Central nilpotency of skew braces

Marco Bonatto & Přemysl Jedlička

Department of Mathematics
Faculty of Engineering (former Technical Faculty)
Czech University of Life Sciences (former Czech University of Agriculture) in Prague

Warsaw, 30th November 2021

Expanded group

Definition

An algebra (A, Ω) is called an *expanded group*, if there exist a binary operation +, a unary operation - and a constant 0 such that the retract (A, +, -, 0) is a group.

Definition

Let A be an expanded group. A polynomial $f(x_1, \ldots, x_k)$, with k > 1, is called *absorbing*, if, for all $1 \le i \le k$, and for all $a_j \in A$, with $1 \le j \le k$,

$$f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_k)=0.$$

Expanded group

Definition

An algebra (A, Ω) is called an *expanded group*, if there exist a binary operation +, a unary operation - and a constant 0 such that the retract (A, +, -, 0) is a group.

Definition

Let A be an expanded group. A polynomial $f(x_1, \ldots, x_k)$, with k > 1, is called *absorbing*, if, for all $1 \le i \le k$, and for all $a_j \in A$, with $1 \le j \le k$,

$$f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_k)=0.$$

Groups:

$$-x - y + x + y = [x, y]$$
$$[x, y], z$$

Rings:

$$x \cdot y$$

Vector spaces:

$$0x + 0y + 0z$$

Lie algebras:

$$((x+y)+z)-(x+(y+z))$$

Groups:

$$-x - y + x + y = [x, y]$$
$$[[x, y], z]$$

Rings:

$$x \cdot y$$

Vector spaces:

$$0x + 0y + 0z$$

Lie algebras:

$$((X+Y)+Z)-(X+(Y+Z))$$

Groups:

$$-x - y + x + y = [x, y]$$
$$[[x, y], z]$$

Rings:

$$x \cdot y$$

Vector spaces:

$$0x + 0y + 0z$$

Lie algebras:

$$((x+y)+z)-(x+(y+z))$$

Groups:

$$-x - y + x + y = [x, y]$$
$$[[x, y], z]$$

Rings:

$$x \cdot y$$

Vector spaces:

$$0x + 0y + 0z$$

Lie algebras:

$$((x+y)+z)-(x+(y+z))$$

Groups:

$$-x - y + x + y = [x, y]$$
$$[[x, y], z]$$

Rings:

$$x \cdot y$$

Vector spaces:

$$0x + 0y + 0z$$

Lie algebras:

$$((x+y)+z)-(x+(y+z))$$

Groups:

$$-x - y + x + y = [x, y]$$
$$[[x, y], z]$$

Rings:

$$x \cdot y$$

Vector spaces:

$$0x + 0y + 0z$$

Lie algebras:

$$((x+y)+z)-(x+(y+z))$$

Center

Definition

Let A be an expanded group. An element $c \in A$ is called *central* if, for all binary absorbing polynomial f and for all $a \in A$,

$$f(a,c) = f(c,a) = 0.$$

The center Z(A) of A is the subset of all central elements of A.

Definition

An expanded group A is called abelian if Z(A) = A.

Center

Definition

Let A be an expanded group. An element $c \in A$ is called *central* if, for all binary absorbing polynomial f and for all $a \in A$,

$$f(a,c) = f(c,a) = 0.$$

The center Z(A) of A is the subset of all central elements of A.

Definition

An expanded group A is called abelian if Z(A) = A.

Groups:

$$Z(A) = \{c \mid \forall a \in A : a + c = c + a\}$$

Rings

$$Z(A) = \{c \mid \forall a \in A : a \cdot c = c \cdot a = 0\} = \operatorname{Ann}_{R}(R)$$

Vector spaces:

$$Z(A) = A$$

Lie algebras:

$$Z(A) = \{c \mid \forall a \in A : [a, c] = 0\} = \text{Rad}([,])$$

$$Z(A) = \{c \mid \forall a, b \in A : a + c = c + a \& c + (a + b) = (c + a) + b\}$$

