
Selected applications of multivalued algebras
in the algebraic theory of quadratic forms

by Paweª Gªadki

April 26-28, 2022

University of Ostrava



Hypergroups, hyperrings and hyper�elds.

Hypergroups.

A hypergroup is an object just like a group, but with binary operation allowed to take multiple
values:

(H;+;¡; 0), +:H �H! 2H, ¡:H!H, 02H.

i. (a+ b)+ c= a+(b+ c), a; b; c2H,

ii. a+0=0+ a= fag, a2H,

iii. a+ b= b+ a, a; b2H,

iv. a2 b+ c) b2 a+(¡c), a; b; c2H.

1. F. Marty, Sur une generalisation de la notion de group, in: 8th Congress Math. Scandinaves, Stockholm,
1934, pp. 45�49.

2. M. Krasner, Approximation des corps values complets de caracteristique p=/ 0 par ceux de caracteristique 0 ,
in: Colloque d'Algebre Superieure, Brussels, 1956, pp. 129�206.



Some examples.

Example 1. Any abelian group (G;+) becomes a hypergroup with +:G�G! 2G de�ned by

a+ b= fa+ bg.

Example 2. Let Q2 = f¡1; 0; 1g. De�ne +: Q2 � Q2! 2Q2 by taking 0 to be the neutral
element and

(¡1)+ (¡1)= f¡1g; 1+1= f1g; 1+ (¡1)= (¡1)+ 1= f¡1; 0; 1g:

Think of �1� as �positive reals�, �¡1� as �negative reals� and �+� as the possible outcome of
addition.

This is a hypergroup.



Category of hypergroups.

A morphism of hypergroups H1!!!!!!!!
f
H2 is a function f :H1!H2 such that

i. f(a+ b)� f(a)+ f(b), a; b2H1,

ii. f(¡a)=¡f(a), a2H1,

iii. f(0)= 0.

There is a fair amount of controversy on how to de�ne morphisms. For what we are doing here
the above de�nition is just �ne, but, for example, the category of hypergroups with morphisms
where the axiom i. has ��� instead of �=� fails to have equalizers.



Hyperrings and hyper�elds.

A hyperring is a hypergroup (H;+;¡;0) equipped with a binary operation �:H �H!H with
the neutral element 12H such that (H; �; 1) is a commutative monoid and

i. a � 0=0, a2H ,

ii. a � (b+ c)� a � b+ a � c,
iii. 1=/ 0.

If, on top of that, every nonzero element a 2 H has a multiplicative inverse, we call H a
hyper�eld.

A morphism H1!!!!!!!!
f
H2 of hyperrings is just a morphism of underlying hypergroups such that

i. f(a � b)= f(a) � f(b), a; b2H1,

ii. f(1)= 1.

Note that axioms of hyper�elds slightly di�er from axioms of �elds: here, for example, the axiom
i. is not a consequence of other axioms.



Modern applications.

A) Number theory, incidence geometry, and geometry in characteristic one.

1. A. Connes, C. Consani, From monoids to hyperstructures: in search of an absolute arithmetic , in: G. van
Dijk (ed.) et al., Casimir force, Casimir operators and Riemann hypothesis. Mathematics for innovation
in industry and science. Proceedings of the conference, Fukuoka, Japan, November 9�13, 2009, 147-198,
de Gruyter, Berlin, 2010.

2. A. Connes, C. Consani, The hyperring of adele classes, J. Number Theory 131 (2011), 159�194.

3. A. Connes, C. Consani, Universal Thickening of the Field of Real Numbers, in: A. Alaca (ed.) et al.,
Advances in the The- ory of Numbers. Proceedings of the Thirteenth Conference of the Canadian Number
Theory Association, 11�74, Fields Institute Communications 77, Springer, New York, 2015.

B) Tropical geometry.

1. O. Viro, Hyper�elds for tropical geometry i. hyper�elds and dequantization, arXiv:1006.3034, 2010.

2. O. Viro, On basic concepts of tropical geometry, Proc. Steklov Inst. Math. 273 (2011), 252�282.

C) Supertropical algebras.

