Central nilpotency of skew braces

Marco Bonatto \& Přemysl Jedlička

Department of Mathematics
Faculty of Engineering (former Technical Faculty)

Czech University of Life Sciences (former Czech University of Agriculture) in Prague
Warsaw, $30^{\text {th }}$ November 2021
Faculty of Engineering

Expanded group

Definition

An algebra (A, Ω) is called an expanded group, if there exist a binary operation + , a unary operation - and a constant 0 such that the retract $(A,+,-, 0)$ is a group.

Definition

Let A be an expanded group. A polynomial $f\left(x_{1}, \ldots, x_{k}\right)$, with $k>1$, is called absorbing, if, for all $1 \leqslant i \leqslant k$, and for all $a_{j} \in A$, with $1 \leqslant j \leqslant k$,

$$
f\left(a_{1}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{k}\right)=0
$$

Expanded group

Definition

An algebra (A, Ω) is called an expanded group, if there exist a binary operation + , a unary operation - and a constant 0 such that the retract $(A,+,-, 0)$ is a group.

Definition

Let A be an expanded group. A polynomial $f\left(x_{1}, \ldots, x_{k}\right)$, with $k>1$, is called absorbing, if, for all $1 \leqslant i \leqslant k$, and for all $a_{j} \in A$, with $1 \leqslant j \leqslant k$,

$$
f\left(a_{1}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{k}\right)=0
$$

Absorbing polynomials

Groups:

$$
-x-y+x+y=[x, y]
$$

Rings:

Vector spaces:

$$
0 x+0 y+0 z
$$

Lie algebras:

Loops:

Absorbing polynomials

Groups:

$$
\begin{gathered}
-x-y+x+y=[x, y] \\
{[[x, y], z]}
\end{gathered}
$$

Vector spaces:

$$
0 x+0 y+0 z
$$

Lie algebras:

Absorbing polynomials

Groups:

$$
\begin{gathered}
-x-y+x+y=[x, y] \\
{[[x, y], z]}
\end{gathered}
$$

Rings:

$$
x \cdot y
$$

Vector spaces:

$$
0 x+0 y+0 z
$$

Lie algebras:

$[x, y]$

Absorbing polynomials

Groups:

$$
\begin{gathered}
-x-y+x+y=[x, y] \\
{[[x, y], z]}
\end{gathered}
$$

Rings:

$$
x \cdot y
$$

Vector spaces:

$$
0 x+0 y+0 z
$$

Lie algebras:

Loops:

Absorbing polynomials

Groups:

$$
\begin{gathered}
-x-y+x+y=[x, y] \\
{[[x, y], z]}
\end{gathered}
$$

Rings:

$$
x \cdot y
$$

Vector spaces:

$$
0 x+0 y+0 z
$$

Lie algebras:

$$
[x, y]
$$

Loops:

Absorbing polynomials

Groups:

$$
\begin{gathered}
-x-y+x+y=[x, y] \\
{[[x, y], z]}
\end{gathered}
$$

Rings:

$$
x \cdot y
$$

Vector spaces:

$$
0 x+0 y+0 z
$$

Lie algebras:

$$
[x, y]
$$

Loops:

$$
((x+y)+z)-(x+(y+z))
$$

Center

Definition

Let A be an expanded group. An element $c \in A$ is called central if, for all binary absorbing polynomial f and for all $a \in A$,

$$
f(a, c)=f(c, a)=0 .
$$

The center $Z(A)$ of A is the subset of all central elements of A.
Definition
An expanded group A is called abelian if $Z(A)=A$.

Center

Definition

Let A be an expanded group. An element $c \in A$ is called central if, for all binary absorbing polynomial f and for all $a \in A$,

$$
f(a, c)=f(c, a)=0 .
$$

The center $Z(A)$ of A is the subset of all central elements of A.

Definition

An expanded group A is called abelian if $Z(A)=A$.

