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Abstract

Any Lagrangian form of order k obtained by horizontalization of a
form of order k — 1 gives rise to Euler—Lagrange equations of order
strictly less than 2k.

But these are not the only possibilities. For example, with two
independent variables, the horizontalization of a first-order 2-form
gives a Lagrangian quadratic in the second-order variables; but
there are also cubic second-order Lagrangians with third-order
Euler-Lagrange equations.
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Abstract (continued)

In this talk | shall show first that any Lagrangian of order k with
Euler—Lagrange equations of order less than 2k must be a
polynomial in the k-th order variables of order not greater than the
number of different symmetric multi-indices of length k.

| shall then describe a geometrical construction, based on
Peter Olver's idea of differential hyperforms, which gives rise to
Lagrangians with reduced-order Euler-Lagrange equations.

A version of this talk was given at Ostrava in June 2017. The work
has been published in SIGMA 14 (2018), 089, 13 pages.
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The Euler-Lagrange equations

Let L be a Lagrangian in a single independent variable z,
n dependent variables u®, and n derivative variables u%.
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The Euler-Lagrange equations

Let L be a Lagrangian in a single independent variable z,
n dependent variables u®, and n derivative variables u%.
The Euler-Lagrange equations are

oL dor

ouP dx gy
and expanding the total derivative d/dx gives

oL 9L o 0L o 0L

ouP 8m8u§ ou*oul; OuOuy

In general these equations are second-order, but if L is linear in the
variables u$ then they are first-order.
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The Euler—Lagrange equations (2)

Now suppose there are m independent variables =%, n dependent
variables u®, and mn derivative variables .
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The Euler—Lagrange equations (2)
Now suppose there are m independent variables =%, n dependent
variables u®, and mn derivative variables .

The Euler-Lagrange equations are now

oL  d 9L

W‘@@TL;—O

and expanding the total derivative d/dx’ now gives

oL 0L 0L o O0°L
ouPl gy ﬁuf I Ouaauf I ou Ouf

«

In general these equations are second-order, but if L is linear in the
variables u then they are first-order. But ...
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The Euler—Lagrange equations (3)

oL 0L o O*L o O%L
ouf  pgi auf I aua(?uf I 8u§‘0uf

The equations can be first-order even when L is not linear:

for example L = f(x,u) (U?Uf - U?uzﬁ)
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The Euler—Lagrange equations (3)

OL 0L 0L 0L

[e7

Fw By Bkl — ujj
ouP 9ri 3u]'5 Oua(?uf ou? auf

The equations can be first-order even when L is not linear:

for example L = f(x,u) (U?Uf - Uga“?)

These Lagrangians come from the geometric construction of
horizontalization on jet bundles:

with a fibred manifold 7 : £ — M,
any differential form w on FE
gives a horizontal differential form h(w) on Jl7

For instance, h(duo‘ A duﬁ) = (uf‘uyﬁ — ujo‘uf)aknZ A da?
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The Euler—Lagrange equations (4)

The same applies for higher-order Lagrangians.

If the Lagrangian L has order k, the Euler-Lagrange equations are
generically of order 2k

k I
IR

\T1=0 x Gu

where I € N* is a symmetric multi-index:

if uf =, . then I(i) = |{i, : i, = i}]

1102 ik
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The Euler—Lagrange equations (4)
The same applies for higher-order Lagrangians.

If the Lagrangian L has order k, the Euler—Lagrange equations are
generically of order 2k

k I
IR
|1]=0 v 6“1
where I € N* is a symmetric multi-index:

if uf =, . then I(i) = |{i, : i, = i}]

1102 ik

The geometry of the multi-index space is important:

|I| = >, 1(i) is the length of I;
)% =>" 1(I(z)) is the square Euclidean norm of I
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Reduced-order Euler-Lagrange equations

k

Z (_1)\(]\@% -0

J g8
|J|=0 = ou;

Each total derivative d/dz/ increases the order of its argument by
one, so that the terms of order 2k come from

a7l ar %L
E (—l)k—J— and equal E (—Dkug, ,———
B g aq, 8
| J|=k dr” guly \1|=7|=k ufduy
The equations will have order less than 2k if, and only if, for each
multi-index H of length 2k,