1. Z. Izhakian, M. Knebusch, L. Rowen, Layered tropical mathematics, J. Algebra 416 (2014), 200�273.

2. Z. Izhakian, L. Rowen, Supertropical algebra, Adv. Math. 225 (2010), 2222-2286.

D) Algebraic geometry over hyperrings.

1. J. Jun, Algebraic geometry over hyperrings, Adv. Math. 323 (2018), 142-192.

2. J. Jun, Hyperstructures of a�ne group schemes, J. Number Theory 167 (2016), 336-352.



Applications to quadratic forms.

A) Witt equivalence.

1. P.G., M. Marshall, Witt equivalence of function �elds over global �elds, Trans. Amer. Math. Soc. 369
(2017), 7861-7881.

2. P.G., M. Marshall, Witt equivalence of function �elds of curves over local �elds, Comm. Algebra 45
(2017), 5002-5013.

3. P.G., M. Marshall,Witt equivalence of function �elds of conics , Algebra & Disc. Math. 30 (2020), 63-78.

4. P.G., Witt equivalence of �elds: a survery with a special emphasis on applications of hyper�elds, in
Ordered Algebraic Structures and Related Topic, 169-185, Contemp. Math. 697, Amer. Math. Soc.,
Providence, RI, 2017.

B) Orderings of higher level and root selections.

1. P.G., Orderings of higher level in multirings and multi�elds, Ann. Math. Silesianae 24 (2010), 15-25.

2. P.G., M. Marshall, Orderings and signatures of higher level on multirings and hyper�elds , J. K-Theory
10 (2012), 489-518.

3. P.G., n-th roots and orderings of level n, Ann. Math. Silesianae, 33 (2019), 106-120.

4. P.G., Root selections and 2p-th root selections in hyper�elds, Discuss. Math., Gen. Algebra Appl. 39
(2019), 43-53.

C) Axiomatic theory of quadratic forms.

1. P.G., K. Worytkiewicz, Witt rings of quadratically presentable �elds, Categ. Gen. Algebr. Struct. Appl.
12 (2020), 1-23.

2. P.G., K. Worytkiewicz, Ordered monoids with exchange as generalised hyperalgebras , submitted.



Witt equivalence.

Witt ring.

Similarity classes of nonsingular quadratic forms over F , charF =/ 2, with addition and multipli-
cation induced by orthogonal sum and tensor product form a commutative ring called the Witt
ring of the �eld F and denoted by W (F ).

The Witt ring of a �eld F encodes, more or less, all information relevant to the orthogonal
geometry over F .

1. E. Witt, Theorie der quadratischen Formen in beliebigen Korpern. J. Reine Ang. Math. 176 (1937) 31�44.



Witt equivalence.

We say two �elds K and L are Witt equivalent, denoted K � L, if W (K) and W (L) are
isomorphic as rings.

We shall explain in some detail what are the implications of Witt equivalence.

Two �elds K and L of characteristic =/2 are said to be equivalent with respect to quadratic
forms, if there exists a pair of bijections t:K�/K�2!L�/L�2 and T :Cl(K)!Cl(L), where
Cl(�) denotes the set of equivalence classes of nonsingular quadratic forms over a given �eld,
such that the following four conditions are satis�ed:

i. T (ha1; :::; ani)= ht(a1); :::; t(an)i, a1; :::; an2K�/K�2,

ii. detT (q)= t(det q), for every nonsingular quadratic form q over K,

iii.DL(T (q))= t(DK(q)), for every nonsingular quadratic form q over K,

iv. t(1)= 1, t(¡1)=¡1.



Theorem 3. (Harrison-Cordes criterion) For two �elds K and L of characteristic =/2 the
following conditions are equivalent:

i.K and L are equivalent with respect to quadratic forms,

ii. there exists a group isomorphism t:K�/K�2!L�/L�2 such that t(¡1) =¡1, and, for
all a; b2K�/K�2:

12DK(ha; bi), 12DL(ht(a); t(b)i),

iii.K�L,

iv.W (K)/I3(K)=�W (L)/I3(L), I(�) denoting the fundamental ideal of a given Witt ring.

