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Diffusion		(Fick,	Einstein,	Smoluchowski)

DIFFUSION	-	the	process	of	spontaneous	spreading	out	
particles	or	energy	in	a	given	medium	(e.g.,	gas,	liquid,	
or	solid)	resulting	from	collisions	of	diffusing	substance	
particles	among	themselves	or	with	particles	of	the	
surrounding	medium.


The	diffusion	process	is	described	by	the	Fokker-Planck	
(FP)	equation	in	which	the	FP	operator	 	is	equal	to	 .

This	equation	reads

𝒜 ∂2
x

∂t N(x, t) = D∂2
x N(x, t)

whose	fundamental	solution	(it	means	that	we	use	 	)	

is	the	Gaussian:

N(x,0) = δ(x)

N(x, t) =
e−x2/(4Dt)

4πDt
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N(x, t) =
e−x2/(4Dt)

4πDt
Gaussian	

⟨x2(t)⟩ ∼ tα, α > 0

• For	 	we	have	sub-diffusion


• For	 	it	is	super-diffusion


• 		gives	the	normal	diffusion


• 		gives	the	ballistic	motion

α ∈ (0,1)
α ∈ (1,2)

α = 1
α = 2
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Anomalous	diffusion
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Sokolov,	Chechkin,	PRE	2021


We	consider	the	generalized	Fokker-Planck	(FP)	equation	which	figures	out

∂t p(x, t) = 𝒪𝒜p(x, t) ⟹ ∂t p(x, t) = ∫
t

0
O(t − ξ)𝒜p(x, ξ) dξ

where		 ,	 	,	the	linear	operator	 		acts	on	the	time	variable	only	(it	carries	

responsibility	for	the	memory	effects).	The	time	independent	FP	operator	 	influences	
only	the	 -dependence	of	solutions.	


The	above	equation	is	usually	presented	in	two	forms,	namely

x ∈ ℝ t ∈ ℝ+ 𝒪
𝒜

x

∂t p(x, t) =
d
dt ∫

t

0
M(t − ξ)𝒜p(x, ξ) dξ or ∫

t

0
k(t − ξ)∂ξ p(x, ξ) dξ = 𝒜p(x, t)

p(x, t) = p(x,0) + ∫
t

0
M(t − ξ) 𝒜p(x, ξ) dξ

(Mainardi,	Sokolov,	Chechkin,	Kochubei,	Tomovski,	Sandev,	and	so	on)

(1) (2)
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Remark	2.		In	the	Laplace	space	we	have	Ô(z) = zM̂(z) = [ ̂k(z)]−1 .

Remark	1.		These	two	equations	can	be	rewritten	to	each	other	for	the	memory	kernels

																				 	and		 	satisfied	the	Sonine	equationM(t) k(t)

∫
t

0
M(t − t′￼)k(t′￼)dt′￼= ∫

t

0
M(t′￼)k(t − t′￼)dt′￼= 1

which	in	the	Laplace	space	reads	 M̂(z) ̂k(z) =
1
z

.

(Kochubei,	Hanyga,	Górska,	Horzela)

Remark	3.		In	the	description	of	relaxation	phenomena	we	restrict	the	kinetic	problem

																				under	consideration	to	be	depended	on	the	time	only.	That	means	that	the

																				action	of	the	FP	operator	reduces	to	multiplication	by	a	constant	factor	 .	B

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics
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The	Laplace	transform	reads

̂f (z) = ℒ[ f (t); z] = ∫
∞

0
f (t) e−ztdt

where	the	inverse	Laplace	transform	is	given	by	
the	Bromwich	integral

f (t) = ℒ−1[ ̂f (z); t] = ∫L

̂f (z) ezt dz
2πi

with	 	being	the	Bromwich	contourL



8

Remark	2.		In	the	Laplace	space	we	have	Ô(z) = zM̂(z) = [ ̂k(z)]−1 .
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The	solution	is	presented	as	an	integral	decomposition	

p(x, t) = ∫
∞

0
h(x, ξ) f (ξ, t)dξ

in	which	functional	forms	of	 	and	 	are	to	be	determined	from	the	
primary	equation.

h(x, ξ) f (ξ, t)

Remark	5.		If	we	impose	a	probabilistic	interpretation	then	the	integral	decomposition	can

																				represent	the	joint	probability	in	which	 	and	 	are	independent	

																				probability	density	(pdf)	of	the	parent	and	leading	processes.	 	is

																				interpreted	as	the	operational	(internal)	time.

h(x, ξ) f (ξ, t)
ξ

We	do	not	want	to	use	the	probabilistic	interpretation	!!!