Z 827[’:()

3
(0] /
T Ougou;
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The polynomial condition

Euler-Lagrange equations:
k

NIE d”l oL _
%_:o( 1) ol 0
Condition for lower order equations: whenever |H| = 2k then
> god =
rg=p OuFou;
Theorem

A necessary condition for the Euler—Lagrange equations to have
order less than 2k is that L is a polynomial in the highest-order
derivatives uf, |I| = k, of order at most py,

where py. is the number of distinct multi-indices of length k
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Special case: k = 2
Z d*> 0L
et
|K|=2 dr™ Quiy

has order strictly less than 4, so that

S kgt
U+K oA B T
|J|=|K|=2 uGOuy

has order strictly less than 4. That means
9L
Z P =0
J+K=H YU 0UK

whenever |[H| =4 and |J| = |K| = 2.
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Special case: k =2 (2)

Z 827[’:0

aq, B
J+K=H OuGOu

whenever |H| =4 =2k and |J| =|K|=2=k

Put K; = (0,...,0,2,0,...0) and H; = (0,...,0,4,0...

so that H; = K; + K; (‘pure’ multi-indices); then

L

8u§‘(i Buii

so L is at most linear in u$
k3

Determinants
000
o]
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Special case: k =2 (3)

Z 827[’:0

agn,B
J4k—n OuGOug

whenever |[H| =4 and |J| = |K| = 2.

If K;; =(0,...,0,1,0,...,0,1,0,...,0) (‘mixed” multi-indices)
so that H = K;; + K;; = (0,...,2,0,...,0,2,0,...,0), then

0L 0L 0L

Qufe Ouy Oug Ouy Ouf duly,

(we have turned ‘mixed’ into ‘pure’!l)
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Special case: k =2 (3)

Z 827[’:0

agn,B
J4k—n OuGOug

whenever |[H| =4 and |J| = |K| = 2.

If K;; =(0,...,0,1,0,...,0,1,0,...,0) (‘mixed” multi-indices)
so that H = K;; + K;; = (0,...,2,0,...,0,2,0,...,0), then

0L 0L 0L

Qufe Ouy Oug Ouy Ouf duly,
(we have turned ‘mixed’ into ‘pure'!) so that
'L

p— 0
vy ) o B
ou Ko ou o ou % ou K

(with @ # h, j); L is at most cubic in ‘overlapping’ terms U%Qj
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Special case: k = 2 (4)

So we know
2 4
0-L o, O*L 0 (i£h])

a B Y ) a B
ou % ou K ou Ko ou Ko ou %, ou Ky

oL
0
Gusion: oy T

then the list of multi-indices (J1J2 - - - J;-) is constrained.

This implies r < %m(m +1) = po,
the number of distinct multi-indices of length 2
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Proof of the polynomial condition

A necessary condition for the Euler—Lagrange equations to have
order less than 2k is that L is a polynomial in the highest-order
derivatives u¢, |I| = k, of order at most py,

Consider
8pk+1L

a Cp, 11
OuSt - Ou "k ou ,*
Ju Ipg 7 Ipgt1

so at least two of the multi-indices must be the same — say
J1=Jy

. 0L
Use the condition g —— = 0 to put
(0%
47— Oufdu;
oret1p, Z oretly,
[%31 a2 asz = - aq a2 as .
Ouy! Ou? Ous? P Ouyl Oug? OuT?

(K1,K2)#(J1,J2)
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Proof of the polynomial condition (2)

orTly, opet+1,
arg, Q25,03 Z T 9,01 9,02 9,05
ou A ou T ou s P o ou e ou i ou I
(K1,K2)#(J1,J2)

But each term on the RHS also has a repeated multi-index! So we
can continue . ..
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Proof of the polynomial condition (2)

oretly,

orTly,
a1 % a3_.': z : - al a2 as .
8uJ1 8uJ2 8uJ3 P o 8uK1 8uK2 8uJ3
(K1,K2)#(J1,J2)

But each term on the RHS also has a repeated multi-index! So we
can continue . ..

