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Introduction

Domains with holes

I What kind of spectral convergence can we expect for the

Laplace operator under perturbations of the domain such as

removing small holes?

I It is a common expectation that small perturbations of the physical

situation lead only to a small change of the spectrum.

I Domain perturbations is largely true for Dirichlet boundary

conditions while the Neumann case is more delicate.

I Such questions received already quite a lot of answers starting

from the seminal work of Rauch and Taylor concerning the

spectrum of the Laplace operator of domains with holes.

I In Neumann case even small perturbations may cause abrupt

change of the spectrum. For example, such an effect is observed

when the hole has a "split-ring" geometry.
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Figure: The geometry of the Helmholtz resonator in the two- dimensional.
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Introduction

Domains with holes

I Maz’ya, Nazarov and Plamenewski, see [9], have considered

Laplace operator on domain with obstacles, imposing the Dirichlet

condition on their boundary and have proved the validity of a

complete asymptotic expansion for the eigenvalues.

I In [3], [6], [7], [8] authors have considered the Dirichlet Laplacians

on Euclidean domains or manifolds with holes and studied the

problems of the resolvent convergence.

I The problems with Neumann obstacles having more general

geometry [7], the authors required the hole to satisfy the so called

"uniform extension property" which means that H1- functions on the

domain with a hole can be extended to H1 function on the

unperturbed domain and the norm of this extension operator does

not depend on the hole diameter. In this case the authors

established the spectral convergence.
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Introduction

Motivation

I Another related paper, which makes use imposing Neumann

boundary conditions on the boundary of hole which has satisfies

the suitable geometrical assumptions to consider the upper and

lower estimates for the ground state eigenvalue, have been

extensively studied by Hempel [10].

I But, there is one case not considered. These are holes with zero

Lebesgue measure (e.g. an interval or a piece of a curve).

Evidently, for the holes with Lebesgue measure zero such an

extension required in the work of A. Colette and O.Post [7] is not

possible.

I We will be interested in a two-dimensional bounded domain with

a single hole Kε (for a fixed parameter ε) having zero Lebesgue

measure. The main purpose our work is to prove the spectral

convergence of the Neumann Laplacian on ΩKε as ε→ 0 in

terms of the Hausdorff distance under some additional

assumptions on the geometry of Kε.
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Spectrum of Operator

Definition

Let U 6= {0} be a complex normed space and T : Dom(T)→ U a

linear operator with domain Dom(T) ⊂ U. With T we associate the

operator

Tλ = T − λI

where λ is a complex number and I is the identity operator on Dom(T).

IfTλ has an inverse, we denote it by Rλ(T) = T
−1

λ = (T − λI)−1 and call

it the resolvent operator of T or, simply, the resolvent of T .

Remark

Rλ is a linear operator.
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Spectrum of Operator

Definition

Let U 6= {0} be a complex normed space and T : Dom(T)→ U a

linear operator with domain Dom(T) ⊂ U . A regular value λ of T is a

complex number such that

I Rλ(T) exists

I Rλ(T) is bounded

I Rλ(T) is defined whole U.

Definition

The resolvent set ρ(T) of T is the set of all regular values λ of T . Its

complement σ(T) = C\ρ(T) in the complex plane C is called the

spectrum of T , and a λ ∈ σ(T) is called a spectral value of T .
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Spectrum of Operator

Furthermore, the spectrum σ(T) is partitioned into three disjoint sets as

follows:

definiton

The point spectrum σp(T) is the set such that Rλ(T) does not exist. A

λ ∈ σp(T) is called an eigenvalue of T. The continuous spectrum σc(T)
is the set such that Rλ(T) exists, defined on the dense set in U but is

unbounded. The residual spectrum σr(T) is the set such that Rλ(T)
exists (and may be bounded or not) but the domain of Rλ(T) is not

dense in U.
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Main tool of the spectral convergence of operators on varying Hilbert spaces

Scale of Hilbert spaces associated with a non-negative

operator

I To a Hilbert space H with inner product 〈., .〉 and norm ‖.‖
together with a non-negative, unbounded, operator A, we

associate the scale of Hilbert spaces

Hk := Dom((A + I)k/2), ‖u‖k := ‖(A + I)k/2
u‖, k ≥ 0,

I For negative exponents, define

H−k := H∗k

where I is the identity operator.