Groups:

$$Z(A) = \{c \mid \forall a \in A : a + c = c + a\}$$

Rings:

$$Z(A) = \{c \mid \forall a \in A : a \cdot c = c \cdot a = 0\} = Ann_R(R)$$

Vector spaces:

$$Z(A) = A$$

Lie algebras

$$Z(A) = \{c \mid \forall a \in A : [a, c] = 0\} = \text{Rad}([,])$$

$$Z(A) = \{c \mid \forall a, b \in A : a + c = c + a \& c + (a + b) = (c + a) + b\}$$

Groups:

$$Z(A) = \{c \mid \forall a \in A : a + c = c + a\}$$

Rings:

$$Z(A) = \{c \mid \forall a \in A: \ a \cdot c = c \cdot a = 0\} = Ann_R(R)$$

Vector spaces:

$$Z(A) = A$$

Lie algebras:

$$Z(A) = \{c \mid \forall a \in A : [a, c] = 0\} = \text{Rad}([,])$$

$$Z(A) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid \forall a,b \in A: \ a+c=c+a \ \& \ c+(a+b) = \{c \mid a+c=a \ \& \ c+(a+b) = \{c \mid a+c=a \ \& \ c+(a+b) = \{c \mid a+c=a \ \& \ c+(a+b) = \{c+a\} = \{$$

Groups:

$$Z(A) = \{c \mid \forall a \in A : a + c = c + a\}$$

Rings:

$$Z(A) = \{c \mid \forall a \in A : a \cdot c = c \cdot a = 0\} = \operatorname{Ann}_{R}(R)$$

Vector spaces:

$$Z(A) = A$$

Lie algebras:

$$Z(A) = \{c \mid \forall a \in A : [a, c] = 0\} = \text{Rad}([,])$$

$$Z(A) = \{c \mid \forall a, b \in A : a + c = c + a \& c + (a + b) = (c + a) + b\}$$

Groups:

$$Z(A) = \{c \mid \forall a \in A : a + c = c + a\}$$

Rings:

$$Z(A) = \{c \mid \forall a \in A : a \cdot c = c \cdot a = 0\} = \operatorname{Ann}_{R}(R)$$

Vector spaces:

$$Z(A) = A$$

Lie algebras:

$$Z(A) = \{c \mid \forall a \in A : [a, c] = 0\} = \text{Rad}([,])$$

$$Z(A) = \{c \mid \forall a, b \in A : a + c = c + a \& c + (a + b) = (c + a) + b\}$$

Nilpotency

Definition

A subalgebra I an expanded group A is called an ideal if there exists an endomorphism φ of A such that $\varphi(a) = 0$ if and only if $a \in I$.

Definition

An expanded group A is *nilpotent of class n* if there exists a chain of ideals

$$0 = I_0 \leqslant I_1 \leqslant \cdots \leqslant I_n = A$$

such that $I_{j+1}/I_j \leqslant Z(A/I_j)$, for every $0 \leqslant j < n$.

Nilpotency

Definition

A subalgebra I an expanded group A is called an ideal if there exists an endomorphism φ of A such that $\varphi(a) = 0$ if and only if $a \in I$.

Definition

An expanded group *A* is *nilpotent of class n* if there exists a chain of ideals

$$0=I_0\leqslant I_1\leqslant\cdots\leqslant I_n=A,$$

such that $I_{j+1}/I_j \leq Z(A/I_j)$, for every $0 \leq j < n$.

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1} = 0$.

Proof.

Let
$$I_{j+1} = \{c \in R \mid \forall a \quad a \cdot c \in I_j\}$$
; then $I_{j+1}/I_j = \operatorname{Ann}(R/I_j)$.
Moreover $I_j = \{c \mid \forall a_1, \dots, a_j \in A \quad c \cdot a_1 \cdots a_j = 0\}$.

Here $0 \le I_1 \le \cdots \le I_n$ is the upper central series. The lower central series is $R \ge R^2 \ge R^3 \ge \cdots R^n \ge 0$

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1} = 0$.

Proof.

