponent e satisfies

 $|G| \leq \mathsf{RB}(d, e)$ or $|G| = +\infty$.

Such groups are either "very small" or "very large."

Appetizer Three classic theorems 3 + 1 extensions

Fun fact

Figure: "... one of the best known Cambridge athletes of his day ..." [Obituary of W. Burnside in **The Times**, *1927*].

Appetizer Three classic theorems 3 + 1 extensions

Fun fact

Figure: "... and my math was O.K, I guess"

Appetizer Three classic theorems 3 + 1 extensions

The Restricted Burnside problem: proof

Let $e = p_1^{m_1} \cdots p_k^{m_k}$ be the prime factorisation of e.

<u>Thm</u>. (Hall—Higman '56): If the statement holds for $RB(d, p_1^{m_1}), \dots, RB(d, p_k^{m_k}),$ then it also holds for RB(d, e).

- The theorem is conditional on the classification of the finite simple groups!
- So we have reduced the restricted Burnside problem to prime-power exponent, say RB(*d*, *p^m*).

Appetizer Three classic theorems 3 + 1 extensions

Fun fact

Figure: "In finite group theory, the outstanding paper on the p-length of the p-soluble groups, written with P. Hall, played an essential part in the great breakthrough of 1963 when Feit and Thompson proved that all groups of odd order are soluble." [**Professor Graham Higman**, **Telegraph**, 26/05/2008][Pict.: Normal Blamey, 1984].

Appetizer Three classic theorems 3 + 1 extensions

The Restricted Burnside problem: proof

Obs. For a finite group G of exponent p^m on d generators, we have

$$c(G)\leq |G|\leq (p^m)^{(1+d^{c(G)})}.$$

Re-formulation of $RBP(d, p^m)$:

Find a map

 $\mathsf{RBC}:\mathbb{N}\times\mathbb{P}^*\longrightarrow\mathbb{N}$

such that every finite group G of exponent p^m on d generators satisfies

 $c(G) \leq \mathsf{RBC}(d, p^m).$

The Restricted Burnside problem: proof

Thm. (Kostrikin '58/'59): There exists an upper bound RBC(d, p) for the class of every finite, *d*-generated group *G* of prime exponent *p*.

- The proof uses Lie theory.
- By the reduction theorem of Hall—Higman '56, we have a positive solution for the RBP in square-free exponent.
- We note that the automorphism $\mathbb{1}_G : G \longrightarrow G : x \mapsto x$ satisfies

$$1+\mathbb{1}_{\mathcal{G}}+\cdots+\mathbb{1}_{\mathcal{G}}^{p-1}=1_{\mathcal{G}}.$$

• So we see that Kostrikin's theorem is a special case of Khukhro's theorem!

The Restricted Burnside problem: proof

Thm. (Zel'manov '90/'91): There exists an upper bound RBC (d, p^m) for the class of every finite, *d*-generated group *G* of prime-power exponent p^m .

- The proof uses Lie theory.
- By Hall—Higman '56, we have a positive solution for the restricted Burnside problem in arbitrary exponent.
- We again note that automorphism $\mathbb{1}_G : G \longrightarrow G : x \mapsto x$ satisfies

$$1+\mathbb{1}_{\mathcal{G}}+\cdots+\mathbb{1}_{\mathcal{G}}^{p^n-1}=1_{\mathcal{G}}.$$

• And Zel'manov's theorem is a special case of another theorem of Zel'manov.

Appetizer Three classic theorems 3 + 1 extensions

The compact Burnside problem / the Platonov conjecture

Conj. "If a group is compact and periodic, then it is locally-finite."

<u>Rmk</u>.

- Compact means compact and Hausdorff.
- Periodic means that every element has some finite order.
- Locally-finite means that every finite subset generates a finite subgroup.

Appetizer Three classic theorems 3 + 1 extensions

The compact Burnside problem

Proof of the restricted and compact Burnside problems are similar.