We think of (H′,A′) being some perturbation of (H,A) and want to

lessen the assumption such that the spectral properties are not the

same but still are close.
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Definition

Suppose we have linear operators

J : H → H
′, J1 : H1 → H

′
1

J
′ : H

′ → H, J
′
1 : H

′
1 → H1.

Let δ > 0 and k ≥ 1. We say that (H,A) and (H′,A′) are δ-close of

order k iff the following conditions are fulfilled:

‖Jf − J1f‖0 ≤ δ‖f‖1, (3.1)

|(Jf , u)− (f , J′u)| ≤ δ‖f‖0‖u‖0, (3.2)

‖u − JJ
′
u‖0 ≤ δ‖u‖1 (3.3)

‖Jf‖0 ≤ 2‖f‖0, ‖J′u‖0 ≤ 2‖u‖0, (3.4)

‖(f − J
′
Jf)‖0 ≤ δ‖f‖1, (3.5)

‖J′u − J
′
1u‖0 ≤ δ‖u‖1, (3.6)

|a(f , J′1u)− a
′(J1f , u)| ≤ δ‖f‖k‖u‖1, (3.7)

Here, a and a’ denote the sesquilinear forms associated to A and A’.
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We denote dHaussdorff(A; B) the Hausdorff distance for subsets A; B ⊂ R

dHaussdorff(A, B) := max

{
sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}
, (3.8)

where d(a, B) := inf
b∈B
|a − b|. We set

d̄(A, B) := dHausdorff

(
(A + 1)−1, (B + 1)−1

)
(3.9)

for closed subsets of [0,∞).

We denote

(A + 1)−1 =
{

(1 + x)−1 : x ∈ A
}

and

(B + 1)−1 =
{

(1 + y)−1 : y ∈ B
}
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Main tool of the spectral convergence of operators on varying Hilbert spaces

Theorem

There exists η(δ) > 0 with η(δ)→ 0 as η(δ) such that

d̄
(
σ•(A), σ•(A

′)
)
≤ η(δ) (3.10)

for all pairs of non-negative operators and Hilbert spaces (H,A) and

(H′,A′) which are δ-close. Here, σ•(A) denotes either the entire

spectrum, the essential or the discrete spectrum of A. Furthermore, the

multiplicity of the discrete spectrum, σdisc, is preserved, i.e. if λ ∈ σdisc

has multiplicity µ > 0, then there exist µ eigenvalues (not necessarily all

distinct) of operator A′ belonging to interval (λ− η(δ), λ+ η(δ)).
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Main results

The starting point is to consider a bounded domain Ω ⊂ R2 and a

compact set K ⊂ Ω with zero Lebesgue measure (e.g. an interval or a

piece of a curve). We denote ΩK := Ω\K . The Neumann Laplacian

−∆ΩK

N N is defined on the Sobolev spaceH1(ΩK ) via the quadratic

form ∫
Ω
|∇u|2dxdy, u ∈ H1(ΩK ).

In case if K is empty set then unperturbed Neumann Laplacian

denoted by −∆Ω
N which is defined via the same form∫

Ω
|∇u|2dxdy, u ∈ H1(Ω).
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Main results

During our paper we suppose the additional property *: for any

(x0; y0) ∈ ΩK at least one of the following conditions takes place

I The line l(x0) = {x = x0}. Then at least one of the half-lines

l(x0) ∩ {y ≥ y0} and l(x0) ∩ {y ≤ y0} has no intersection with K .

I The line h(y0) = {y = y0}. Then at least one of the half-lines

h(y0) ∩ {x ≥ x0} and h(y0) ∩ {x ≤ x0} has no intersection with K .

