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m The aim of this talk is a brief analysis and discussion of
the concept of limit of sequences and its extension in
fuzzy direction.
Convergence

of sequences m This extension has a quantitative character. We define
ana its gen- .

eralizations the degree of convergence of a given sequence to a
given point as a number in the interval [0, 1] where the

value 1 means the most perfect convergence.

m It follows from the results that this degree of
convergence can be interpreted as the logical value of
the statement “The sequence (x,) converges to the
point x” in [0, 1]-valued fuzzy logic.

L. Misik
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L. Misik m A sequence (x;) of points in a metric space (X, d)
converges to a point x; € X if and only if

Convergence

of sequences Ve>0d ng €N such that vV n > ng : d(Xn,Xo) <E.
and its gen-
eralizations

m Every metric space is topologically equivalent to a
metric space in which all possible distances belong to
the interval [0, 1]. This means that, without loss of
generality, complete information and decision on
convergence is in the sequence (d(xn, Xp)) in [0, 1].

m Decision must be: Either converges or does not.



tandard convergence of sequences

Limit with
:::5%:;%: m Roughly spoken, a sequence (x,) of points in a metric
space (X, d) converges to a point xo € X if and only if

all sets

L. Misik

Convergence —

of sequences LE {n eN | d(Xn’XO) < 6}7 e>0
and its gen-
eralizations

are extremely big (i.e. cofinite).

m Even less formally, a sequence (x,) of points in a
metric space (X, d) converges to a point xo € X if and
only if almost all points of the sequence are
undistinguishable from the limit point by arbitrary
precise measurements.

m |t suggests two kind of possible generalizations: how
many points and by how precise measurements.
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onvergence with respect to a filter

m The first kind of possible generalization: a sequence
(xn) converges to a point xo € X if and only if all sets

L.={neN|d(xnXxy) <e}, e>0

are big in some sense.

m Standard way how to characterize big sets is that they
belong to a suitable filter, i.e. class of subsets of N
closed with respect to supersets and finite
intersections.

m A sequence (x,) converges to a point xp € X with
respect to a filter 7 if and only if all sets

L.={neN|d(xnX) <e}, e>0

belong to . It was introduced by H. Cartan (1937).




onvergence with respect to an ideal

Limit with
oL m Dual formulation: a sequence (x,) converges to a point
N Xp € X if and only if all sets

L. Misik

G. = {n € N| d(xn %) > 2}, £ > 0

Convergence

of sequences are small in some sense.

and.its gen-

eralizations m Standard way how to characterize small sets is that
they belong to a suitable ideal, i.e. class of subsets of

N closed with respect to subsets and finite unions.

m A sequence (x,) converges to a point xp € X with
respect to an ideal Z if and only if all sets

G.={neN|d(xp,x0) >¢c}, e>0

belong to 7.
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Limit with

:ﬁ:ﬁ%ﬁﬂﬁ m The above concept (equivalent to the convergence with
" respect to a filter) was rediscovered in 1999 by

Kostyrko, Salat and Wilczynski. They were inspired by

the statistical convergence.
Convergence . .
of sequences m Convergence with respect to the ideal of sets of

and its gen-

eralizations asymptotic density 0, i.e.

L. Misik

Id:{ACN| o JAN{1.2.. 0y :o}

n—o0 n

is called statistical convergence.

m |t was introduced by Fast (1951) and has several
applications in number theory.

m Convergence is still strict: either converges or does not.
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) m The second king of generalization of the standard
- convergence was introduced by M. Burgin in 2000.

m In his approach a sequence (x,) is r-convergent to a
ERUIl point xg if for every ¢ > 0 the set of all indices n such

of sequences

and ts gen- that x, belongs to the r + ¢ ball around Xxg is cofinite, i.e.

eralizations
Leyr={neN|d(Xn,x0) <r+ce}

is cofinite.

m The fact that this kind of convergence depends on a
positive real number r is probably the reason why he
calls this kind of convergence a fuzzy convergence.



Viotivating example

Limit with
respect to a
measure on

N

L. Misik m Consider the sequence given by x, = # and the
following three statements.

Convergence

m “The sequence does not converge”.
and it gen m “The sequence has two accumulation points 0 and 1”.

eralizations
' m “The sequence half converges to 0 and half converges
to 1 with respect to asymptotic density”.
m In our opinion, the last statement contains the most
information.

m This is a motivation to introduce a partial convergence
with respect to a measure on N.
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Vieasure on N

Limit with

respect to a m By a measure on N we will mean any monotone
e function : 2N — [0, 1] such that u(F) = 0 and
L. Misik u(N\ F) =1 for every finite F C N.
m . is said to be {0, 1}-measure if u(A) € {0,1} for all
ACN.
m A measure p is subadditive if
with reapa pAU B) < u(A) + u(B)

to a measure

for all A, B C N, it is superadditive if
H(AU B) > u(A) + 1(B)

for all disjoint A, B C N.

m A measure is additive if it is both subadditive and
superadditive.
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Limit with
respectto a . .
measure on m We will need also some other properties of measures.

