Spectral Convergence of Neumann Laplacian On Non-Compact Quasi-One-Dimensional Spaces and Some Geometric Domains

LY Hong Hai¹

¹ Department of Mathematics Faculty of Science, University of Ostrava 30. dubna 22, 701 03 Ostrava Czech Republic p18180@student.osu.cz

Abstract: The talk is review of the paper of O.Post "Spectral Convergence of Quasi-One-Dimensional Spaces". We investigate a family of non-compact manifolds X_{ε} ("graph-like manifolds") approaching a metric graph X_0 . We present the convergence results of the related the operators, namely the Neumann Laplacian $\Delta_{X_{\varepsilon}}$ and Δ_{X_0} . More precisely, we show that the pair of self-adjoint non-negative operators and Hilbertspaces $(\Delta_{X_{\varepsilon}}; L^2(X_{\varepsilon}))$ and $(\Delta_{X_0}; L^2(X_0))$ are close to each other. We also derive the norm convergence of the resolvents, spectral projections and eigenfunctions. As a consequence, the essential and the discrete spectrum converge as well. The convergence results will be given in works dealing with operators acting in different spaces, applicable also in other geometric situations.

References

- O. Post: Spectral Convergence of Quasi-One Dimensional Spaces. Ann. Henri Poincare 7 (2006), 933-973.
- [2] P. Exner and O. Post: Convergence of spectra of graph-like thin manifolds, Journal of Geometry and Physics 54 Volume 77-115, 2005.
- [3] P. Exner and H. Kovařík: Spectrum of the Schrödinger operator in a perturbed periodically twisted tube, Lett. Math. Phys. 73 (2005), 183–192.
- [4] Konrad Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space (Graduate Texts in Mathematics Book 265), Springer, 2012.
- [5] Peter J. Olver: Applications of Lie Groups to Differential Equations, Springer, 2000.
- [6] T. Kato: Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin 1976.
- [7] Wolfgang Kühnel: Differential Geometry Curves Surfaces Manifolds Third Edition, Student Mathematical Library Volume 77, 2015.