Examples of centers

Groups:

$$
Z(A)=\{c \mid \forall a \in A: a+c=c+a\}
$$

Rings:

$$
Z(A)=\{c \mid \forall a \in A: a \cdot c=c \cdot a=0\}=\operatorname{Ann}_{R}(R)
$$

Vector spaces:

$$
Z(A)=A
$$

Lie algebras:

$$
\boldsymbol{Z}(\boldsymbol{A})=\{c \mid \forall a \in A:[a, c]=0\}=\operatorname{Rad}([,])
$$

Loops:

\square

Examples of centers

Groups:

$$
Z(A)=\{c \mid \forall a \in A: a+c=c+a\}
$$

Rings:

$$
Z(A)=\{c \mid \forall a \in A: a \cdot c=c \cdot a=0\}=\operatorname{Ann}_{R}(R)
$$

Vector spaces:

$$
Z(A)=A
$$

Lie algebras:

$$
Z(A)=\{c \mid \forall a \in A:[a, c]=0\}=\operatorname{Rad}([,])
$$

Loops:

Examples of centers

Groups:

$$
Z(A)=\{c \mid \forall a \in A: a+c=c+a\}
$$

Rings:

$$
Z(A)=\{c \mid \forall a \in A: a \cdot c=c \cdot a=0\}=\operatorname{Ann}_{R}(R)
$$

Vector spaces:

$$
Z(A)=A
$$

Lie algebras:

$\boldsymbol{Z}(\mathbf{A})=\{c \mid \forall a \in A:[a, c]=0\}=\operatorname{Rad}([]$,

Loops:

\square

Examples of centers

Groups:

$$
Z(A)=\{c \mid \forall a \in A: a+c=c+a\}
$$

Rings:

$$
Z(A)=\{c \mid \forall a \in A: a \cdot c=c \cdot a=0\}=\operatorname{Ann}_{R}(R)
$$

Vector spaces:

$$
Z(A)=A
$$

Lie algebras:

$$
Z(A)=\{c \mid \forall a \in A:[a, c]=0\}=\operatorname{Rad}([,])
$$

Loops:

Examples of centers

Groups:

$$
Z(A)=\{c \mid \forall a \in A: a+c=c+a\}
$$

Rings:

$$
Z(A)=\{c \mid \forall a \in A: a \cdot c=c \cdot a=0\}=\operatorname{Ann}_{R}(R)
$$

Vector spaces:

$$
Z(A)=A
$$

Lie algebras:

$$
Z(A)=\{c \mid \forall a \in A:[a, c]=0\}=\operatorname{Rad}([,])
$$

Loops:

$$
Z(A)=\left\{c \mid \forall a, b \in A: a+c=c+a \& c+(a+b)_{\equiv}=(c+a)+b\right\}
$$

Nilpotency

Definition

A subalgebra I an expanded group A is called an ideal if there exists an endomorphism φ of A such that $\varphi(a)=0$ if and only if $a \in I$.

Definition

An expanded group A is nilpotent of class n if there exists a chain
of ideals

$$
0=I_{0} \leqslant I_{1} \leqslant \cdots \leqslant I_{n}=A,
$$

such that $I_{j+1} / I_{j} \leqslant Z\left(A / I_{j}\right)$, for every $0 \leqslant j<n$.

Nilpotency

Definition

A subalgebra I an expanded group A is called an ideal if there exists an endomorphism φ of A such that $\varphi(a)=0$ if and only if $a \in I$.

Definition

An expanded group A is nilpotent of class n if there exists a chain of ideals

$$
0=I_{0} \leqslant I_{1} \leqslant \cdots \leqslant I_{n}=A
$$

such that $I_{j+1} / I_{j} \leqslant Z\left(A / I_{j}\right)$, for every $0 \leqslant j<n$.

Nilpotent commutative rings

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1}=0$.

Proof.

Let $I_{j+1}=\left\{c \in R \mid \forall a \quad a \cdot c \in I_{j}\right\} ;$ then $I_{j+1} / I_{j}=\operatorname{Ann}\left(R / I_{j}\right)$. Moreover $I_{j}=\left\{c \mid \forall a_{1}, \ldots, a_{j} \in A \quad c \cdot a_{1} \cdots a_{j}=0\right\}$.

Here $0 \leqslant I_{1} \leqslant \cdots \leqslant I_{n}$ is the upper central series.
The lower central series is $R \geqslant R^{2} \geqslant R^{3} \geqslant \cdots R^{n} \geqslant 0$.