But eventually, every term will have a repeated ‘pure’ multi-index J
(where J(j) = k for some j, and J(j) = 0 for i # j)

0%L T
and then Z — = 0 implies that
Ja—m Oujouy

L
augauﬁ
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Proof of the polynomial condition (2)

orTly, opet+1,
ouS uS2ous? - -+ Z
g Ol g, O gy

CouSt QuS2 ou -
Ki+Ko=J1+J2 LS S M
(K1,K2)#(J1,J2)

But each term on the RHS also has a repeated multi-index! So we

can continue . ..

But eventually, every term will have a repeated ‘pure’ multi-index J
(where J(j) = k for some j, and J(j) = 0 for i # j)

0%L .
and then Z — = 0 implies that
Ja—m Oujouy
0L

—g = 0 But how do we know?
ouGou;
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Proof of the polynomial condition (3)
We use the parallellogram rule for Euclidean norms!
2]l < 2l|2]* + 2[ly )1 = |z + yl* + = — y?

with equality when y = 0,
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Proof of the polynomial condition (3)
We use the parallellogram rule for Euclidean norms!
2]l < 2l|2]* + 2[ly )1 = |z + yl* + = — y?
with equality when y = 0, so that in

opetly, Z opet+1r,

aq a9 a3 = - aq a2 a3
ou; Ouy 8uJ3 8uK18uK28uJ3

Ki+Ko=J+J
(K17K2)7£(J7J)

we have [|J][2 + [7][* = 2[|J[|* < [ K1 ||* + [| K|

The sum of the square Euclidean norms in the terms keeps
increasing ...



Polynomials

[e]e] o]

Proof of the polynomial condition (3)
We use the parallellogram rule for Euclidean norms!
2]l < 2l|2]* + 2[ly )1 = |z + yl* + = — y?
with equality when y = 0, so that in

oretlp, Z oretly,

a1 a2 a3 = - a1 a2 as
ou OuG?ouy? - - - Ouyl Ouz? OuF? - - -

Ki+Ko=J+J
(KviQ)#(JaJ)

we have [|J][2 + [7][* = 2[|J[|* < [ K1 ||* + [| K|

The sum of the square Euclidean norms in the terms keeps
increasing ... and |K||? = Z(K(z))Q is maximal when K is pure!

So eventually we get k + 1 pure multi-indices per term
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Proof of the polynomial condition (4)
Therefore

ore+1p,

ay . Qpp Qpp+1
aqu Gquk 8quk+l

=0

so that L is a polynomial in the u5, |J| = k, of degree at most py.
]
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Proof of the polynomial condition (4)
Therefore

orrtly,

ay . Qpp Qpp+1
aujl aujpk 8quk+1

=0

J| =k, of degree at most py.
L]

so that L is a polynomial in the u5,

But this necessary condition is not sufficient: for instance,
L = (ugy)? has Euler—Lagrange equations 2ty = 0

All the Lagrangians with lower-order equations appear to be
determinants

Geometrically, determinants arise as the coefficients of wedge
products de Ady Adz A - -
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Proof of the polynomial condition (4)
Therefore

orrtly,

ay . Qpp Qpp+1
aujl aujpk 8quk+1

=0

so that L is a polynomial in the u5, |J| = k, of degree at most pj.

L]
But this necessary condition is not sufficient: for instance,
L = (ugy)? has Euler—Lagrange equations 2ty = 0

All the Lagrangians with lower-order equations appear to be
determinants

Geometrically, determinants arise as the coefficients of wedge
products de Ady Adz A - -

... but also as coefficients of dz? A dzdy A dy? A - - -
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)

Consider hyperforms on jet manifolds J*7 that are
e horizontal over M, and

e wedge products of symmetric tensors (all of the same rank)
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)

Consider hyperforms on jet manifolds J*7 that are
e horizontal over M, and

e wedge products of symmetric tensors (all of the same rank)

A (p,q) hyperform is a section of AP S9T* M, pulled back to J*r

These are generated over C°(J*7) by dxlt A dx!2 A+ A dale
where dx! = dz®dx’ - - - dx'e with I = (iy, g, - - ,zq)