Let
$$I_{j+1} = \{c \in R \mid \forall a \quad a \cdot c \in I_j\}$$
; then $I_{j+1}/I_j = \text{Ann}(R/I_j)$.
Moreover $I_i = \{c \mid \forall a_1, \dots, a_i \in A \quad c \cdot a_1 \cdots a_i = 0\}$.

Here $0 \le I_1 \le \cdots \le I_n$ is the upper central series. The lower central series is $R \ge R^2 \ge R^3 \ge \cdots R^n \ge 0$

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1} = 0$.

Proof.

Let
$$I_{j+1} = \{c \in R \mid \forall a \quad a \cdot c \in I_j\}$$
; then $I_{j+1}/I_j = \operatorname{Ann}(R/I_j)$.
Moreover $I_i = \{c \mid \forall a_1, \dots, a_i \in A \quad c \cdot a_1 \cdots a_i = 0\}$.

Here $0 \le I_1 \le \cdots \le I_n$ is the upper central series. The lower central series is $R \ge R^2 \ge R^3 \ge \cdots R^n \ge 0$

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1} = 0$.

Proof.

Let
$$I_{j+1} = \{c \in R \mid \forall a \quad a \cdot c \in I_j\}$$
; then $I_{j+1}/I_j = \operatorname{Ann}(R/I_j)$.
Moreover $I_i = \{c \mid \forall a_1, \dots, a_i \in A \quad c \cdot a_1 \cdots a_i = 0\}$.

Here $0 \le I_1 \le \cdots \le I_n$ is the upper central series.

The lower central series is $R \ge R^2 \ge R^3 \ge \cdots R^n \ge 0$.

Proposition

A commutative ring R is nilpotent of class n if and only if $R^{n+1} = 0$.

Proof.

Let
$$I_{j+1} = \{c \in R \mid \forall a \quad a \cdot c \in I_j\}$$
; then $I_{j+1}/I_j = \operatorname{Ann}(R/I_j)$.
Moreover $I_i = \{c \mid \forall a_1, \dots, a_i \in A \quad c \cdot a_1 \cdots a_i = 0\}$.

Here $0 \le I_1 \le \cdots \le I_n$ is the upper central series. The lower central series is $R \ge R^2 \ge R^3 \ge \cdots R^n \ge 0$.

An algebra $(A, +, \circ, 0)$ is called a *skew brace* if

- (A, +, 0) is a group
- $(A, \circ, 0)$ is a group
- $a \circ (b+c) = a \circ b a + a \circ c$, for all $a,b,c \in A$.

- Let (A, +, 0) be a group and let $a \circ b = b + a$.
- Let (A, +, 0) be $(\mathbb{Z}_{p^n}, +, 0)$, for some prime p and n > 1. Let 0 < k < n and let $a \circ b = a + abp^k + p \mod p^n$.
- Let (R, +, *, 0) be a radical ring. If we define $a \circ b = a + a * b + b$ then $(R, +, \circ, 0)$ is a brace.

An algebra $(A, +, \circ, 0)$ is called a *skew brace* if

- (A, +, 0) is a group
- $(A, \circ, 0)$ is a group
- $a \circ (b+c) = a \circ b a + a \circ c$, for all $a,b,c \in A$.

- Let (A, +, 0) be a group and let $a \circ b = b + a$.
- Let (A, +, 0) be $(\mathbb{Z}_{p^n}, +, 0)$, for some prime p and n > 1. Let 0 < k < n and let $a \circ b = a + abp^k + p \mod p^n$.
- Let (R, +, *, 0) be a radical ring. If we define $a \circ b = a + a * b + b$ then $(R, +, \circ, 0)$ is a brace.

An algebra $(A, +, \circ, 0)$ is called a *skew brace* if

- (A, +, 0) is a group
- $(A, \circ, 0)$ is a group
- $a \circ (b+c) = a \circ b a + a \circ c$, for all $a,b,c \in A$.