Nilpotent commutative rings

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1}=0$.

Proof.
Let $I_{j+1}=\left\{c \in R \mid \forall a \quad a \cdot c \in I_{j}\right\} ;$ then $I_{j+1} / I_{j}=\operatorname{Ann}\left(R / I_{j}\right)$. Moreover $I_{j}=\left\{c \mid \forall a_{1}, \ldots, a_{j} \in A \quad c \cdot a_{1} \cdots a_{j}=0\right\}$.

Nilpotent commutative rings

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1}=0$.

Proof.

Let $I_{j+1}=\left\{c \in R \mid \forall a \quad a \cdot c \in I_{j}\right\}$; then $I_{j+1} / I_{j}=\operatorname{Ann}\left(R / I_{j}\right)$. Moreover $I_{j}=\left\{c \mid \forall a_{1}, \ldots, a_{j} \in A \quad c \cdot a_{1} \cdots a_{j}=0\right\}$.

Nilpotent commutative rings

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1}=0$.

Proof.

Let $I_{j+1}=\left\{c \in R \mid \forall a \quad a \cdot c \in I_{j}\right\}$; then $I_{j+1} / I_{j}=\operatorname{Ann}\left(R / I_{j}\right)$. Moreover $I_{j}=\left\{c \mid \forall a_{1}, \ldots, a_{j} \in A \quad c \cdot a_{1} \cdots a_{j}=0\right\}$. \square
Here $0 \leqslant I_{1} \leqslant \cdots \leqslant I_{n}$ is the upper central series.

Nilpotent commutative rings

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1}=0$.

Proof.
Let $I_{j+1}=\left\{c \in R \mid \forall a \quad a \cdot c \in I_{j}\right\}$; then $I_{j+1} / I_{j}=\operatorname{Ann}\left(R / I_{j}\right)$. Moreover $I_{j}=\left\{c \mid \forall a_{1}, \ldots, a_{j} \in A \quad c \cdot a_{1} \cdots a_{j}=0\right\}$.

Here $0 \leqslant I_{1} \leqslant \cdots \leqslant I_{n}$ is the upper central series.
The lower central series is $R \geqslant R^{2} \geqslant R^{3} \geqslant \cdots R^{n} \geqslant 0$.

Skew braces

Definition

An algebra $(A,+, 0,0)$ is called a skew brace if

- $(A,+, 0)$ is a group
- $(A, \circ, 0)$ is a group
- $a \circ(b+c)=a \circ b-a+a \circ c$, for all $a, b, c \in A$.

Examples

- Let $(A,+, 0)$ be a group and let $a \circ b=b+a$.
- Let $(A,+, 0)$ be $\left(\mathbb{Z}_{p^{n}},+, 0\right)$, for some prime p and $n>1$. Let $0<k<n$ and let $a \circ b=a+a b p^{k}+p \bmod p^{n}$.
- Let $(R,+, *, 0)$ be a radical ring. If we define $a \circ b=a+a * b+b$ then $(R,+, \circ, 0)$ is a brace.

Skew braces

Definition

An algebra $(A,+, 0,0)$ is called a skew brace if

- $(A,+, 0)$ is a group
- $(A, \circ, 0)$ is a group
- $a \circ(b+c)=a \circ b-a+a \circ c$, for all $a, b, c \in A$.

Examples

- Let $(A,+, 0)$ be a group and let $a \circ b=b+a$.
- Let $(A,+, 0)$ be $\left(\mathbb{Z}_{p^{n}},+, 0\right)$, for some prime p and $n>1$. Let $0<k<n$ and let $a \circ b=a+a b p^{k}+p \bmod p^{n}$.
- I et $(R,+, *, 0)$ be a radical ring. If we define $a \circ b=a+a * b+b$ then $(R,+, \circ, 0)$ is a brace.

Skew braces

Definition

An algebra $(A,+, 0,0)$ is called a skew brace if

- $(A,+, 0)$ is a group
- $(A, \circ, 0)$ is a group
- $a \circ(b+c)=a \circ b-a+a \circ c$, for all $a, b, c \in A$.