Bochner,	1955;	Sokolov	2002;	Chechkin,	Sokolov,	2021

Remark	4.		In	the	integral	decomposition	the	functions	 	and	 	are	not	

																				determined	uniquely,	so	we	can	keep	one	factor	and	another	change.	

																				For	us	 	is	only	the	integral	variable.

h(x, ξ) f (ξ, t)

ξ

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics
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We	assume	only	that	 	and	 	are	


										-			normalizable	in	the	first	argument,	i.e 	and	 ,	


	

										-			and	non-negative	which	is	satisfied,	e.g.,	by	the	special	classes	of	functions;	i.e.

														completely	monotonicity	function,	(completely)	Bernstein	function

h(x, ξ) f (ξ, t)

∫ℝ
h(x, ξ)dx = 1 ∫ℝ+

f (ξ, t)dξ = 1

According	to	the	Bernstein	theorem	we	can	connect	in	a	unique	way	the	completely	

monotonicity	(CM)	function	and	non-negative	functions:	 	iffs ∈ [0,∞) → G(s) ∈ CM

G(s) = ∫
∞

0
exp(−st)g(t)dt

and	if	 		for	all	 .g(t) ≥ 0 t ∈ [0,∞)

(Laplace	integral)

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics
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z ∈ ℂ∖ℝ−

We	have	 	which	we	would	like	to	expand	to	 .G(s) ̂f (z)

Theorem.	The	Laplace	transform	 	of	a	function	 	that	is	locally	integrable	on	 	and

																			completely		monotonic,	has	the	following	properties:


(a) 		 	an	analytical	extension	to	the	region	 


(b) 			 		for	 ;


(c) 			 ;	


(d) 			 		for	 ;


(e) 			 	for	 		and		 		for		 	

̂f (z) f (t) ℝ+

̂f (z) ℂ∖ℝ−
̂f (s) = ̂f ⋆(s) s ∈ (0,∞)

lim
s→∞

̂f (s) = 0

Im[ ̂f (z)] < 0 Im(z) > 0
Im[z ̂f (z)] ≥ 0 Im(z) > 0 ̂f (s) ≥ 0 s ∈ (0,∞)

Conversely,	every	function	 		that	satisfies	(a)–(c)	together	with	(d)	or	(e),	is	the	Laplace	
transform	of	a	function	 ,	which	is	locally	integrable	on	 		and	completely	monotonic	

on	 .

̂f (z)
f (t) ℝ+

(0,∞)

Gripenberg	et	al.	1990,	Capelas	de	Oliveira	&	Mainardi	2011

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics
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Definition.	A	real	function		 		with	domain	 		is	said	to	be	a	complete	monotone	

(CM)	function,	if	it	posses	derivatives		 		for	all	 	and	if		

		for	all	 .

G(s) (0, ∞)
G (n)(s) n = 0,1,2,3,…

(−1) nG (n)(s) ≥ 0 s > 0

Definition.	A	real	function		 		is	a	complete	Bernstein	(CB)	function,	if	it	a	Bernstein	

function	and	 	is	the	Laplace	transform	of	CM	function	restricted	to	the	positive	
semiaxis,	or,	equivalently,	in	the	same	way	restricted	Stieltjes	transform	of	a	positive	

function	named	also	the	Stieltjes	function	(SF).	


F(s)
F(s)/s

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics

Properties:

• 	the	product	of	two	CM	functions	is	also	a	CM	function	

• 	the	composition	of	a	CM	function	and	a	Bernstein	function	is	another	CM	function

Definition.	A	real	function		 		is	a	Bernstein	(B)	function	,	if	it	 	for	

all	 	and	all	

H(s) (−1)n−1H(n)(s) ≥ 0
s > 0 n = 1,2,3,…

CB	functions	form	a	subclass	of	the	Bernstein	functions	
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The	Laplace-Fourier	(FL)	transform	of	the	generalized	FP	equations	(1)	and	(2)	for	 ,

		 		is	equal	to

𝒜 = D∂2
x

D > 0,

˜ ̂p(κ, z) =
1

zM̂(z)
1

1
M̂(z)

+ Dκ2
=

̂k(z)
z ̂k(z) + Dκ2

.