- Let (A, +, 0) be a group and let $a \circ b = b + a$.
- Let (A, +, 0) be $(\mathbb{Z}_{p^n}, +, 0)$, for some prime p and n > 1. Let 0 < k < n and let $a \circ b = a + abp^k + p \mod p^n$.
- Let (R, +, *, 0) be a radical ring. If we define $a \circ b = a + a * b + b$ then $(R, +, \circ, 0)$ is a brace.

An algebra $(A, +, \circ, 0)$ is called a *skew brace* if

- (A, +, 0) is a group
- $(A, \circ, 0)$ is a group
- $a \circ (b+c) = a \circ b a + a \circ c$, for all $a,b,c \in A$.

- Let (A, +, 0) be a group and let $a \circ b = b + a$.
- Let (A, +, 0) be $(\mathbb{Z}_{p^n}, +, 0)$, for some prime p and n > 1. Let 0 < k < n and let $a \circ b = a + abp^k + p \mod p^n$.
- Let (R, +, *, 0) be a radical ring. If we define $a \circ b = a + a * b + b$ then $(R, +, \circ, 0)$ is a brace.

Absorbing polynomials of a skew brace

We denote

$$x * y = -x + (x \circ y) - y$$

Observation

Absorbing polynomials for a skew brace are

- $[x,y]_+,$
- \bullet $[x,y]_{\circ}$,
- \bullet x * y,
- y * x.

Absorbing polynomials of a skew brace

We denote

$$x * y = -x + (x \circ y) - y$$

Observation

Absorbing polynomials for a skew brace are

- $[x, y]_+$,
- \bullet $[x,y]_{\circ}$,
- $\bullet x * y$,
- \bullet y * x.

Center of a skew brace

Theorem (M. B. & P. J.)

Let B be a skew brace. Then

$$Z(B) = \{c \mid \forall a \in B : c + a = a + c = c \circ a = a \circ c\}.$$

Corollary

A skew brace B is abelian if and only if (B, +) is an abelian group and $a + b = a \circ b$, for all $a, b \in B$.

Center of a skew brace

Theorem (M. B. & P. J.)

Let B be a skew brace. Then

$$Z(B) = \{c \mid \forall a \in B : c + a = a + c = c \circ a = a \circ c\}.$$

Corollary

A skew brace B is abelian if and only if (B, +) is an abelian group and $a + b = a \circ b$, for all $a, b \in B$.

(Central) nilpotency of skew braces

Upper central series:

$$\zeta_0(B) = 0$$
 $\zeta_n(B) = \{c \mid \forall a \in A : c * a, a * c, [a, c]_+ \in \zeta_{n-1}(B)\}$

Lower central series:

$$\Gamma_0(B) = B$$

$$\Gamma_n(B) = \langle \Gamma_{n-1}(B) * B, B * \Gamma_{n-1}(B), [\Gamma_{n-1}(B), B]_+ \rangle_{-1}$$

(Central) nilpotency of skew braces

Upper central series:

$$\zeta_0(B) = 0$$
 $\zeta_n(B) = \{c \mid \forall a \in A : c * a, a * c, [a, c]_+ \in \zeta_{n-1}(B)\}$

Lower central series:

$$\Gamma_0(B) = B$$

$$\Gamma_n(B) = \langle \Gamma_{n-1}(B) * B, B * \Gamma_{n-1}(B), [\Gamma_{n-1}(B), B]_+ \rangle_+$$

Other notions of nilpotency

Definitions (W. Rump; Ag. Smoktunowicz)

Let *B* be a skew brace. We define

$$B^{1} = B,$$
 $B^{n+1} = B * B^{n},$ $B^{(1)} = B,$ $B^{(n+1)} = B^{(n)} * B,$ $B^{[1]} = B,$ $B^{[n+1]} = \left\langle \bigcup_{i=1}^{n} B^{[i]} * B^{[n+1-i]} \right\rangle_{+}.$

We say that *B* is

- *left nilpotent* if $B^n = 0$,
- right nilpotent if $B^{(n)} = 0$,
- nilpotent if $B^{[n]} = 0$,

for some $n \in \mathbb{N}$.

