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Abstract

Any Lagrangian form of order k obtained by horizontalization of a
form of order k − 1 gives rise to Euler–Lagrange equations of order
strictly less than 2k.

But these are not the only possibilities. For example, with two
independent variables, the horizontalization of a first-order 2-form
gives a Lagrangian quadratic in the second-order variables; but
there are also cubic second-order Lagrangians with third-order
Euler–Lagrange equations.
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Abstract (continued)

In this talk I shall show first that any Lagrangian of order k with
Euler–Lagrange equations of order less than 2k must be a
polynomial in the k-th order variables of order not greater than the
number of different symmetric multi-indices of length k.

I shall then describe a geometrical construction, based on
Peter Olver’s idea of differential hyperforms, which gives rise to
Lagrangians with reduced-order Euler–Lagrange equations.

A version of this talk was given at Ostrava in June 2017. The work
has been published in SIGMA 14 (2018), 089, 13 pages.
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The Euler–Lagrange equations

Let L be a Lagrangian in a single independent variable x,
n dependent variables uα, and n derivative variables uαx .

The Euler–Lagrange equations are

∂L

∂uβ
− d

dx

∂L

∂uβx
= 0

and expanding the total derivative d/dx gives

∂L

∂uβ
− ∂2L

∂x∂uβx
− uαx

∂2L

∂uα∂uβx
− uαxx

∂2L

∂uαx∂u
β
x

In general these equations are second-order, but if L is linear in the
variables uαx then they are first-order.
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The Euler–Lagrange equations (2)

Now suppose there are m independent variables xi, n dependent
variables uα, and mn derivative variables uαi .

The Euler–Lagrange equations are now

∂L

∂uβ
− d

dxj
∂L

∂uβj
= 0

and expanding the total derivative d/dxj now gives

∂L

∂uβ
− ∂2L

∂xj∂uβj
− uαj

∂2L

∂uα∂uβj
− uαij

∂2L

∂uαi ∂u
β
j

In general these equations are second-order, but if L is linear in the
variables uαi then they are first-order. But . . .
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The Euler–Lagrange equations (3)

∂L

∂uβ
− ∂2L

∂xj∂uβj
− uαj

∂2L

∂uα∂uβj
− uαij

∂2L

∂uαi ∂u
β
j

The equations can be first-order even when L is not linear:
for example L = f(x, u)

(
uαi u

β
j − uαj u

β
i

)

These Lagrangians come from the geometric construction of
horizontalization on jet bundles:

with a fibred manifold π : E →M ,
any differential form ω on E
gives a horizontal differential form h(ω) on J1π

For instance, h
(
duα ∧ duβ

)
=
(
uαi u

β
j − uαj u

β
i

)
dxi ∧ dxj
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The Euler–Lagrange equations (4)
The same applies for higher-order Lagrangians.

If the Lagrangian L has order k, the Euler–Lagrange equations are
generically of order 2k

k∑
|I|=0

(−1)|I|
d|I|

dxI
∂L

∂uβI
= 0

where I ∈ Nk is a symmetric multi-index:

if uβI = uβi1i2···ik then I(i) = |{ir : ir = i}|

The geometry of the multi-index space is important:

|I| =
∑m

i=1 I(i) is the length of I;

‖I‖2 =
∑m

i=1

(
I(i)

)2 is the square Euclidean norm of I
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Reduced-order Euler–Lagrange equations

k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uβJ
= 0

Each total derivative d/dxj increases the order of its argument by
one, so that the terms of order 2k come from∑

|J |=k

(−1)k
d|J |

dxJ
∂L

∂uβJ
and equal

∑
|I|=|J |=k

(−1)kuαI+J
∂2L

∂uαI ∂u
β
J

The equations will have order less than 2k if, and only if, for each
multi-index H of length 2k,∑

I+J=H

∂2L

∂uαI ∂u
β
J

= 0
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The polynomial condition

Euler–Lagrange equations:
k∑
|J |=0

(−1)|J |
d|J |

dxJ
∂L

∂uβJ
= 0

Condition for lower order equations: whenever |H| = 2k then∑
I+J=H

∂2L

∂uαI ∂u
β
J

= 0

Theorem

A necessary condition for the Euler–Lagrange equations to have
order less than 2k is that L is a polynomial in the highest-order
derivatives uαI , |I| = k, of order at most pk

where pk is the number of distinct multi-indices of length k
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Special case: k = 2

∑
|K|=2

d2

dxK
∂L

∂uβK

has order strictly less than 4, so that∑
|J |=|K|=2

uαJ+K
∂2L

∂uαJ∂u
β
K

+ · · ·

has order strictly less than 4. That means∑
J+K=H

∂2L

∂uαJ∂u
β
K

= 0

whenever |H| = 4 and |J | = |K| = 2.