We	want	to	calculate	 .p̃(κ, t) = ℒ−1[ ˜ ̂p(κ, z); t]

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics

p(x, t) = p(x,0) + ∫
t

0
M(t − ξ) D∂2

x p(x, ξ) dξ

(1)

I	recall	that	the	generalized	FP	equations	reads

or

(2)

∫
t

0
k(t − ξ)∂ξ p(x, ξ) dξ = D∂2

x p(x, t)
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p(x, t) = p(x,0) + ∫
t

0
M(t − ξ) D∂2

x p(x, ξ) dξ

(1)

I	recall	that	the	generalized	FP	equations	reads

or

(2)

∫
t

0
k(t − ξ)∂ξ p(x, ξ) dξ = D∂2

x p(x, t)

The	Fourier	transform	has	
the	form	


			while	its	

inverse	reads





		

f̃ (κ) = ∫
∞

−∞
f (x) e−iκx dx

f (x) =
1

2π ∫
∞

−∞
f̃ (κ) eiκx dκ .
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p(x, t) = p(x,0) + ∫
t

0
M(t − ξ) D∂2

x p(x, ξ) dξ

(1)

I	recall	that	the	generalized	FP	equations	reads

or

(2)

∫
t

0
k(t − ξ)∂ξ p(x, ξ) dξ = D∂2

x p(x, t)
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The	Efross	theorem	generalizes	the	convolution	(Borel)	theorem	for	the	Laplace	transform.	
It	states	as	follows:

Theorem.	If	 	and	 	are	analytic	functions,	andĜ(z) ̂q(z) ℒ[h(x, ξ); z] = ĥ(x, z)

as	well	as ℒ[ f (ξ, t); z] = Ĝ(z) e−ξ ̂q(z)

then Ĝ(z) ĥ(x, ̂q(z)) = ℒ [∫
∞

0
h(x, ξ) f (ξ, t) dξ; z] .

(Laplace	pair	 )ξ ÷ z

(Laplace	pair	 )t ÷ z

(Laplace	pair	 )t ÷ z

From	Efross	theorem	appears	that	

ℒ−1 [Ĝ(z)ĥ(x, ̂q(z); t] = ∫
∞

0
ℒ−1[ĥ(x, z), ξ] ℒ−1[ ̂f(ξ, z), t] dξ .

Efross	1935;	Włodarski	1952;	Graf	2004;	

Górska	&	Penson	2012;	Górska	2021	
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Examples:

		

p̃(κ, t) = ℒ−1 [
̂k(z)

z ̂k(z) + Dκ2
; t]

(A)			 To	have	the	anomalous	diffusion	equation	we	take		 		and		 .	

The	Efross	theorem	allows	us	to	express		 		as

̂q(z) = z ̂k(z) Ĝ(z) = ̂k(z)
p̃(κ, t)

p̃(κ, t) = ∫
∞

0
ℒ−1 [ 1

z + Dκ2
; ξ] ℒ−1[ ̂k(z) e−ξ z ̂k(z); t] dξ

∂ξ h(x, ξ) = D ∂2
x h(x, ξ)

For	the	fundamental	initial	condition,	i.e		 ,	

the	inverse	Laplace	transform	of		 		gives

h(x,0) = δ(x)
(z + Dκ2)−1

whose	basic	solution	is	the	Gaussian	 .h(x, ξ) ≡ N(x, ξ)

In	the	integral	decomposition			 				at	first	we	kept	 .		p(x, t) = ∫
∞

0
N(x, ξ) fN(ξ, t) dξ N(x, ξ)

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics
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p̃(κ, t) = ℒ−1 [
̂k(z)

z ̂k(z) + Dκ2
; t]

(B)			 Let	us	take		 		and		 ,		where					 .	

The	choice	 	does	not	change		 		but	changes			 .