Restricted Burnside problem	Compact Burnside problem
Hall—Higman ′56	Wilson '83
use the CFSG to reduce	uses the CFSG to reduce
the problem to <i>p</i> -groups	the problem to pro- <i>p</i> groups
7 1/ /00 //01	7 11 /00
Zel'manov '90/'91	Zeľmanov '92
uses Lie theory to prove that	uses Lie theory to prove that
$1+\mathbb{1}_G+\dots+\mathbb{1}_G^{p^n-1}=1_G$	$1 + \alpha + \dots + \alpha^{p^n - 1} = 1_G$
implies that	implies that
$c(G) \leq RBC(d(G), p^n).$	$c(G) \leq Z(d(G), p^n, \ldots).$

Appetizer Three classic theorems 3 + 1 extensions

Theorem	Identity	Assumption	Conclusion
Ro	$-1 + \alpha^n = 1_G$	regular	solvable
Er	$1 + \alpha + \dots + \alpha^{n-1} = 1_{\mathcal{G}}$	<i>n</i> odd	solvable
Th	$-1 + \alpha^p = 1_G$	regular	nilpotent
HuTh;Ke	$1 + \alpha + \dots + \alpha^{p-1} = 1_{\mathcal{G}}$	_	nilpotent
Hi;KrKo	$-1 + \alpha^p = 1_G$	regular	bd. class
Kh	$1 + \alpha + \dots + \alpha^{p-1} = 1_{\mathcal{G}}$	_	bd. class
Ko	$1+\mathbb{1}_{G}+\cdots+\mathbb{1}_{G}^{p-1}=1_{G}$	<i>p</i> -group	bd. class
Ze	$1+\mathbb{1}_G+\cdots+\mathbb{1}_G^{p^n-1}=1_G$	<i>p</i> -group	bd. class
Ze	$1 + \alpha + \dots + \alpha^{p^n - 1} = 1_G$	<i>p</i> -group	bd. class

Identities of automorphisms Main theorem Defining the invariants Proof of main theorem

Table of Contents

Motivation

- Appetizer
- Three classic theorems
- 3 + 1 extensions

2 Main result

- Identities of automorphisms
- Main theorem
- Defining the invariants
- Proof of main theorem

3 Applications

- Generic example
- Linear identities
- Cyclotomic identities

Identities of automorphisms Main theorem Defining the invariants Proof of main theorem

Identities of automorphisms

<u>**Def**</u>. We say that a polynomial $r(t) \in \mathbb{Z}[t]$ is an *identity* of an endomorphism $\gamma : G \longrightarrow G$ if and only if there exists an additive decomposition

$$r(t) = s_1(t) + s_2(t) + \cdots + s_k(t)$$

of r(t) into terms $s_1(t),\ldots,s_k(t)\in\mathbb{Z}[t]$ such that the map $G\longrightarrow G$ defined by

$$x \mapsto x^{s_1(\gamma)} \cdot x^{s_2(\gamma)} \cdots x^{s_k(\gamma)}$$

sends every element of G to 1_G .

<u>Rmk</u>. The identities of γ form an ideal of $\mathbb{Z}[t]$.

Identities of automorphisms Main theorem Defining the invariants Proof of main theorem

Example: the discrete Heisenberg group

<u>Ex</u>. Consider the discrete Heisenberg group $H \subseteq GL_3(\mathbb{Z})$. Then the map

$$\left(\begin{array}{rrrr}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \mapsto \left(\begin{array}{rrrr}1 & b & a \cdot b + \frac{b \cdot (b-1)}{2} - c \\ 0 & 1 & a + b \\ 0 & 0 & 1\end{array}\right)$$

defines an automorphism $\alpha : H \longrightarrow H$ of H. We can verify that, for every $x \in H$, we have

$$\underbrace{\alpha^{3}(x)}_{s_{1}(t)=t^{3}} \cdot \underbrace{\alpha^{2}(x^{-1})}_{s_{2}(t)=-t^{2}} \cdot \underbrace{\alpha(x^{-1}) \cdot \alpha^{2}(x)}_{s_{3}(t)=-t+t^{2}} \cdot \underbrace{\alpha(x^{-1})}_{s_{4}(t)=-t} \cdot \underbrace{x^{-1}}_{s_{5}(t)=-1} = 1_{H}.$$

So $r(t) := s_1(t) + \cdots + s_5(t) = t^3 - 2t - 1$ is an identity of α .