L. Misik m A measure y is submodular (supermodaular) if

AU B) + u(ANB) < (=) p(A) + u(B)

forall A, B C N,
Convergence m it is intersective if

with respect
to a measure

p(AN B) > p(A) + u(B) -1

holds for all A, B C N.

m Super(submodularity) is stronger than
super(subadditivity) Also, every supermodular measure
is also intersective.



egree of convergence

Limit with . .
e m Let (X, d) be a metric space, x = (x,) a sequence in X

N and let xo € X. Suppose that ;1 is a measure on N. The
L. Misik number

L.(x,x0) = inf{u({n € N| d(xn, X0) < €}), € > 0}

is called the degree of convergence of the sequence
Convergence x to the point xp with respect to the measure .

with respect

to a measure m We call a point xg € X a u—limit of a sequence x if
L.(X, %) = 1 and we will denote this fact by x £ x;.

m |t appears that statistical convergence and more
general convergence with respect to a filter are very
special cases of the above concept.

m Properties of such a convergence strongly depend on
properties of the chosen measure.
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N m Recall that a measure is {0, 1}-measure if
= MISiK wu(A) € {0,1} forall AC N.
m In the class of {0, 1}-measures some of the above
defined properties coincide, especially
m subadditive = submodular,
B superadditive = supermodular = intersective.

m Let 7 be an ideal of subsets of N. Then pz defined by

Some

examples _
nr(A) = { 1 ifAg¢7T

0 ifAeZ

is a submodular (hence also subadditive) measure.
The smallest ideal on N is Fin, the ideal of all finite sets.



- measures

:%EEEEE% m Let F be afilter of subsets of N. Then .+ defined by
I\

L. Misik _ 0 ingéF
“f(A)_{1 ifAcF

is a supermodular (hence also superadditive and
intersective) measure.

m The smallest filter is Cof, the filter of all cofinite sets.

m All subadditive {0, 1}-measures are of the form 7 and

Some all superadditive {0, 1}- measures are off the form pr.

m L, isin fact the convergence with respect to a filter 7
and L, is exactly the standard convergence.

B Lcof IS the smallest measure and i, is the largest
measure. Consequently, the standard convergence is
the strongest one.

examples
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Ir = [N\ F|FeF

is the dual ideal to F and vice versa.

m Maximal filter is called ultrafilter and its dual ideal is
maximal as well (and vice versa). U is an ultrafilter if
and only if for every A C Neither Act/ or N\ A€ U.

Some

examples m Let U be an ultrafilter and M its dual ideal. Then for
every A C N exactly one of the sets A,N \ A belongs to
U and the other one belongs to M. Consequently both
measures py; and paq coincide, thus they are additive.
Moreover, all additive {0, 1}-measures are of such kind.
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L. Migik Q(A)zliminf ’Aﬂ{1,2,...,n}\
n—oo n
and A 1,2
d(A) = limsup A2 )]
n—oo n

are called the lower and upper asymptotic density of
the set A, respectively. If d(A) = d(A) we call this

Some

examples common value d(A) asymptotic density.

m d is a subadditive measure and d is a superadditive
and intersective measure. We will see that

convergence with respect to d coincides with the
statistical convergence, hence it has “nice” properties.

m Convergence with respect to d is strange.



onvergence with respect to d

Limit with
respect to a m Recall that a sequence x = (x,) in a metric space

" statistically converges to a point xo (i.e. x 22 xo) if and
only if for every ¢ > 0, denoting

L. Misik

L.={neN|d(xnx) <e}, G- ={neN|d(xnXp) > ¢},

we have d(G.) = 0, i.e.

d(L:) =1.
Some
examples [} Th|s ShOWS that that
stat 1
x 25 x — X — Xo,

i.e. convergence with respect to d and statistical
convergence coincide.
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measure on m There are sequences X = (x,) in [0, 1] (the so called
N —

L. Misik maldistributed sequences) such that x, % aholds for
every a € [0,1]. An example of such sequence is
({loglog n}), the sequence of fractional parts of
log log n.

m Although [0, 1] is a compact space, there are
sequences X in [0, 1] such that

g:anr‘:ples La(x, a) =0
for every a € [0, 1]. For example every uniformly
distributed sequence in [0, 1] has this property. But
here we have to note that in this example d can be
replaced by d.



sequences

Limit with
e , : .
I m A sequence X = (x,) in [0, 1] is called uniformly

L. Migik distributed (u.d.) if

d{neN|x,e€lab)})=b—a

holds for every interval [a, b) C [0, 1].