The	Efross	theorem	gives

̂q(z) = z ̂k(z) Ĝ(z) = ̂k(z) ̂k(z) = τz[ ̂γ(z)]2 + ̂γ(z)
̂q(z) = z ̂k(z) h(x, ξ) f (ξ, t)

p(x, t) = ∫
∞

0
N(x, ξ) fCV1(τ; ξ, t) dξ where

fCV1(τ; ξ, t) = ℒ−1{[τz ̂γ2(z) + ̂γ(z)] e−ξ [τz2 ̂γ2(z)+z ̂γ(z)]; t}
Remain	that			 		should	be	given	by	a	non-negative	function.


Example.		For		 ,		 		we	have

fCV1(τ; ξ, t)

̂γ(z) = zα−1 α ∈ (0,1)

τs2α−2 + sα−1 is	a	completely	monotonic	(CM)	function	for		 

It	is	not	CM	function	for	

α ∈ (0,1/2]
α ∈ (1/2, 1)

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics

(Tomovski)
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For		 			we	express			 			in	the	form			


																				 						which	for	the	localized	initial	conditions


(	 	and	 	)		is	obtained	from	the	integro-differential	equation	


called	the	generalized	Cattaneo-Vernotte	equation:

̂k(z) = τz[ ̂γ(z)]2 + ̂γ(z) ˜ ̂p(κ, z)

˜ ̂p(κ, z) =
τz ̂γ2(z) + ̂γ(z)

τz2 ̂γ2(z) + z ̂γ(z) + Dκ2

p(x,0) = δ(x) ·p(x, t) |t=0 = 0

τ∫
t

0
η(t − ξ) ∂2

ξ p(x, ξ) dξ + ∫
t

0
γ(t − ξ) ∂ξ p(x, ξ) dξ = D ∂2

x p(x, t) .

		

p̃(κ, t) = ℒ−1 [
̂k(z)

z ̂k(z) + Dκ2
; t]

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics

The	memory	kernel	 	is	responsible	for	the	time	smearing	of	the	first	time	
derivative	and


																													 


Represent	the	time	smearing	of	the	second	time	derivative	(smearing	of	smeared	derivative)

γ(t) = ℒ−1[ ̂γ(z); t]

η(t) = ∫
t

0
γ(u)γ(t − u)du, ̂η(z) = ̂γ2(z)
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Now,	in	the	Efross	theorem	we	take		 		and		 		like	in	the	diffusion	case,	i.e.	

	and	 .	Thus,	we	change		 		and	keep			 :	

̂q(z) Ĝ(z)
̂q(z) = z ̂γ(z) Ĝ(z) = ̂γ(z) = ̂q(z)/z h(x, ξ) f (ξ, t)

p(x, t) = ∫
∞

0
pCV(τ; x, ξ) fN(ξ, t) dξ where			 .	fN(ξ, t) = ℒ−1[ ̂γ(z)e−ξz ̂γ(z); t]

(Górska)

		p̃(κ, t) = ℒ−1 [ τz ̂γ2(z) + ̂γ(z)
τ z2 ̂γ2(z) + z ̂γ(z) + Dκ2

; t]

The	Laplace-Fourier	transform	of			 			reads	pCV(τ; x, ξ)

˜ ̂pCV(τ; κ, z) =
τz + 1

τz2 + z + Dκ2

Together	with	the	initial	conditions,	i.e.		 	and	 ,	


it	gives	the	Cattaneo-Vernotte	equation

pCV(τ; x,0) = δ(x) ·pCV(τ; x, t) |t=0 = 0

τ∂2
t pCV(τ; x, t) + ∂t pCV(τ; x, t) = D∂2

x pCV(τ; x, t)

also	used	for	description	of	diffusion	phenomena.	The	relaxation	time	is	denoted	as	 	

whereas	the	diffusion	coefficient	by	 .

τ
D > 0

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics
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Figure.				 		for		 ,	
,	and	 .

pCV(τ; x, t) τ = 0.22
a = 10 t = 2

pCV(τ; x, t)

Weymann,	1967

|x | ≪ a t

τ = 0
Górska,	2021

Gaussian		N(x, t)

N(x, t) =
e−x2/(4Dt)

4πDt

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics

The	Cattaneo-Vernotte	equation

a = D/τ
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The	generalized	Cattaneo-Vernotte	equation

Examples:		(a)		for		 		we	get	

																											the	Cattaneo-Vernotte	equation.		