So, basically, for two �elds to be Witt equivalent means to have same orthogonal geometries.

1. D.K. Harrison, Witt rings. University of Kentucky Notes, Lexington, Kentucky (1970).

2. C. Cordes, The Witt group and equivalence of �elds with respect to quadratic forms, J. Algebra 26 (1973),
400�421.



Quotient hyper�elds.

Let (H;+;¡; �; 0; 1) be a hyper�eld, let T be a subgroup of the multiplicative group H�.

Denote by H /mT the set of equivalence classes with respect to the equivalence relation � on
H de�ned by

a� b if and only if as= bt for some s; t2T :

Denoting by a� the equivalence class of a set a�b�= ab, ¡a�=¡a, 0=0�, 1= 1� and

a�2 b�+ c� if and only if as2 bt+ cu for some s; t; u2T .

(H /mT ;+; �;¡; 0; 1) is then a hyper�eld that we shall refer to as quotient hyper�eld.



Quadratic hyper�elds.

Let K be a �eld, charK =/ 2, K =/ F3;F5.

Observe that, for z; a; b2K the following equivalence holds true:

z= ax2+ by2 for some x; y 2K if and only if z�2 a�+ b� in K /mK
�2.

The hyper�eld K /mK
�2 will be called the quadratic hyper�eld of K and denoted by Q(K).



Harrison-Cordes criterion revisited.

Theorem 4. Let K and L be any �elds. Then K � L if and only if Q(K) and Q(L) are
isomorphis as hyper�elds.



What is known then?

A) Trivial examples: quadratically closed �elds, real closed �elds.

B) Less trivial, but still easy: �nite �elds.

C) Somewhat non-trivial, but elementary: local �elds.

D) Global �elds.

1. R. Perlis, K. Szymiczek, P.E. Conner, R. Litherland, Matching Witts with global �elds. Contemp. Math.
155 (1994) 365�378.

2. K. Szymiczek, Matching Witts locally and globally. Math. Slovaca 41 (1991) 315�330.

3. K. Szymiczek, Hilbert-symbol equivalence of number �elds, Tatra Mount. Math. Publ. 11 (1997), 7�16.

E) Function �elds over algebraically closed �elds and real closed �elds.

1. P. Koprowski, Witt equivalence of algebraic function �elds over real closed �elds. Math. Z. 242 (2002)
323�345.

2. N. Grenier-Boley, D.W. Ho�mann, Isomorphism criteria for Witt rings of real �elds. With appendix by
Claus Scheiderer. Forum Math. 25 (2013) 1�18.

F) Function �elds over global and local �elds.

1. P.G., M. Marshall, Witt equivalence of function �elds over global �elds, Trans. Amer. Math. Soc. 369
(2017), 7861-7881.

2. P.G., M. Marshall, Witt equivalence of function �elds of curves over local �elds, Comm. Algebra 45
(2017), 5002-5013.

3. P.G., M. Marshall,Witt equivalence of function �elds of conics , Algebra & Disc. Math. 30 (2020), 63-78.



Witt equivalence of function �elds over global �elds.

Theorem 5. If function �elds F and E over global �elds are Witt equivalent, then the corre-
sponding isomorphism of quadratic hyper�elds Q(F ) and Q(E) induces, in a canonical way, a
bijection between the Abhyankar valuations of F and E, whose residue �elds are neither �nite,
nor of characteristic 2.

Recall that if F is a function �eld over k and v is a valuation on K, the Abhyankar inequality
asserts that

trdeg (F : k)� rkQ(¡v/¡vjk)+ trdeg (Fv: kvjk)

where v jk denotes the restriction of v to k.

For any abelian group ¡, rkQ(¡) :=dimQ(¡
ZQ).

We will say the valuation v is Abhyankar (relative to k) if � in the Abhyankar inequality is
replaced with =.