Geometry

@00

Affine (1,q) hyperforms

A (1,q) hyperform (1 < g < k) is a horizontal symmetric tensor
:Jkr — SIT*M

As J57 — J*~1r is an affine bundle, we say that 6 is an affine
(1,q) hyperform if its restriction to each fibre of the bundle is an
affine map: in coordinates

0="> (0hsuf+06s)dz7
|I|=k
|T1=q
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Affine (1,q) hyperforms

A (1,q) hyperform (1 < g < k) is a horizontal symmetric tensor
:Jkr — SIT*M

As J57 — J*~1r is an affine bundle, we say that 6 is an affine
(1,q) hyperform if its restriction to each fibre of the bundle is an
affine map: in coordinates

0="> (0hsuf+06s)dz7
|I|=k
|T1=q

These affine (1, q) hyperforms are too general. We shall restrict
attention to special affine (1,q) hyperforms
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Special affine (1, q) hyperforms

The affine bundle J¥7 — J¥~11 has associated vector bundle
Va ST*M — - 1r

The fibre-affine map 6 has an associated fibre-linear ‘difference
map’ 0 : Vi @ SFT*M — SIT*M

We say that 0 is a special affine (1, q) hyperform if there is a tensor
6 € Vi* @ S¥~9TM such that the difference map 0 is given by
contraction of elements of its domain V' ® S*T*M with 6.

In coordinates (where 0% are the coordinates of )

0= > (0lufs+07)deT

|I|=k—q
|T1=q
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Special affine (1, ¢q) hyperforms — example

0= Y (0iufys+07)da’
|=k—q
|T1=q

In the special case where ¢ = 1 we have
; A
0= (0iufy,, +06;)da!
\I|=k—1
the ordinary horizontalization of the 1-form

Do\ l=k—1 0hdug + 0;da?

There is no invariant operation of horizontalization for hyperforms
when ¢ > 2; but special affine (1, ¢) hyperforms generalize the
images of the horizontalization operator on ordinary 1-forms
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Hyperaffine (py, ) hyperforms

A (pq,q) hyperform w is a section of the line bundle AP S1T*M,
pulled back to Jk7

It is hyperaffine if it is generated by wedge products of special
affine hyperforms 6 = Z|I|:k—q,\j\:q (GCIIU?JFJ + HJ)dmj

If w = wydz?t Adz?2 A--- Adazra then w, is a linear combination
of determinants (or their minors)

al a1 . a1
Un+a Yn+s u11+Jpq

az a2 o .. a2
Uty YLto Ut T,

Opq *Pq A
Upgtn Ul +T2 ULy +Tq
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What does this have to do with Lagrangians?

A Lagrangian m-form X defines local Lagrangian functions L by

A=Ldz' Ndz®> A+ Adz™
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What does this have to do with Lagrangians?

A Lagrangian m-form X defines local Lagrangian functions L by
A= Ldz' Ndz? A A da™

Say that \ is hyperaffine if, in any coordinate system,
L=w +wy - +w

where each wj, is the coefficient of a hyperaffine hyperform
W= wqd:cjl AdxT2 A - A dxTea

This is independent of the coordinate system

In new coordinates (&, 1), the volume dz! A dx? A --- A dz™
changes by the Jacobian determinant J(Z, z), whereas each
hypervolume dzt A dz2 A -+ A dapa changes by a power of
J(Z,x)
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Euler—Lagrange equations of hyperaffine Lagrangians
Theorem

If L is the Lagrangian function of a hyperaffine Lagrangian then the
Euler-Lagrange equations have reduced order
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Euler—Lagrange equations of hyperaffine Lagrangians
Theorem

If L is the Lagrangian function of a hyperaffine Lagrangian then the
Euler-Lagrange equations have reduced order

It is sufficient to show this for a determinant

aq aq . (63}
Unvan Un+g YN +Tp,
a2 a2 “ e a2
Un+vn ULt Ut Tpg
A= ) ) )
*Pq *pq L
ulpq+j1 u[pq+\72 u[pq‘f’Jpq

so write A as

_ ai o L oap
A= Z 6Uu11+ja(1)uf2+30(2) th-FJU(h)
ceSy,
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Euler-Lagrange equations of hyperaffine Lagrangians (2)