Examples

- Let $(A,+, 0)$ be a group and let $a \circ b=b+a$.
- Let $(A,+, 0)$ be $\left(\mathbb{Z}_{p^{n}},+, 0\right)$, for some prime p and $n>1$. Let $0<k<n$ and let $a \circ b=a+a b p^{k}+p \bmod p^{n}$.

Skew braces

Definition

An algebra $(A,+, 0,0)$ is called a skew brace if

- $(A,+, 0)$ is a group
- $(A, \circ, 0)$ is a group
- $a \circ(b+c)=a \circ b-a+a \circ c$, for all $a, b, c \in A$.

Examples

- Let $(A,+, 0)$ be a group and let $a \circ b=b+a$.
- Let $(A,+, 0)$ be $\left(\mathbb{Z}_{p^{n}},+, 0\right)$, for some prime p and $n>1$. Let $0<k<n$ and let $a \circ b=a+a b p^{k}+p \bmod p^{n}$.
- Let $(R,+, *, 0)$ be a radical ring. If we define $a \circ b=a+a * b+b$ then $(R,+, \circ, 0)$ is a brace.

Absorbing polynomials of a skew brace

We denote

$$
x * y=-x+(x \circ y)-y
$$

Observation

Absorbing nolvnomials for a skew brace are

- $[x, y]_{0}$,
- $x * y$,
- $y * x$.

Absorbing polynomials of a skew brace

We denote

$$
x * y=-x+(x \circ y)-y
$$

Observation

Absorbing polynomials for a skew brace are

- $[x, y]_{+}$,
- $[x, y]_{\text {o, }}$
- $x * y$,
- $y * x$.

Center of a skew brace

Theorem (M. B. \& P.J.)
Let B be a skew brace. Then

$$
Z(B)=\{c \mid \forall a \in B: c+a=a+c=c \circ a=a \circ c\} .
$$

Corollary
A skew brace B is abelian if and only if $(B,+)$ is an abelian group and $a+b=a \circ b$, for all $a, b \in B$.

Center of a skew brace

Theorem (M. B. \& P.J.)

Let B be a skew brace. Then

$$
Z(B)=\{c \mid \forall a \in B: c+a=a+c=c \circ a=a \circ c\} .
$$

Corollary

A skew brace B is abelian if and only if $(B,+)$ is an abelian group and $a+b=a \circ b$, for all $a, b \in B$.

(Central) nilpotency of skew braces

Upper central series:

$$
\begin{aligned}
& \zeta_{0}(B)=0 \\
& \zeta_{n}(B)=\left\{c \mid \forall a \in A: c * a, a * c,[a, c]_{+} \in \zeta_{n-1}(B)\right\}
\end{aligned}
$$

Lower central series:

$\Gamma_{0}(B)=B$
$\Gamma_{n}(B)=\left\langle\Gamma_{n-1}(B) * B, B * \Gamma_{n-1}(B),\left(\Gamma_{n-1}(B), B\right]_{+}\right\rangle+$

(Central) nilpotency of skew braces

Upper central series:

$$
\begin{aligned}
& \zeta_{0}(B)=0 \\
& \zeta_{n}(B)=\left\{c \mid \forall a \in A: c * a, a * c,[a, c]_{+} \in \zeta_{n-1}(B)\right\}
\end{aligned}
$$

Lower central series:

$$
\begin{aligned}
& \Gamma_{0}(B)=B \\
& \Gamma_{n}(B)=\left\langle\Gamma_{n-1}(B) * B, B * \Gamma_{n-1}(B),\left[\Gamma_{n-1}(B), B\right]_{+}\right\rangle_{+}
\end{aligned}
$$

Other notions of nilpotency

Definitions (W. Rump; Ag. Smoktunowicz)

Let B be a skew brace. We define

$$
\begin{array}{rlrl}
B^{1}=B, & B^{n+1} & =B * B^{n}, \\
B^{(1)}=B, & B^{(n+1)} & =B^{(n)} * B, \\
B^{[1]} & =B, & B^{[n+1]} & =\left\langle\bigcup_{i=1}^{n} B^{[i]} * B^{[n+1-i]}\right\rangle_{+} .
\end{array}
$$

We say that B is

- left nilpotent if $B^{n}=0$,
- right nilpotent if $B^{(n)}=0$,
- nilpotent if $B^{[n]}=0$,
for some $n \in \mathbb{N}$.