Abstract Introduction Polynomials Geometry Determinants

Special case: k = 2 (2)

∑
J+K=H

∂2L

∂uαJ∂u
β
K

= 0

whenever |H| = 4 = 2k and |J | = |K| = 2 = k

Put Ki = (0, . . . , 0, 2, 0, . . . 0) and Hi = (0, . . . , 0, 4, 0 . . . 0)
so that Hi = Ki +Ki (‘pure’ multi-indices); then

∂2L

∂uαKi∂u
β
Ki

= 0

so L is at most linear in uαKi
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Special case: k = 2 (3)∑
J+K=H

∂2L

∂uαJ∂u
β
K

= 0

whenever |H| = 4 and |J | = |K| = 2.

If Kij = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) (‘mixed’ multi-indices)
so that H = Kij +Kij = (0, . . . , 2, 0, . . . , 0, 2, 0, . . . , 0), then

∂2L

∂uαKij∂u
β
Kij

= − ∂2L

∂uαKi∂u
β
Kj

− ∂2L

∂uαKj∂u
β
Ki

(we have turned ‘mixed’ into ‘pure’ !)

so that
∂4L

∂uγKih∂u
δ
Kih

∂uαKij∂u
β
Kij

= 0

(with i 6= h, j); L is at most cubic in ‘overlapping’ terms uαKij
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Special case: k = 2 (4)

So we know
∂2L

∂uαKi∂u
β
Ki

= 0 ,
∂4L

∂uγKih∂u
δ
Kih

∂uαKij∂u
β
Kij

= 0 (i 6= h, j)

If
∂rL

∂uα1
J1
∂uα2

J2
· · · ∂uαrJr

6= 0

then the list of multi-indices (J1J2 · · · Jr) is constrained.

This implies r ≤ 1
2m(m+ 1) = p2,

the number of distinct multi-indices of length 2
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Proof of the polynomial condition
A necessary condition for the Euler–Lagrange equations to have
order less than 2k is that L is a polynomial in the highest-order
derivatives uαI , |I| = k, of order at most pk
Consider

∂pk+1L

∂uα1
J1
· · · ∂uαpkJpk

∂u
αpk+1

Jpk+1

so at least two of the multi-indices must be the same — say
J1 = J2

Use the condition
∑

I+J=H

∂2L

∂uαI ∂u
β
J

= 0 to put

∂pk+1L

∂uα1
J1
∂uα2

J2
∂uα3

J3
· · ·

=
∑

K1+K2=J1+J2
(K1,K2) 6=(J1,J2)

− ∂pk+1L

∂uα1
K1
∂uα2

K2
∂uα3

J3
· · ·
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Proof of the polynomial condition (2)

∂pk+1L

∂uα1
J1
∂uα2

J2
∂uα3

J3
· · ·

=
∑

K1+K2=J1+J2
(K1,K2) 6=(J1,J2)

− ∂pk+1L

∂uα1
K1
∂uα2

K2
∂uα3

J3
· · ·

But each term on the RHS also has a repeated multi-index! So we
can continue . . .

But eventually, every term will have a repeated ‘pure’ multi-index J
(where J(j) = k for some j, and J(j) = 0 for i 6= j)

and then
∑

J+J=H

∂2L

∂uαJ∂u
β
J

= 0 implies that

∂2L

∂uαJ∂u
β
J

= 0 But how do we know?
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Proof of the polynomial condition (3)

We use the parallellogram rule for Euclidean norms!

2‖x‖2 ≤ 2‖x‖2 + 2‖y‖2 = ‖x+ y‖2 + ‖x− y‖2

with equality when y = 0,

so that in

∂pk+1L

∂uα1
J ∂u

α2
J ∂u

α3
J3
· · ·

=
∑

K1+K2=J+J
(K1,K2) 6=(J,J)

− ∂pk+1L

∂uα1
K1
∂uα2

K2
∂uα3

J3
· · ·

we have ‖J‖2 + ‖J‖2 = 2‖J‖2 < ‖K1‖2 + ‖K2‖2

The sum of the square Euclidean norms in the terms keeps
increasing ... and ‖K‖2 =

∑(
K(i)

)2 is maximal when K is pure!

So eventually we get k + 1 pure multi-indices per term
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Proof of the polynomial condition (4)
Therefore

∂pk+1L

∂uα1
J1
· · · ∂uαpkJpk

∂u
αpk+1

Jpk+1

= 0

so that L is a polynomial in the uαJ , |J | = k, of degree at most pk.