— a1 a2 oo &h
A= Z 50u11+jg(1)u12+35(2) UL+ T )
ceSy,

Substituting in the Euler-Lagrange equations gives

d¥l oL

— Qr Qs
7}(7 = E E 66 5U¢TSO'UIT+IS+JG r)+~70'(s
dx Quy 1 <ie<h oeo ( |
<r,s<h oc€Gy
s#r

[K|=k

where the coefficients ®,.,, are

~

= a2 N el
Prso = uI1+JJ(1)u12+JJ(2) r 5 ufh+._7[,(h)



Abstract Introduction Polynomials Geometry Determinants

(e]e] [e] (e]e] [e] 000
(e]e] 0000 000 [e]
[e] 0000 [eJe]e] ]

Euler-Lagrange equations of hyperaffine Lagrangians (2)

_ a1 a2 2O
A= Z 50u11+ja(1)u12+35(2) UL+ T )
ceSy,

Substituting in the Euler-Lagrange equations gives

d¥l oL

— Qr Qs
7}(7 = E E 66 5U¢TSO'UIT+IS+JG r)+~70(s
dx Quy 1 <ie<h oeo ( |
<r,s<h oc€Gy
s#r

[K|=k

where the coefficients ®,.,, are

~

= a2 N el
Prso = uI1+JJ(1)u12+JJ(2) r 5 ufh+._7[,(h)

Fix r # s. Given 0 € S, put 6 = oo (r,s) # 0.
Do = D55 and e, = —&5 so all the terms cancel. ]



Determinants
@00

Determinants

Established so far:

e If a Lagrangian function of order k has reduced-order
Euler—Lagrange equations then it is a polynomial of order at
most py, in the variables u$; (|H| = k);

e Every hyperaffine Lagrangian has reduced-order
Euler-Lagrange equations (and is a polynomial with a
particular determinant structure)

| conjecture that every Lagrangian with reduced-order
Euler—Lagrange equations has this particular determinant structure,
and so is hyperaffine.
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Determinants (2)

A general polynomial Lagrangian function of order k and degree pj
is

HiHz- el
L= Z Aa1a2 O ququ Upy,
with implicit sums over the indices and multi-indices, and with

|H| =k

Can this be written as a linear combination of determinants

a1 a1 c e a1
Un+an YN+ U+,
o b Tl=a, Hl=k-qg

Unovg UYL+ 7 ULt
' 1<q<k, 0<r<p.?
(674 (679 Qo
Ur+q Yr+g 7 U4,
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Determinants (3)
Consider homogeneous polynomials A1 HzHrg o1

In the case r = 2 there is a constructive proof

ua2 ..
orog-or UHy VHa

Qr

. uHT

Determinants
ooe
o
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Determinants (3)

H H HH>---Hp, 1,02  , Qp
Consider homogeneous polynomials Ag 1,2 ruy u3f - - ugy

In the case r = 2 there is a constructive proof

Partition the quadratic terms by H, + Hy = H and put

_ E HyHy, a1, a2
,l/}H - Aa1a2 quuHQ
Hi+Hy=H
KKy, o1, 02 H H _
Choose a term Aj1,2u3l ug? arbitrarily, so from E-L we have
KiKy _ E HiH>
Aa1a2 - _Aa1042
H1+Hy=H,(H1,H2)#(K1,K2)
and so
—_ HlHQ aq a2 a1 a9
¢H — E Aalaz (quuHQ - uKlqu)

Hi+Hs=H
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Determinants (4)

For cubic and higher terms, there is no obvious algorithm to give an
explicit construction

(although ad-hoc methods work for all examples investigated)
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Determinants (4)

For cubic and higher terms, there is no obvious algorithm to give an
explicit construction

(although ad-hoc methods work for all examples investigated)

A possible approach would use an abstract dimension argument:

The number of variables u¢, |I| = k, is known,
and so the dimension of the space of homogeneous polynomials of
degree r is also known

The number of E-L constraints for quadratic polynomials is known,
so the number of constraints for degree r polynomials can in
principle be calculated

The theorem will be proved if there are enough independent
r x r determinants of the correct type
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