Theorem (F. Cedó, T. Gateva-Ivanova, Ag. Smoktunowicz)

A brace is right nilpotent of class n if and only if its associated set-theoretic solution of Yang-Baxter equation is multipermutational of level n.

Proposition (M. B. & P. J.)

Let B be a skew brace. Then the following properties are equivalent:

- B is centrally nilpotent,
- B is a nilpotent brace and (B, \circ) is a nilpotent group,
- B is a right nilpotent brace and both (B, \circ) and (B, +) are nilpotent groups.

Theorem (F. Cedó, T. Gateva-Ivanova, Ag. Smoktunowicz)

A brace is right nilpotent of class n if and only if its associated set-theoretic solution of Yang-Baxter equation is multipermutational of level n.

Proposition (M. B. & P. J.)

Let B be a skew brace. Then the following properties are equivalent:

- B is centrally nilpotent,
- B is a nilpotent brace and (B, \circ) is a nilpotent group,
- B is a right nilpotent brace and both (B, \circ) and (B, +) are nilpotent groups.

Let A be an expanded group and let I, J be two ideals. We define the *commutator* of I, J as the ideal

$$\llbracket I,J \rrbracket = \langle f(a,b) \mid a \in I, b \in J, f \text{ absorbing} \rangle.$$

Groups:

$$[\![I,J]\!] = [I,J] = \{[a,b] \mid a \in I, b \in J\}$$

Lie algebras:

$$[I,J] = [I,J] = \{[a,b] \mid a \in I, b \in J\}$$

Rings

$$[\![I,J]\!] = IJ + JI$$

Let A be an expanded group and let I, J be two ideals. We define the *commutator* of I, J as the ideal

$$\llbracket I,J \rrbracket = \langle f(a,b) \mid a \in I, b \in J, f \text{ absorbing} \rangle.$$

Groups:

$$[\![I,J]\!] = [I,J] = \{[a,b] \mid a \in I, b \in J\}$$

Lie algebras:

$$[I,J] = [I,J] = \{[a,b] \mid a \in I, b \in J\}$$

Rings

$$[\![I,J]\!] = IJ + JI$$

Let A be an expanded group and let I, J be two ideals. We define the *commutator* of I, J as the ideal

$$\llbracket I,J \rrbracket = \langle f(a,b) \mid a \in I, b \in J, f \text{ absorbing} \rangle.$$

Groups:

$$[\![I,J]\!] = [I,J] = \{[a,b] \mid a \in I, b \in J\}$$

Lie algebras:

$$[I, J] = [I, J] = \{[a, b] \mid a \in I, b \in J\}$$

Rings

$$\llbracket I, J \rrbracket = IJ + JI$$

Let A be an expanded group and let I, J be two ideals. We define the *commutator* of I, J as the ideal

$$\llbracket I,J \rrbracket = \langle f(a,b) \mid a \in I, b \in J, f \text{ absorbing} \rangle.$$

Groups:

$$[I,J] = [I,J] = \{[a,b] \mid a \in I, b \in J\}$$

Lie algebras:

$$[I, J] = [I, J] = \{[a, b] \mid a \in I, b \in J\}$$

Rings:

$$\llbracket I, J \rrbracket = IJ + JI$$

Commutator of ideals 2

In general, absorbing polynomials may contain constants from $A \setminus (I \cup J)$.

Loops

$$[\![I,J]\!] = \langle (a+b) - (b+a), \ ((a+b)+c) - (a+(b+c)), \ (c+(b+a)) - ((c+b)+a), \$$
some other elements $|a\in I,b\in J,c\in A|$

Skew braces:

$$[I,J] = \langle [a,b]_+, a*b, b*a \mid a \in I, b \in J \rangle_+ ???$$

Commutator of ideals 2

In general, absorbing polynomials may contain constants from $A \setminus (I \cup J)$.