In this case it is well known that ¡v/¡vjk=�Z� :::�Z (with rkQ(¡v/¡v jk) factors) and Fv is a
function �eld over kvjk.

Moreover, if v is Abhyankar (relative to k) then ¡v=�Z� :::�Z (with rkQ(¡v) factors) and Fv
is either a function �eld over a global �eld or a �nite �eld.



For any �eld F , we de�ne the nominal transcendence degree of F by

ntd(F )=
�

trdeg(F :Q); if charF =0;
trdeg(F :Fp)¡ 1; if charF = p:

Let F be a function �eld in n variables over a global �eld. For 0� i�n denote by �F ;i the set
of Abyankar valuations v on F with ntd(Fv)= i. Observe that

�F ;i= �F ;i;0[_ �F ;i;1[_ �F ;i;2;

where

1. �F ;i;0 is the set of valuations of �F ;i such that charFv=0,

2. �F ;i;1 is the set of valuations of �F ;i such that charFv=/ 0; 2,

3. �F ;i;0 is the set of valuations of �F ;i such that charFv=2.

Of course, some of the sets �F ;i;j may be empty. Speci�cally, if char(F ) = p for some odd
prime p then �F ;i;j= ; for j 2f0; 2g, and if char(F )= 2 then �F ;i;j= ; for j 2f0; 1g



The correspondence of Theorem 5 preserves the sets �F ;i;j. To be more speci�c, one has the
following:

Theorem 6. Suppose F, E are function �elds in n variables over global �elds which are Witt
equivalent via a hyper�eld isomorphism �:Q(F )!Q(E). Then for each i2 f0; 1; :::; ng and
each j 2 f0; 1; 2g there is a uniquely de�ned bijection between �F ;i;j and �E;i;j such that, if
v$w under this bijection, then � maps (1 +Mv) F

�2/F�2 onto (1 +Mw)E
�2/E�2 and

UvF
�2/F�2 onto UwE�2/E�2.



In particular, considering the bijection between �F ;0;0 and �E;0;0 yields the following result:

Theorem 7. Let F �E be function �elds over number �elds, with �elds of constants k and `
respectively. If there exists v 2 �F ;0;0 with Fv= k and w 2 �E;0;0 with Ew= ` then k� `.



The correspondence of Theorem 5 also yields some interesting quantitive results.

If k is a number �eld, every ordering of k is archimedean, i.e., corresponds to a real embedding
k ,!R.

Let r1 be the number of real embeddings of k, and r2 the number of conjugate pairs of complex
embeddings of k. Thus [k:Q] = r1+2 r2. Let

Vk= fr2 k�j (r)= a2 for some fractional ideal a of kg:

Clearly Vk is a subgroup of k� and k�2�Vk. In this case the local-global principle for function
�elds over global �elds can be improved in the following sense:

Theorem 8. Suppose F = k(x1; :::; xn) and E = `(x1; :::; xn) where n � 1 and k and ` are
number �elds, and �:Q(E)!Q(F ) is a hyper�eld isomorphism. Then

(1) r 2 k�/k�2 i� �(r)2 `�/`�2.

(2) The map r 7!�(r) de�nes a hyper�eld isomorphism between Q(k) and Q(`).

(3) � maps Vk/k�2 to V`/`�2.

(4)The 2-ranks of the ideal class groups of k and ` are equal.



If ` is a number �eld, [`:Q] even, and `=/ Q( ¡1
p

), then, for each integer t� 1, there exists a
number �eld k such that k� ` and the 2-rank of the class group of k is �t.

Combining this with Theorem yields the following:

Corollary 9. For a �xed �eld n� 1 and a �xed number �eld `, [`:Q] even, `=/ Q( ¡1
p

), there
are in�nitely many Witt inequivalent �elds of the form k(x1; :::; xn), k a number �eld with k� `.

The case when [`:Q] is odd remains open.

Likewise, it is not known, if, for arbitrary �elds F and E, F (x)�E(x) implies F �E, or if the
assumption in Theorem that F is purely transcendental over k is really necessary.