Relations among nilpotencies

> Theorem (F. Cedó, T. Gateva-Ivanova, Ag. Smoktunowicz)
> A brace is right nilpotent of class n if and only if its associated set-theoretic solution of Yang-Baxter equation is multipermutational of level n.

Proposition (M. B. \& P. J.)

Let B be a skew brace. Then the following properties are equivalent:

- B is centrally nilpotent,
- B is a nilpotent brace and (B, \circ) is a nilpotent group,
- B is a right nilpotent brace and both (B, \circ) and $(B,+)$ are nilpotent groups.

Relations among nilpotencies

Theorem (F. Cedó, T. Gateva-Ivanova, Ag. Smoktunowicz)

A brace is right nilpotent of class n if and only if its associated set-theoretic solution of Yang-Baxter equation is multipermutational of level n.

Proposition (M. B. \& P. J.)

Let B be a skew brace. Then the following properties are equivalent:

- B is centrally nilpotent,
- B is a nilpotent brace and (B, \circ) is a nilpotent group,
- B is a right nilpotent brace and both (B, \circ) and $(B,+)$ are nilpotent groups.

Commutator of ideals

Definition

Let A be an expanded group and let I, J be two ideals. We define the commutator of I, J as the ideal

$$
\llbracket I, J \rrbracket=\langle f(a, b)| a \in I, b \in J, f \text { absorbing }\rangle .
$$

Groups:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Lie algebras:

$$
\pi I, J]=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Commutator of ideals

Definition

Let A be an expanded group and let I, J be two ideals. We define the commutator of I, J as the ideal

$$
\llbracket I, J \rrbracket=\langle f(a, b)| a \in I, b \in J, f \text { absorbing }\rangle .
$$

Groups:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Lie algebras:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Commutator of ideals

Definition

Let A be an expanded group and let I, J be two ideals. We define the commutator of I, J as the ideal

$$
\llbracket I, J \rrbracket=\langle f(a, b)| a \in I, b \in J, f \text { absorbing }\rangle .
$$

Groups:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Lie algebras:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Commutator of ideals

Definition

Let A be an expanded group and let I, J be two ideals. We define the commutator of I, J as the ideal

$$
\llbracket I, J \rrbracket=\langle f(a, b)| a \in I, b \in J, f \text { absorbing }\rangle .
$$

Groups:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Lie algebras:

$$
\llbracket I, J \rrbracket=[I, J]=\{[a, b] \mid a \in I, b \in J\}
$$

Rings:

$$
\llbracket I, J \rrbracket=I J+J I
$$

Commutator of ideals 2

In general, absorbing polynomials may contain constants from $A \backslash(I \cup J)$.
Loops:

$$
\begin{aligned}
\llbracket I, J \rrbracket= & \langle(a+b)-(b+a) \\
& ((a+b)+c)-(a+(b+c)) \\
& (c+(b+a))-((c+b)+a) \\
& \text { some other elements }|a \in I, b \in J, c \in A\rangle
\end{aligned}
$$

Skew braces:

$$
\llbracket I, J \rrbracket=\left\langle[a, b]_{+}, a * b, b * a \mid a \in I, b \in J\right\rangle_{+} ? ? ?
$$

Commutator of ideals 2

In general, absorbing polynomials may contain constants from $A \backslash(I \cup J)$.

Loops:

$$
\begin{aligned}
\llbracket I, J \rrbracket= & \langle(a+b)-(b+a), \\
& ((a+b)+c)-(a+(b+c)), \\
& (c+(b+a))-((c+b)+a),
\end{aligned}
$$

$$
\text { some other elements }|a \in I, b \in J, c \in A\rangle
$$

Skew braces:

Commutator of ideals 2

In general, absorbing polynomials may contain constants from $A \backslash(I \cup J)$.