The main result of this section is the following theorem.
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Main results

Theorem 3.1

Let Ω be an open bounded domain in R2 and let p ∈ Ω be some fixed

point. Suppose that Bε ⊂ Ω is a ball with center at p and radius ε > 0.

Let K = K (ε) ⊂ Bε be a compact set with zero Lebesgue measure

(e.g. an interval or a piece of a curve). Moreover, suppose that ΩK

satisfies property*. Let −∆Ω
N and −∆

ΩKε
N be the Neumann Laplacians

defined on Ω and ΩKε , respectively. Then for small enough ε the

Neumann Laplacians −∆Ω
N and −∆

ΩKε
N are O(ε1/6) close of order 2.
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Main results

Theorem 3.2

Using the above assumptions, let −∆Ω
N and−∆

ΩKε
N be the Neumann

Laplacians defined on Ω and ΩKε , respectively. Then there exists

η(ε) > 0 with η(ε)→ 0 as ε→ 0 such that the following spectral

convergence takes place

d̄

(
σ•(−∆

ΩKε
N ), σ•(−∆Ω

N )
)
≤ η(ε)

where d̄ is defined in (9) and σ•(.) denotes either the entire spectrum,

the essential or the discrete spectrum. Moreover, the multiplicity of the

discrete spectrum is preserved.
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Corollary 3.3

Suppose that −∆Ω
N has purely discrete spectrum denoted by λk(Ω)

(repeated according to multiplicity). Then the infimum of the essential

spectrum of −∆
ΩKε
N tends to infinity and there exists ηk(ε) > 0 with

ηk(ε)→ 0 as ε→ 0 such that

|λk(Ω)− λk(ΩKε)| ≤ ηk(ε)

for small enough ε. Here, λk(ΩKε) denotes the discrete spectrum of

−∆
ΩKε
N (below the essential spectrum) repeated according to

multiplicity.

Corollary 3.4

The Hausdorff distance between the spectra of −∆
ΩKε
N and −∆Ω

N

converges to zero on any compact interval [0; Λ]



Neumann Laplacian in a perturbed domain

Outline of proof of the main theorem

STEP 1: Construction of the mappings J, J′, J1, J′1 . It is easy to notice

that H = H′ = L2(Ω), A = A′ = −∆; H1, H′1 correspond to Sobolev

spacesH1(Ω) andH1(ΩKε) and H2 = Dom(−∆Ω
N ). The norm ‖.‖0

corresponds with the L2 norm and

‖u‖1 = (‖u‖2
0 + ‖∇u‖2

0)1/2, ‖f‖2 = ‖ −∆f + f‖0

Since H = H′ and H1 ⊂ H′1 we choose J = J′ = I, where I is the identity

operator and J1 is the restriction operator: J1u = u|ΩKε
for u ∈ H1. Let

us now construct the mapping J′1 : H′1 → H1. Without loss of generality,

assume that the ball Bε mentioned in Theorem 3.1 is centered at the

origin. Let ε ∈ (ε, 2ε) be a number to be chosen later and let Bε ⊃ Bε

be the ball with center again at the origin and radius ε,Ωε := Ω\Bε.
We are going to construct mapping J′1 first for smooth functions. For any

v ∈ C∞(ΩKε) we define

J
′
1v :=

{
v, on Ωε
r

ε ṽ(ε, ϕ) on Bε,

where ṽ(r, ϕ) = v(r cosϕ, r sinϕ).
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Outline of proof of the main theorem

Now let us construct the mapping J′1u for any u ∈ H′1 . Employing the

approximation method described in [5,Thm.2, 5.3.2], for the fixed

sequence {ηk}∞k=1 converging to zero we construct the sequence

vηk ∈ C∞(ΩKε) which satisfies

‖u − vηk
‖1 = ‖u − vηk

‖H1(ΩKε ) ≤ ηk‖u‖1 (5.1)

Let us mention that in view of the inequalities (4.9) and (4.16) which will

be proved later it follows for any smooth function v .