m Thus, if x is u.d., then for all xo € [0,1] and £ > 0 we
have

Some

examples d({n eN ‘ Xn € (XO — &, X0+ 8)}) = 2,

consequently

Lyig(%, X0) = L (X, X0) = .
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p(A)=1-ulN\A), ACN
is called the dual measure to ;.. Note that (1*)* = p.

m If 1 is submodular then p* is supermodular and 1 > p*,
hence also
Lu(x, X0) = Ly» (X, Xo)

Some

examples for all sequences x and points xg in a metric space.

m Let Z be an ideal of subsets of N and let F be its dual
filter. Then uz and pr form a pair of dual measures.
Here u7 is submodular and u.r is supermodular, hence

KT 2 [LF-
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m If 1 is subadditive then p* is intersective (be careful, not
necessary superadditive! ) and p > p*, hence also

L,.(x, x0) > L+ (X, Xo)

for all sequences x and points xg in a metric space.

e m Also d and d form a pair of dual measures where the
Sxamples first one is subadditive, the second one is intersective
(also superadditive) and d > d.
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L. Misik m One of the most important property of limit is its
unigueness in Hausdorff, hence metric spaces. In our
case we have the following more general theorem.

g Theorem

Let 1. be a superadditive measure on N and x = (x,) a
sequence in X. Then

come > Lu(x,x0) < 1.

properties Xo€EX
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. wex L] Corollary

Let i be a superadditive measure on N. Then each
sequence in X has at most one p.-limit.

m Note that additive measures are superadditive, thus
both statements hold for all additive measures. Also
note that both statements can be applied in the case of
wr Where F is afilter. We have already seen that the
standard convergence is the special case of

Some

Propetties convergence with respect to the filter Cof. The above
Corollary shows that our results generalize the
standard ones.



onvergence of subsequences

respectto a m If x is a sequence and A C N then by x4 we denote the
i subsequence of x with indices in A. By T\, we denote
L. Misik the Lukasiewicz t-norm, i.e. the binary operation on

[0, 1] defined by
TLuk(a, b) = max{O, a+b- 1}
for all pairs (a, b) < [0, 1]2.

B Thoorom |

Let 1u be an intersective measure on N, letx = (x,) be a
sequence in X and A C N. Then for every xy € X the

Some

properties inequalities

Truk(Ly (X, X0), 1(A)) < Ly (Xa, X0) < min{L,, (X, Xo), u(A)}.

hold.
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- Let 1u be an intersective measure on N, letx = (x,) be a
sequence in X and A c N. Ifx & xg then

Ly, (Xa, Xo) = u(A).

L | Corollary

Let 1 be an intersective measure on N, let x = (x,) be a

Some

bl £ 2 sequence in X such thatx % xo and let A C N be such that
p(A) = 1. Then

XA ﬁ) Xo-



Limit with

s Btheorem |
. Let i be an intersective measure on N, let X = (xp),y = (¥n)

be two real sequences and A C N, Let x be any of

operations of addition, substraction, multiplication or division

(except by 0). Then for every real xy and yy the inequality

L. Misik

L,u (X*y,Xo *.yO) > TLuk(l—,u (X,Xo),l_# (ya.yO)) (1)

holds.

m Note that each additive measure is also intersective,

Some . . "

properties hence the Theorem is valid for all additive measures as
well as for all supermodular measures.

m Consequently, in the special case of additive or
supermodular {0, 1}- measures we obtain the standard
result.
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Let 1w be a subadditive {0, 1}-measure and let (X, d) be a
compact metric space. Then each sequence has a limit.

L. Misik

m The condition of being {0, 1}- measure is substantial.

L] Corollary

Let i« be an additive {0, 1}-measure and let (X, d) be a
compact metric space. Then each sequence has a unique
limit.

Some

properties m Remark The last corollary is well known. As the only
additive {0, 1}-measures are of the form y;, for an
ultrafilter ¢/ (see the last slide {0, 1}-measures), it says
that every sequence in compact metric space has a
unique limit along an ultrafilter.
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m Example For every n € N denote by i(n) the largest
power of 2 such that n is divisible by 2/("). Note that
i(n) = 0 for all odd positive integers. Now define the
sequence X = (xp) by

L. Misik

X, = 2-i(m~1.

m One can easily check that
Lg(x,27K) = Lg(x,27%) = 27k > 0 for all positive
integers k. This shows that the set of points at which
the degree of convergence is positive can be infinite

More

examples also for superadditive measures, e.g. the measure d.
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N m Example Let a € (0,1), let (X, d) be a metric space,
. Misilc Xo # Yo be two different points in X and (p,) be a
sequence in X converging to xp. Define x, = py if
n= X for some k € N, otherwise put x, = yo.

m Each neighbourhood of xo contains terms
kaO+1J, EENE . for some kg € N. Thus

d({n € N d(xn. %) < e}) = fim Lko’lnj —a

for every € > 0, proving

More

examples Lg((xn)’ XO) = La((Xn),Xo) = Q.
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