End of part I



Orderings of higher level on multirings and
hyper�elds.

Preorderings and orderings of higher level in �elds and rings.

Let F be a �eld.

A preordering of level n is a subset T of F such that:

T +T �T ; TT �T ; and a2n2T for all a2F ;

and an ordering of level n is a subset P of F such that

P +P �P ;P� is a subgroup of F�;P [¡P =F ; and F�/P� is cyclic with jF�/P�j j2n:

An n-formally real �eld is one where ¡1 is not a sum of 2n-th powers.



The de�nitions of a preordering of level n for rings and n-formally real rings coincide with the
ones for �elds, whereas an ordering of level n in a ring A is a subset P �A such that

i. P +P �P ; PP �P ; and a2n2P for all a2A,

ii. P \¡P = p is a prime ideal of A,

iii. if ab2
n2P , then a2P or b2P ,

iv. the set

P =

(X
i=1

k

ai
2npij a1; :::; ak2 k(p); p1; :::; pk2P ; k 2N

)

is an ordering of level n in the �eld of fractions k(p) of the ring A/p. Here pi= pi+p2A/p,
i2f1; :::; kg.



Basic properties.

For a �xed n, the fundamental facts of the classical theory of n-ordered �elds can be summarized
as follows:

1. if T is a proper preordering of level n, a 2/ T , and P is a preordering of level n maximal
subject to the conditions that T �P and a2/ P , then P is an ordering of level n; the set of
all orderings of level n containing a preordering T will be denoted by XT , and the set of all
orderings of level n of F will be denoted by XF ;

2. for every proper preordering of level n T , one has T =
T
P2XTP ;

3. a �eld F is formally n-real , F admits a proper preordering of level n , F admits an
ordering of level n.



Playing a similar game for multirings and hyper�elds...?

If H is a hyper�eld, a preordering of level n is a subset T of H such that

T +T �T ; TT �T ; and a2n2T for all a2H;

which is proper if ¡12/ T , an ordering of level n is a subset P of H such that

P +P �P ;P� is a subgroup of H�; P [¡P =H; and H�/P� is cyclic with jH�/P�j j
2n;

which is of exact level n if jF�/P�j=2n, and a hyper�eld is n-formally real when ¡1 is not
in a sum of 2n-th powers.



Theorem 10. Let H be a hyper�eld. The following conditions are equivalent:

1.H is formally n¡ real,

2.H admits an ordering of level n,

3.H admits a proper preordering of level n.

Theorem 11. Let H be a hyper�eld, T � H a preordering of level n. If T is proper, then
T =

T
P2XTP.

1. P.G., Orderings of higher level in multirings and multi�elds, Ann. Math. Silesianae 24 (2010), 15-25.



It becomes much more complicated for multirings without the extra assumption that A=T ¡T .

Theorem 12.

1. Let H be a hyper�eld, charH =0, let n� 0. Then H =
P
H2n¡

P
H2n.

2. Let A be a multiring such that for each maximal ideal m of A and each s2A nm [
k�2

s+ :::+ s|||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
k

!
\m= ;;

let n� 0. Then A=
P
A2

n¡
P
A2

n
.

1. P.G., M. Marshall, Orderings and signatures of higher level on multirings and hyper�elds , J. K-Theory 10
(2012), 489-518.



n-real reduced multirings and hyper�elds.

n-real reduced multirings are non-zero multirings satisfying the following additional axioms:

1. a2
n+1= a,

2. a+ a b2
n
= fag,

3. a2
n
+ b2

n
contains a unique element.

1-real reduced hyper�elds correspond to spaces of orderings, so it is natural to wonder if n-real
reduced hyper�elds correspond to the spaces of signatures introduced.

In fact, this is not the case: the following symmetry property:

for all odd integers 1� k� 2n, a2 b+ c) ak2 bk+ ck,

is satis�ed by spaces of signatures but is not true for general n-real reduced hyper�elds.



Axiomatic theory of quadratic forms.
Realization problem.