Loops:

$$\begin{split} \llbracket I, J \rrbracket &= \langle (a+b) - (b+a), \\ &\quad ((a+b)+c) - (a+(b+c)), \\ &\quad (c+(b+a)) - ((c+b)+a), \\ &\quad \text{some other elements} \mid a \in I, b \in J, c \in A \rangle \end{split}$$

Skew braces:

$$[I,J] = \langle [a,b]_+, a*b, b*a \mid a \in I, b \in J \rangle_+ ???$$

Commutator of ideals 2

In general, absorbing polynomials may contain constants from $A \setminus (I \cup J)$.

Loops:

$$[\![I,J]\!] = \langle (a+b) - (b+a), \ ((a+b)+c) - (a+(b+c)), \ (c+(b+a)) - ((c+b)+a), \$$
some other elements $|\ a \in I, b \in J, c \in A \rangle$

Skew braces:

$$[I,J] = \langle [a,b]_+, a*b, b*a \mid a \in I, b \in J \rangle_+ ???$$

Solvability

Definitions

Let *A* be an expanded group. We define

$$A_0 = A$$
 and $A_{i+1} = [\![A_i, A]\!].$

If there exists n such that $A_0 = 0$ then A is nilpotent of class n.

$$A^{(0)} = A$$
 and $A^{(i+1)} = [A^{(i)}, A^{(i)}].$

If there exists n such that $A_0 = 0$ then A is solvable of class n

Solvability

Definitions

Let *A* be an expanded group. We define

$$A_0 = A$$
 and $A_{i+1} = [\![A_i, A]\!].$

If there exists n such that $A_0 = 0$ then A is nilpotent of class n. We define

$$A^{(0)} = A$$
 and $A^{(i+1)} = [A^{(i)}, A^{(i)}].$

If there exists n such that $A_0 = 0$ then A is solvable of class n.

Abelianess

Definition

An expanded group *A* is called *abelian* if $[\![A,A]\!]=0$.

Definition

Let A be an expanded group and let I be an ideal of A. Then we say that I is abelian in A if $\llbracket I, I \rrbracket = 0$.

Definition

An expanded group A is solvable of class n if there exists a chair of ideals

$$0=I_0\leqslant I_1\leqslant \cdots\leqslant I_n=A,$$

such that I_{i+1}/I_i is an abelian ideal in A/I_i , for every $0 \le j < n$.

Abelianess

Definition

An expanded group *A* is called *abelian* if $[\![A,A]\!]=0$.

Definition

Let *A* be an expanded group and let *I* be an ideal of *A*. Then we say that *I* is abelian in *A* if [I,I]=0.

Definition

An expanded group A is solvable of class n if there exists a chair of ideals

$$0=I_0\leqslant I_1\leqslant\cdots\leqslant I_n=A,$$

such that I_{j+1}/I_j is an abelian ideal in A/I_j , for every $0 \le j < n$.

Abelianess

Definition

An expanded group *A* is called *abelian* if $[\![A,A]\!]=0$.

Definition

Let *A* be an expanded group and let *I* be an ideal of *A*. Then we say that *I* is abelian in *A* if [I,I]=0.

Definition

An expanded group A is solvable of class n if there exists a chain of ideals

$$0=I_0\leqslant I_1\leqslant\cdots\leqslant I_n=A,$$

such that I_{j+1}/I_j is an abelian ideal in A/I_j , for every $0 \le j < n$.

Supernilpotency

Definition

An expanded group A is called *supernilpotent of class* n if every (n+1)-ary absorbing polynomial is constant.

Theorem (E. Aichinger & J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger & N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem

An expanded group A is called *supernilpotent of class* n if every (n+1)-ary absorbing polynomial is constant.

Theorem (E. Aichinger & J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger & N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem

An expanded group A is called *supernilpotent of class* n if every (n+1)-ary absorbing polynomial is constant.

Theorem (E. Aichinger & J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger & N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem

An expanded group A is called *supernilpotent of class* n if every (n+1)-ary absorbing polynomial is constant.

Theorem (E. Aichinger & J. Ecker)

A group is supernilpotent of class n if and only if it is nilpotent of class n.

Theorem (E. Aichinger & N. Mudrinski)

Every supernilpotent expanded group is nilpotent.

Theorem