Identities of automorphisms Main theorem Defining the invariants Proof of main theorem

Identities of endomorphisms

Our main results can be grouped together into two categories:

• Existence theorems.

- Easy, but not part of this talk.
- Structure theorems.
 - Not-so-easy, but the focus of this talk.

Identities of automorphisms Main theorem Defining the invariants Proof of main theorem

Structure theorem

To each polynomial $r(t) \in \mathbb{Z}[t]$, we will assign invariants $\iota_1, \iota_2, \iota_3, \iota_4 \in \mathbb{Z}$ and $h \in \mathbb{N} \cup \{+\infty\}$ — to be defined later in the talk.

 $\begin{array}{l} \underline{\text{Main Theorem}} \ ('18): \ \text{Consider a finite group } G, \ \text{together} \\ \text{with an automorphism } \alpha : G \longrightarrow G \ \text{and an identity } r(t). \\ \text{Then} \\ & \text{gcd}(|G|, \iota_1 \cdot \iota_2 \cdot \iota_3 \cdot \iota_4) \neq 1 \\ \text{or} \\ & \underbrace{[[[[G,G],G],...],G]}_{h+1} = \{1_G\}. \end{array}$

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

The invariants ι_1 and ι_2

 $\underline{\mathsf{Def}}_{\cdot} \ \mathbf{\iota}_1 := r(1) \in \mathbb{Z}.$

- If $\alpha(x) = x$, then $x^{r(1)} = 1_G$.
- If $gcd(|G|, \iota_1) = 1$ then α is regular.

<u>Def</u>. For every $u, j \in \mathbb{N}$, we consider the partial sum

$$r_{u,j}(t) := \sum_{i\equiv j \bmod u} a_i \cdot t^i \in \mathbb{Z}[t],$$

so that $r(t) = r_{u,0}(t) + r_{u,1}(t) + \cdots + r_{u,u-1}(t)$. **Def**. We define ι_2 to be the (unique) non-negative generator of the principal \mathbb{Z} -ideal

$$\mathbb{Z} \cap \bigcap_{u>1} (r_{u,0}(t) \cdot \mathbb{Z}[t] + \cdots + r_{u,u-1}(t) \cdot \mathbb{Z}[t]).$$

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

Example: $r(t) := t^3 - 2t - 1 \in \mathbb{Z}[t]$.

• Then $r_{2,0}(t) := -1$ and $r_{2,1}(t) := -2t + t^3$, so that

$$\mathbb{Z} \cap (r_{2,0}(t) \cdot \mathbb{Z}[t] + r_{2,1}(t) \cdot \mathbb{Z}[t]) = \mathbb{Z}.$$

• Then $r_{3,0}(t) := -1 + t^3$ and $r_{3,1}(t) := -2t$ and $r_{3,2}(t) := 0$, so that

$$\mathbb{Z}\cap (r_{3,0}(t)\cdot\mathbb{Z}[t]+r_{3,1}(t)\cdot\mathbb{Z}[t]+r_{3,2}(t)\cdot\mathbb{Z}[t])=2\cdot\mathbb{Z}.$$

• For $u \ge 4$, we have $r_{u,0}(t) := -1$, $r_{u,1}(t) := -2t$, $r_{u,2}(t) := 0$, and $r_{u,3}(t) := t^3$, so that

$$\mathbb{Z} \cap (r_{u,0}(t) \cdot \mathbb{Z}[t] + \cdots + r_{u,u-1}(t) \cdot \mathbb{Z}[t]) = \mathbb{Z}.$$

• Since $\mathbb{Z} \cap 2 \cdot \mathbb{Z} \cap \mathbb{Z} = 2 \cdot \mathbb{Z}$, we have $\iota_2 := 2$.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

<u>Aux. Thm</u>. ('18) If $gcd(|G|, \iota_1 \cdot \iota_2) = 1$, then G is nilpotent.