But this necessary condition is not sufficient: for instance,
L = (uxy)

2 has Euler–Lagrange equations 2uxxyy = 0

All the Lagrangians with lower-order equations appear to be
determinants

Geometrically, determinants arise as the coefficients of wedge
products dx ∧ dy ∧ dz ∧ · · ·

. . . but also as coefficients of dx2 ∧ dxdy ∧ dy2 ∧ · · ·
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Differential hyperforms

Differential hyperforms were described in an unpublished paper by
Peter Olver from 1982

They are covariant tensors with symmetry properties described by
Young diagrams (ordinary differential forms are purely alternating,
but hyperforms can have more complicated symmetries)

Consider hyperforms on jet manifolds Jkπ that are
• horizontal over M , and
• wedge products of symmetric tensors (all of the same rank)

A (p, q) hyperform is a section of
∧p SqT ∗M , pulled back to Jkπ

These are generated over C∞(Jkπ) by dxI1 ∧ dxI2 ∧ · · · ∧ dxIp
where dxI = dxi1dxi2 · · · dxiq with I = (i1, i2, · · · , iq)
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Affine (1, q) hyperforms

A (1, q) hyperform (1 ≤ q ≤ k) is a horizontal symmetric tensor
θ : Jkπ → SqT ∗M

As Jkπ → Jk−1π is an affine bundle, we say that θ is an affine
(1, q) hyperform if its restriction to each fibre of the bundle is an
affine map: in coordinates

θ =
∑
|I|=k
|J |=q

(
θIαJ u

α
I + θJ

)
dxJ

These affine (1, q) hyperforms are too general. We shall restrict
attention to special affine (1, q) hyperforms
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Special affine (1, q) hyperforms
The affine bundle Jkπ → Jk−1π has associated vector bundle
V π ⊗ SkT ∗M → Jk−1π

The fibre-affine map θ has an associated fibre-linear ‘difference
map’ θ̄ : V π ⊗ SkT ∗M → SqT ∗M

We say that θ is a special affine (1, q) hyperform if there is a tensor
θ̃ ∈ V π∗ ⊗ Sk−qTM such that the difference map θ̄ is given by
contraction of elements of its domain V π ⊗ SkT ∗M with θ̃.

In coordinates (where θIα are the coordinates of θ̃)

θ =
∑
|I|=k−q
|J |=q

(
θIαu

α
I+J + θJ

)
dxJ
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Special affine (1, q) hyperforms — example

θ =
∑
|I|=k−q
|J |=q

(
θIαu

α
I+J + θJ

)
dxJ

In the special case where q = 1 we have

θ =
∑
|I|=k−1

(
θIαu

α
I+1j + θj

)
dxj

the ordinary horizontalization of the 1-form∑
|I|=k−1 θ

I
αdu

α
I + θjdx

j

There is no invariant operation of horizontalization for hyperforms
when q ≥ 2; but special affine (1, q) hyperforms generalize the
images of the horizontalization operator on ordinary 1-forms
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Hyperaffine (pq, q) hyperforms

A (pq, q) hyperform ω is a section of the line bundle
∧pq SqT ∗M ,

pulled back to Jkπ

It is hyperaffine if it is generated by wedge products of special
affine hyperforms θ =

∑
|I|=k−q,|J |=q

(
θIαu

α
I+J + θJ

)
dxJ

If ω = ωqdx
J1 ∧ dxJ2 ∧ · · · ∧ dxJpq then ωq is a linear combination

of determinants (or their minors)∣∣∣∣∣∣∣∣∣∣
uα1
I1+J1 uα1

I1+J2 · · · uα1
I1+Jpq

uα2
I2+J1 uα2

I2+J2 · · · uα2
I2+Jpq

...
...

. . .
...

u
αpq
Ipq+J1 u

αpq
Ipq+J2 · · · u

αpq
Ipq+Jpq

∣∣∣∣∣∣∣∣∣∣
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What does this have to do with Lagrangians?
A Lagrangian m-form λ defines local Lagrangian functions L by

λ = Ldx1 ∧ dx2 ∧ · · · ∧ dxm

Say that λ is hyperaffine if, in any coordinate system,

L = ω1 + ω2 · · ·+ ωk

where each ωq is the coefficient of a hyperaffine hyperform

ω = ωqdx
J1 ∧ dxJ2 ∧ · · · ∧ dxJpq

This is independent of the coordinate system
In new coordinates (x̃, ũ), the volume dx1 ∧ dx2 ∧ · · · ∧ dxm
changes by the Jacobian determinant J(x̃, x), whereas each
hypervolume dxJ1 ∧ dxJ2 ∧ · · · ∧ dxJpq changes by a power of
J(x̃, x)
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Euler–Lagrange equations of hyperaffine Lagrangians
Theorem