The following question is at least 40 years old:

Question 13. Every �eld F gives rise to a hyper�eld H (namely H =Q(F )) such that

i. a2=1, for all a2H�, and

ii. if a=/ ¡1, then 1+ a is a subgroup of H�.

Is it true that for every hyper�eld H satisfying i. and ii. there is a �eld F such that H =�Q(F )?

Everybody believes the answer to be negative, but no examples are known so far.



Cohomological invariants.

The structre of W (F ) for a �eld F , charF =/ 2, is closely tied with the �ltration

W (F )� I(F )� I2(F )� I3(F )� :::

and quotients In(F )/In+1(F ) can be determined by homomorphisms with values in the n-th
Galois cohomology groups of F . This is, roughly speaking, Milnor conjecture.

Can it be done in the axiomatic setting?

One would need a di�erent cohomological theory...



Presentable posets.

Let A be a poset.

We shall write
F
X for the supremum of X �A.

Let SA be the set of A's minimal elements.

We shall write Sa for the set of all minimal elements below a2A, and SX =
def:S

x2XSx for the
set of minimal elements below X �A.

A poset (A;6) is presentable if

i. every non-empty subset X �A admits a supremum;

ii. Sa is non-empty and a=
F
Sa for all a2A;

iii. every minimal element s 2 SA is compact in the following sense: if Y �A is a nonempty
subset and s6FY , then there is an element y 2Y such that s� y.

The minimal elements of a presentable poset are called supercompacts.



A presentable monoid (M;�; 0;+) is a pointed presentable poset (M;�; 0) with a distin-
guished supercompact 0 and a suprema-preserving binary addition +:M �M!M such that

i. a+(b+ c)= (a+ b)+ c for all a; b; c2M ;

ii. a+0=0+ a= a for all a2M ;

iii. a+ b= b+ a for all a; b2M .

A presentable group G is a presentable monoid equipped with a suprema preserving involutive
homomorphism ¡:G!G called inversion, verifying

(s� t+u)) (t� s+(¡u))

for all s; t; u2SG.



A presentable ring R is a presentable group (R;�;0;+;¡) consisting of at least two elements
as well as a commutative monoid (R; �; 1), such that the element 12R is a supercompact, � is
compatible with � (i.e. a�b implies a � c�b � c, for all a; b; c2R) and ¡(i.e. a � (¡b)=¡(a � b),
for all a; b2R), distributative with respect to +, that 0 � a=0, for all a2R, and that � veri�es

Sa�b = fs�tjs2Sa; t2Sbg

for all a; b2R. A presentable ring R such that SR� =SR n f0g is a multiplicative group will be
called a presentable �eld.



Quadratically presentable �elds.

A presentable �eld R is pre-quadratically presentable, if the following conditions hold

i. a� a+ b for all a2SR� ; b2SR;

ii. (a� 1¡ b)^ (a� 1¡ c)) (a� 1¡ b c) for all a; b; c2SR;

iii. a2=1 for all a2SR n f0g.

A form over a pre-quadratically presentable �eld R is an n-tuple ha1; :::; ani of elements of SR� .
The relation =� of isometry of forms of the same dimension is given by induction:

¡ hai=�hbi if and only if a= b;

¡ ha1; a2i=�hb1; b2i if and only if a1 a2= b1 b2 and b1� a1+ a2;

¡ ha1; :::; ani=�hb1; :::; bni if and only if there exist x; y; c3; :::; cn2SR� such that

i. ha1; xi=�hb1; yi;

ii. ha2; :::; ani=�hx; c3; :::; cni;

iii. hb2; :::; bni=�hy; c3 :::; cni.

If this relation is an equivalence, then R is called a quadratically presentable �eld.



Witt rings of quadratically presentable �elds can be de�ned:

Theorem 14. For a �eld F,W (P�(Q(F ))) is just the usual Witt ringW (F ) of non-degenerate
symmetric bilinear forms of F.

1. P.G., K. Worytkiewicz, Witt rings of quadratically presentable �elds, Categ. Gen. Algebr. Struct. Appl., to
appear.



Thank you!