- The proof generalises Higman's contribution to the Frobenius conjecture.
- It also uses Thompson's *p*-complement theorem.
- But it does *not* require the classification of the finite simple groups.

<u>**Rmk**</u>. This settles the nilpotency of our group G, but it does not give us abound on the nilpotency class of G.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

The invariants ι_3 and ι_4

If r(t) is constant, then we set $\iota_3 := r(t) \in \mathbb{Z}$ and $\iota_4 := 1$. Else, the polynomial r(t) factorises over the complex numbers as

$$r(t) := a_d \cdot \prod_{1 \leq i \leq l} (t - \lambda_i)^{m_i}.$$

Def.

$$\iota_3 := a_d^{1+2d^2} \cdot (m-1)! \cdot \prod_{\substack{1 \leq i,j \leq l \\ i \neq j}} (\lambda_i - \lambda_j)^m,$$

where $m := \max(m_1, ..., m_l)$.

Identities of automorphisms Main theorem Defining the invariants Proof of main theorem

The invariants ι_3 and ι_4

Def.

<u>Lem</u>. If $r(t) \in \mathbb{Z}[t] \setminus \{0\}$ then also $\iota_3, \iota_4 \in \mathbb{Z} \setminus \{0\}$.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

Example: $r(t) = t^3 - 2t - 1 \in \mathbb{Z}[t]$.

• The roots are
$$\lambda_1:=rac{1-\sqrt{5}}{2},\,\lambda_2:=rac{1+\sqrt{5}}{2}$$
, and $\lambda_3:=-1.$ So

$$\iota_3 := -5.$$

• Since $r(\lambda_i \cdot \lambda_j) = 0$ if and only if $\{i, j\} = \{1, 2\}$, we have

$$\iota_4 := -2^7 \cdot 5$$

<u>**Rmk**</u>. We can compute the invariants without having to compute the roots of the polynomial.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

The invariant h

<u>Def</u>. A finite subset X of a group (K, \cdot) is arithmetically-free if and only if, for every $\lambda, \mu \in X$, we have

$$\{\lambda, \lambda \cdot \mu, \lambda \cdot \mu^2, \lambda \cdot \mu^3, \ldots\} \not\subseteq X.$$

<u>Ex</u>.

X := {+1,-1} is not an arithmetically-free subset of (Q[×], ·).
X := {2,4,8} is an arithmetically-free subset of (Q[×], ·).

<u>Lem</u>. If $\iota_1 \cdot \iota_2 \neq 0$, then the roots of r(t) form an arithmetically-free subset X of $(\overline{\mathbb{Q}}^{\times}, \cdot)$.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

Example: $r(t) = t^3 - 2t - 1 \in \mathbb{Z}[t]$.

• Let
$$\lambda_1 := \frac{1-\sqrt{5}}{2}, \lambda_2 := \frac{1+\sqrt{5}}{2}$$
, and $\lambda_3 := -1$ be the roots.

Then
$$\lambda_1 \cdot \lambda_1, \lambda_1 \cdot \lambda_2^2, \lambda_1 \cdot \lambda_3 \notin \{\lambda_1, \lambda_2, \lambda_3\}.$$

Then $\lambda_2 \cdot \lambda_1^2, \lambda_2 \cdot \lambda_2, \lambda_2 \cdot \lambda_3 \notin \{\lambda_1, \lambda_2, \lambda_3\}.$
Then $\lambda_3 \cdot \lambda_1, \lambda_3 \cdot \lambda_2, \lambda_3 \cdot \lambda_3 \notin \{\lambda_1, \lambda_2, \lambda_3\}.$

- So the set X := {λ₁, λ₂, λ₃} is an arithmetically-free subset of the group (Q
 [×], ·).
- Alternatively: ι₁ · ι₂ = (-2) · (2) ≠ 0, so that X is an A.F. subset of [∞]_Q[×].