If L is the Lagrangian function of a hyperaffine Lagrangian then the
Euler-Lagrange equations have reduced order

It is sufficient to show this for a determinant

∆ =

∣∣∣∣∣∣∣∣∣∣
uα1
I1+J1 uα1

I1+J2 · · · uα1
I1+Jpq

uα2
I2+J1 uα2

I2+J2 · · · uα2
I2+Jpq

...
...

. . .
...

u
αpq
Ipq+J1 u

αpq
Ipq+J2 · · · u

αpq
Ipq+Jpq

∣∣∣∣∣∣∣∣∣∣
so write ∆ as

∆ =
∑
σ∈Sh

εσu
α1
I1+Jσ(1)u

α2
I2+Jσ(2) · · ·u

αh
Ih+Jσ(h)
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Euler–Lagrange equations of hyperaffine Lagrangians (2)

∆ =
∑
σ∈Sh

εσu
α1
I1+Jσ(1)u

α2
I2+Jσ(2) · · ·u

αh
Ih+Jσ(h)

Substituting in the Euler–Lagrange equations gives

∑
|K|=k

d|K|

dxK
∂L

∂uβK
=

∑
1≤r,s≤h
s 6=r

∑
σ∈Sh

δαrβ εσΦrsσu
αs
Ir+Is+Jσ(r)+Jσ(s)

where the coefficients Φrsσ are

Φrsσ = uα1
I1+Jσ(1)u

α2
I2+Jσ(2) · · · r̂ · · · ŝ · · ·u

αh
Ih+Jσ(h)

Fix r 6= s. Given σ ∈ Sh put σ̃ = σ ◦ (r, s) 6= σ.
Φrsσ = Φrsσ̃ and εσ = −εσ̃ so all the terms cancel.
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Determinants

Established so far:

• If a Lagrangian function of order k has reduced-order
Euler–Lagrange equations then it is a polynomial of order at
most pk in the variables uαH (|H| = k);

• Every hyperaffine Lagrangian has reduced-order
Euler–Lagrange equations (and is a polynomial with a
particular determinant structure)

I conjecture that every Lagrangian with reduced-order
Euler–Lagrange equations has this particular determinant structure,
and so is hyperaffine.
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Determinants (2)
A general polynomial Lagrangian function of order k and degree pk
is

L =

pk∑
r=0

AH1H2···Hr
α1α2···αr u

α1
H1
uα2
H2
· · ·uαrHr

with implicit sums over the indices and multi-indices, and with
|H| = k

Can this be written as a linear combination of determinants∣∣∣∣∣∣∣∣∣
uα1
I1+J1 uα1

I1+J2 · · · uα1
I1+Jr

uα2
I2+J1 uα2

I2+J2 · · · uα2
I2+Jr

...
...

. . .
...

uαrIr+J1 uαrIr+J2 · · · uαrIr+Jr

∣∣∣∣∣∣∣∣∣
|J | = q, |I| = k − q

1 ≤ q ≤ k, 0 ≤ r ≤ pq ?
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Determinants (3)
Consider homogeneous polynomials AH1H2···Hr

α1α2···αr u
α1
H1
uα2
H2
· · ·uαrHr

In the case r = 2 there is a constructive proof

Partition the quadratic terms by H1 +H2 = H and put

ψH =
∑

H1+H2=H

AH1H2
α1α2

uα1
H1
uα2
H2

Choose a term AK1K2
α1α2

uα1
K1
uα2
K2

arbitrarily, so from E–L we have

AK1K2
α1α2

=
∑

H1+H2=H,(H1,H2)6=(K1,K2)

−AH1H2
α1α2

and so

ψH =
∑

H1+H2=H

AH1H2
α1α2

(uα1
H1
uα2
H2
− uα1

K1
uα2
K2

)
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Determinants (4)
For cubic and higher terms, there is no obvious algorithm to give an
explicit construction

(although ad-hoc methods work for all examples investigated)

A possible approach would use an abstract dimension argument:

The number of variables uαI , |I| = k, is known,
and so the dimension of the space of homogeneous polynomials of
degree r is also known

The number of E–L constraints for quadratic polynomials is known,
so the number of constraints for degree r polynomials can in
principle be calculated

The theorem will be proved if there are enough independent
r × r determinants of the correct type
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