‖J′1v‖2
1 =

∫
Ω
|∇J

′
1v|2dxdy +

∫
Ω
|J′1v|2dxdy ≤ C̄(ε)‖v‖2

1,

where C̄(ε) is some constant. Therefore using the completeness of

space H1 we are able to define

J
′
1u = lim

k→∞
J
′
1vηk

. (5.2)



Neumann Laplacian in a perturbed domain

Outline of proof of the main theorem

STEP 2: The conditions (3.1)-(3.7) hold for the mappings J, J′, J1, J′1.

I we have that the estimates (3.1)-(3.5) are satisfied with δ = 0.

I We prove (2.6), i.e. under the assumptions stated in Theorem 3.1

inequality (3.6) is satisfied with δ = O(
√
ε) for small enough ε.

I We give the proof of the estimate (3.7), i.e. under the assumptions

stated in Theorem 3.1 inequality (3.7) takes place with k = 2 and

δ = O(ε1/6) for small enough ε.

Indeed, we have

|a(f , J′1u)− a
′(J1f , u)| ≤ 2

2/3(C̃(4C
′′ + 34ε))1/2ε1/6‖f‖2‖u‖1. (5.3)

It is easy to notice that the right-hand side of inequality (5.3) for small

enough ε satisfies

r.h.s.(5.3) = O
(
ε1/6

)
‖f‖2‖u‖1,

which ends the proof.
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Estimation on the rate of convergence

Theorem

Let −∆Ω
N and−∆

ΩKε
N be the Neumann Laplacians defined on Ω and

ΩKε , respectively. Then

d̄

(
σ•(−∆

ΩKε
N ), σ•(−∆Ω

N )
)
≤ 4
√

2ε1/6,

where C > 0 is a constant independent of ε.
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The dependence on the distance of the hole from the boundary to the

speed of spectral convergence

Theorem

Let Ω be an open bounded domain in R2 and let p ∈ Ω. Suppose that

Bε ∈ Ω is a ball with center at p and redius ε which contains an interval

or a piece of a curve. Suppose that ΩK satisfies property *. Let −∆Ω
N

and −∆
ΩKε
N be the Neumann Laplacians defined on Ω and ΩKε ,

respectively. Then the spectral convergence takes place faster when

moving the ball Bε to the center of Ω or moving the ball to the position

such that the center p lies on the circle B(w, ε) where w satisfies

dist(w, ∂Ω) = 1/diam(Ω).
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An asymptotic formula for the eigenvalues of the Laplacian in

a perturbed domain

Let Ω be an open bounded domain in R2 and let w ∈ Ω be some fixed

point. Suppose that Bε ∈ Ω is a ball with center at w(x0, y0) and radius

ε > 0. Remove from Ω the horizontal slit,

Kε = {(x, y)|y = y0, |x − x0| ≤ ε}
We denote ΩKε := Ω\Kε. We consider the following eigenvalue

problems

−∆xu(x) = λ(ε)u(x), x ∈ ΩKε ,

u(x) = 0, x ∈ ∂Ω, (6.1)

∂u

∂ν
(x) = 0, x ∈ K ,

where ∂/∂ν denotes the derivative along the inner normal vector at x

with respect to the domain ΩKε .

−∆xu(x) = λu(x), x ∈ Ω (6.2)

u(x) = 0, x ∈ ∂Ω,
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Let 0 < µ1(ε) ≤ µ2(ε) ≤ ... be the eigenvalues of (6.1). Let

0 < µ1 ≤ µ2 ≤ ... be the eigenvalues of (6.2).

Theorem

Assume that µi is a simple eigenvalue. Then,

µi(ε) = µi − 2πε2|gradϕi(w)|2 + πµiϕi(w)2ε2 + O(ε5/2−s)

for an arbitrary s > 0, holds as ε tends to zero, where ϕi(x) denotes the

eigenfunction associated with µi satisfying∫
Ω
ϕi(x)2 = 1.
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Thank you very much for your attention!
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