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

The invariant h comes from Lie theory

For every finite, arithmetically-free subset X of the multiplicative group (K^{\times}, \cdot) of a field K, there exists a minimal natural number $h \leq |X|^{2^{|X|}}$ with the following property.

Thm. ('17) If a Lie ring *L* is graded by (K^{\times}, \cdot) and supported by *X*, then *L* is nilpotent and $\Gamma_{h+1}(L) := \underbrace{[L, L, \dots, L]}_{h+1} = \{0_L\}.$

<u>Rmk</u>. $L = \bigoplus_{\lambda \in K^{\times}} L_{\lambda}$ with $[L_{\lambda}, L_{\mu}] \subseteq L_{\lambda \cdot \mu}$ and $L_{\nu} = \{0\}$ if $\nu \in K^{\times} \setminus X$.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

Example: the roots
$$X:=\{\lambda_1,\lambda_2,\lambda_3\}$$
 of t^3-2t-1

• We consider a grading

$$L = \bigoplus_{\lambda \in \overline{\mathbb{Q}}^{ imes}} L_{\lambda}$$

of a Lie ring L by the group $(\overline{\mathbb{Q}}^{\times}, \cdot)$ and we suppose that this grading is supported by X.

• We note that $[L,L]\subseteq \sum_{1\leq i,j\leq 3}[L_{\lambda_i},L_{\lambda_j}]\subseteq L_{\lambda_3}$ and

$$[[L, L], L] \subseteq \sum_{1 \le k \le 3} [L_{\lambda_3}, L_{\lambda_k}] = \{\mathbf{0}_L\}.$$

• So $h \leq 2$.

Identities of automorphisms Main theorem **Defining the invariants** Proof of main theorem

The invariant h

This result can "naturally" be lifted from Lie rings to groups:

<u>Aux. Thm</u>. ('18) Consider a nilpotent group G with an automorphism and an identity r(t). If the roots of r(t) form an arithmetically-free subset of $(\overline{\mathbb{Q}}^{\times}, \cdot)$, then

$$\underbrace{[G,G,\ldots,G]}_{h+1}$$

is a $(\iota_3 \cdot \iota_4)$ -group.

Identities of automorphisms Main theorem Defining the invariants **Proof of main theorem**

Proof of the main theorem

<u>**Prf**</u>.

- We assume that $gcd(|G|, \iota_1 \cdot \iota_2 \cdot \iota_3 \cdot \iota_4) = 1$.
- Aux. Thm. 1: G is nilpotent.
- Lem. root set X is arithmetically-free in $\overline{\mathbb{Q}}^{\times}$.

• Aux. Thm. 2:
$$\Gamma_{h+1} := \underbrace{[G, G, \dots, G]}_{h+1}$$
 is a $(\iota_3 \cdot \iota_4)$ -group.

• By assumption, G has no $(\iota_3 \cdot \iota_4)$ -torsion, so that

$$\Gamma_{h+1} = \underbrace{[G, G, \dots, G]}_{h+1} = \{1_G\}.$$

Generic example Linear identities Cyclotomic identities

Table of Contents

Motivation

- Appetizer
- Three classic theorems
- 3 + 1 extensions

2 Main result

- Identities of automorphisms
- Main theorem
- Defining the invariants
- Proof of main theorem

3 Applications

- Generic example
- Linear identities
- Cyclotomic identities

Generic example Linear identities Cyclotomic identities

Fav. example: $r(t) := t^3 - 2t - 1$

<u>Cor</u>. Consider a finite group G with an automorphism $\alpha : G \longrightarrow G$ and suppose that, for all $x \in G$, we have:

 $\alpha^{3}(x) \cdot \alpha^{2}(x^{-1}) \cdot \alpha(x^{-1}) \cdot \alpha^{2}(x) \cdot \alpha(x^{-1}) \cdot x^{-1} = 1_{\mathcal{G}}.$

Then:

- G has an element of order 2, or
- G has an element of order 5, or
- $\Gamma_3 := [[G, G], G] = \{1_G\}.$

<u>Prf</u>.