̂η(z) = ̂γ(z) = 1 ⇒ η(t) = γ(t) = δ(t)

The	solution	is	equal	to	 p(x, t) = ∫
∞

0
pCV(τ; x, ξ) fN(ξ, t) dξ .

where			 .	fN(ξ, t) = ℒ−1[ ̂γ(z)e−ξz ̂γ(z); t]
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Because			of			 	

and	 ,	 ,	is	one-sided	Levy	stable	
distribution	then	 	for	fixed	 	
vanishes	only	at	infinity.

f (α; ξ, t) =
t

αξ1+1/α
gα( t

ξ1/α )
gα(u) u > 0

p(α, τ; x, t) t

,				for	 
̂γ(z) = zα−1 ⇒ γ(t) = t−α /Γ(1 − α) α ∈ (0,1]
̂η(z) = z2(α−1) ⇒ η(t) = t1−2α /Γ(2 − 2α)

Górska	2021

Katarzyna	Górska;				Subordination	and	memory	depend	kinetics

	 .	fN(ξ, t) = ℒ−1[ ̂γ(z)e−ξz ̂γ(z); t]
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(b)

Figure.				 		
for	 ,		 ,	 ,	and	

.

psα−1(τ; x, t) ≡ p(α, τ; x, t)
α = 1/2 τ = 0.22 a = 10

t = 2

Because			of			 	

and	 ,	 ,	is	one-sided	Levy	stable	
distribution	then	 	for	fixed	 	
vanishes	only	at	infinity.

f (α; ξ, t) =
t

αξ1+1/α
gα( t

ξ1/α )
gα(u) u > 0

p(α, τ; x, t) t

,				for	 
̂γ(s) = sα−1 ⇒ γ(t) = t−α /Γ(1 − α) α ∈ (0,1]
̂η(s) = s2(α−1) ⇒ η(t) = t1−2α /Γ(2 − 2α)

Górska	&	Penson	2010;	
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The	Levy	stable	
distribution	is	defined	as	follows:


	


The	example	of	one-sided	

Levy	stable	distribution	is	

Levy-Smirnov	distribution:


gα(σ) =

kl

(2π)(k−l)/2
1
σ Gk,0

l,k ( ll

kkσl

Δ(l,0)
Δ(k,0)), for σ > 0

0, for σ ≤ 0
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Figure.				 		
for	 ,		 ,	 ,	and	

.

pzα−1(τ; x, t) ≡ p(α, τ; x, t)
α = 1/2 τ = 0.22 a = 10

t = 2

Because			of			 	

and	 ,	 ,	is	one-sided	Levy	stable	
distribution	then	 	for	fixed	 	
vanishes	only	at	infinity.

f (α; ξ, t) =
t

αξ1+1/α
gα( t

ξ1/α )
gα(u) u > 0

p(α, τ; x, t) t

,				for	 
̂γ(z) = zα−1 ⇒ γ(t) = t−α /Γ(1 − α) α ∈ (0,1]
̂η(z) = z2(α−1) ⇒ η(t) = t1−2α /Γ(2 − 2α)
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Górska	2021
	 .	fN(ξ, t) = ℒ−1[ ̂γ(z)e−ξz ̂γ(z); t]
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,				for		 		and		 .̂γ(z) = zα−1 + ϵ α ∈ (0,1] ϵ ≥ 0

Thus,				f (ξ, t) = ℒ−1[(zα−1 + ϵ) e−ξ (zα+ϵz); t]

the	Heaviside	step	function

For	negative	argument	it	is	equal	to	zero	!	

Figure.				
		for	

,	 ,	 ,	 ,	
and	 .

pzα−1+ϵ(τ; x, t) ≡ p(α, τ, ϵ; x, t)
α = 1/2 ϵ = 1 τ = 0.22 a = 10

t = 2

ZeroZero

= Θ(t − ϵξ)( t
αξ

− ϵ
1 − α

α ) 1
ξ1/α

gα( t − ϵξ
ξα )
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Górska	2021
	 .	fN(ξ, t) = ℒ−1[ ̂γ(z)e−ξz ̂γ(z); t]
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We	also	make	the	natural	choice	of	 	and	 	such	that	for	given		 		we	take	

.	It	means	the	in	the	Laplace	space	we	have	the	so-called	direct	subordination

̂q(z) Ĝ(z) ̂q(z)

Ĝ(z) =
̂q(z)
z

̂f(ξ, z) =
̂q(s)
z

e−ξ ̂q(z) = − z−1 d
dξ

̂g(ξ, z),

̂g(ξ, z) = exp[−ξ ̂q(z)]where is	named	the	parametric	subordinator.