Loops:

$$
\begin{aligned}
\llbracket I, J \rrbracket= & \langle(a+b)-(b+a), \\
& ((a+b)+c)-(a+(b+c)), \\
& (c+(b+a))-((c+b)+a),
\end{aligned}
$$

$$
\text { some other elements }|a \in I, b \in J, c \in A\rangle
$$

Skew braces:

$$
\llbracket I, J \rrbracket=\left\langle[a, b]_{+}, a * b, b * a \mid a \in I, b \in J\right\rangle_{+} ? ? ?
$$

Solvability

Definitions

Let A be an expanded group. We define

$$
A_{0}=A \quad \text { and } \quad A_{i+1}=\llbracket A_{i}, A \rrbracket .
$$

If there exists n such that $A_{0}=0$ then A is nilpotent of class n.
We define

If there exists n such that $A_{0}=0$ then A is solvable of class n.

Solvability

Definitions

Let A be an expanded group. We define

$$
A_{0}=A \quad \text { and } \quad A_{i+1}=\llbracket A_{i}, A \rrbracket .
$$

If there exists n such that $A_{0}=0$ then A is nilpotent of class n. We define

$$
A^{(0)}=A \quad \text { and } \quad A^{(i+1)}=\llbracket A^{(i)}, A^{(i)} \rrbracket .
$$

If there exists n such that $A_{0}=0$ then A is solvable of class n.

Open problems

Abelianess

Definition

An expanded group A is called abelian if $\llbracket A, A \rrbracket=0$.

Definition

Let A be an expanded group and let I be an ideal of A. Then we say that I is abelian in A if $\llbracket I, I \rrbracket=0$.

Definition

An expanded group A is solvable of class n if there exists a chain of ideals

$$
0=I_{0} \leqslant I_{1} \leqslant \cdots \leqslant I_{n}=A
$$

such that I_{j+1} / I_{j} is an abelian ideal in A / I_{j}, for every $0 \leqslant j<n$.

Abelianess

Definition

An expanded group A is called abelian if $\llbracket A, A \rrbracket=0$.

Definition

Let A be an expanded group and let I be an ideal of A. Then we say that I is abelian in A if $\llbracket I, I \rrbracket=0$.

Definition
An exnanded group A is solvable of class n if there exists a chain of ideals

such that I_{j+1} / I_{j} is an abelian ideal in A / I_{j}, for every $0 \leqslant j<n$.

Abelianess

Definition

An expanded group A is called abelian if $\llbracket A, A \rrbracket=0$.

Definition

Let A be an expanded group and let I be an ideal of A. Then we say that I is abelian in A if $\llbracket I, I \rrbracket=0$.

Definition

An expanded group A is solvable of class n if there exists a chain of ideals

$$
0=I_{0} \leqslant I_{1} \leqslant \cdots \leqslant I_{n}=A
$$

such that I_{j+1} / I_{j} is an abelian ideal in A / I_{j}, for every $0 \leqslant j<n$.

Supernilpotency

Definition

An expanded group A is called supernilpotent of class n if every ($n+1$)-ary absorbing polynomial is constant.

Theorem (E. Aichinger \& J. Ecker)
 A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger \& N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem
Every finite supernilpotent expanded group is a product of expanded p-groups.

Supernilpotency

Definition

An expanded group A is called supernilpotent of class n if every ($n+1$)-ary absorbing polynomial is constant.

Theorem (E. Aichinger \& J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

> Theorem (E. Aichinger \& N. Mudrinski)
> Every supernilpotent expanded group is nilpotent.

Theorem
Fvery finite supernilpotent expanded group is a product of expanded p-groups.

Supernilpotency

Definition

An expanded group A is called supernilpotent of class n if every ($n+1$)-ary absorbing polynomial is constant.

Theorem (E. Aichinger \& J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger \& N. Mudrinski)

Every supernilpotent expanded group is nilpotent.
Theorem
Every finite supernilpotent expanded group is a product of expanded p-groups.

Supernilpotency

Definition

An expanded group A is called supernilpotent of class n if every ($n+1$)-ary absorbing polynomial is constant.

Theorem (E. Aichinger \& J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger \& N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem

Every finite supernilpotent expanded group is a product of expanded p-groups.