•
$$r(t) := t^3 - t^2 - t + t^2 - t - 1 = t^3 - 2t - 1.$$

• $\iota_1 \cdot \iota_2 \cdot \iota_3 \cdot \iota_4 = (-2) \cdot (2) \cdot (-5) \cdot (-2^7 \cdot 5)$, and
• $h = 2.$

Generic example Linear identities Cyclotomic identities

Linear polynomials $a_0 + a_1 \cdot t$

<u>Cor</u>. Consider a finite group *G* with an automorphism with a linear identity $r(t) := a_0 + a_1 \cdot t$. Then

$$\mathsf{gcd}(|\mathsf{G}|, \mathsf{a}_0 \cdot (\mathsf{a}_0 + \mathsf{a}_1)) \neq 1$$

or G is abelian.

- **<u>Prf</u>**. $(\iota_1 \cdot \iota_2 \cdot \iota_3 \cdot \iota_4)$ divides a natural power of $a_0 \cdot (a_0 + a_1)$ and we have h = 1.
- <u>**Rmk**</u>. classic results of Baer, Schenkmann—Wade, and Alperin about *universal power automorphisms*.

Generic example Linear identities Cyclotomic identities

Cyclotomic polynomials $\Phi_n(t)$

<u>Def</u>. Let us say that an automorphism $\alpha : G \longrightarrow G$ is *cyclotomic* of natural index n > 1 if the cyclotomic polynomial $\Phi_n(t)$ is a monotone identity of α :

$$\Phi_n(\alpha)=1_G.$$

Let us say that α is cyclotomic if it is cyclotomic of some index n > 1.

<u>**Cor</u></u>. A residually-finite group is locally-nilpotent if it admits a cyclotomic automorphism.</u>**

Generic example Linear identities Cyclotomic identities

Cyclotomic polynomials $\Phi_n(t)$

Final remarks:

- This generalises the theorems of **Thompson** and **Hughes—Thompson** and **Kegel** in several ways.
- We can similarly extend the theorems of **Higman** and **Kreknin—Kostrikin** and **Khukhro**.
- We can derive results of **Jabara** '08 (about automorphisms with finite Reidemeister number) without using the CFSG.

Motivation Gene Main result Line Applications Cycl

Linear identities Cyclotomic identities

Summary of results

Theorem	Identity	Assumpt.	Concl.	
Th	$-1 + \alpha^{p} = 1_{G}$	regular	nilp.	
HuTh;Ke	$1 + \alpha + \dots + \alpha^{p-1} = 1_{\mathcal{G}}$	-	nilp.	
Мо	$\Phi_n(\alpha) = 1_G$	n eq 1	nilp.	
Hi;KrKo	$-1 + \alpha^p = 1_G$	regular	bd. cl.	
Kh	$1 + \alpha + \dots + \alpha^{p-1} = 1_{\mathcal{G}}$	-	bd. cl.	
Мо	$\Phi_n(\alpha) = 1_G$	n eq 1	bd. cl.	
Ko	$1+\mathbb{1}_G+\cdots+\mathbb{1}_G^{p-1}=1_G$	<i>p</i> -group	bd. cl.	
Ze	$1+\mathbb{1}_G+\cdots+\mathbb{1}_G^{p^n-1}=1_G$	<i>p</i> -group	bd. cl.	
Ze	$1 + \alpha + \dots + \alpha^{p^n - 1} = 1_{\mathcal{G}}$	<i>p</i> -group	bd. cl.	
A;B;SW	$a_0 + \alpha = 1_G$			
Мо	$a_0 + a_1 \cdot \alpha = 1_G$	co-prime	abelian	