(Chechkin,	Sokolov)

• The	function			 			is	normalized	in	the	first	argument.

• 	The	non-negativity	is	ensured	by	the	Bernstein	theorem	and	a	condition	saying	
that			 		is	a	completely	Bernstein	function	which	also	ensured	the	infinitely	

divisibility	of		 .

f (ξ, t)

̂q(s)
̂g(ξ, s)

In	 the	 presented	 examples	 the	 role	 of	 	 	 	 is	 played	 by	 the	 non-negative	 functions		
	and		 .

h(x, ξ)
N(x, ξ) pCV(τ; x, ξ)

Conclusions
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Conclusions

• Mathematically	 it	 is	 quite	 clear,	 also	 physically	 it	 is	well	 justified	 -	 physical	 processes	
looking	 the	 same	 at	 first	 glance	 in	 fact	 may	 be	 rooted	 in	 different	 primary	 laws.	 In	
below	tables	we	recall	dualities	of	integral	decompositions	found.	Note	that	separating	
out	 the	 parent	 and	 leading	 processes	 we	 restricted	 ourselves	 to	 simple	 models	
dependent	on	a	single	memory	function	


• We	are	convinced	that	the	methods	based	on	Efross	theorem	will	work	also	for	much	
complicated	models	 involving	 larger	 number	 of	 memory	 functions	 or	 governed	 by	 ”
nested”	 processes	 which	 seems	 to	 be	 typical	 situation	 for	 various	 transport	 and	
relaxation	phenomena	taking	place	in	complex	systems.	

anomalous		
diffusion

generalized	
Cattaneo-
Vernotte.	
equation

p(x, t) h(x, ξ) f (ξ, t)

N(x, ξ)

N(x, ξ)

pCV(τ; x, ξ)

fN(ξ, t)

fN(ξ, t)

fCV1(τ; ξ, t)

Cole-Cole	
relaxation
Havriliak-
Negami	
relaxation

n(t) h(ξ) f (ξ, t)

nD(τ; ξ) = e−t/τ

nD(τ; t)

nCD(τ; ξ)

fN(ξ, t)

fN(ξ, t)

fHN(τ; ξ, t)
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Thank	you	for	attention

Opus	12	no.	UMO-2016/23/B/ST3/01714

Preludium Bis 2 no. UMO-2020/39/O/ST2/01563
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In	the	presented	examples	the	role	of		 	 	is	played	by		 ,	 	 	for	diffusion	process,		
and	 	 ,	 	 	for	the	Havriliak-Negami	relaxation	phenomena.	These	functions	are	non-negative	
and	infinitely	divisible.	


(DIFFUSION)

• 	is	also	called	the	normal	distribution	and	satisfied	the	central	limit	theorem	which	ensures	its	

infinitely	divisibility.

• 	can	be	derived	from	the	central	limit	theorem	if	we	consider	its	behavior	for	 larger	

than	 	(Keller,	PNAS,	2004)


(RELAXATION	PHENOMENA)

• 	 is	non-negative	and	 its	Laplace	transform,	 i.e.,	 its	characteristic	 function,	 is	also	

infinitely	 divisible	 with	 respect	 to	 	 which	 results	 from	 applying	 [Schilling,	 Song,	 Vondracek,	 see	
Lemma	5.8]


• 	 	where	for	 ,	 		is	the	incomplete	gamma	

function.	

h(x, ξ) N(x, ξ) pCV(τ; x, ξ)
nD(ξ) nCD(ξ)

N(x, ξ)

pCV(τ; x, ξ) |x |
𝒪( t)

nD(t) = exp(−t /τ)
s

nCD(β, t) = Γ(β, t /τ)/Γ(β) Reβ > 0 Γ(a, z) = ∫
∞

z
ξa−1e−ξdξ

		is	a	non-negative	function	h(x, ξ)


