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Aim of the talk

The aim of this talk is a brief analysis and discussion of
the concept of limit of sequences and its extension in
fuzzy direction.
This extension has a quantitative character. We define
the degree of convergence of a given sequence to a
given point as a number in the interval [0,1] where the
value 1 means the most perfect convergence.
It follows from the results that this degree of
convergence can be interpreted as the logical value of
the statement “The sequence (xn) converges to the
point x0” in [0,1]-valued fuzzy logic.
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Standard convergence of sequences

A sequence (xn) of points in a metric space (X ,d)
converges to a point x0 ∈ X if and only if

∀ ε > 0 ∃ n0 ∈ N such that ∀ n > n0 : d(xn, x0) < ε.

Every metric space is topologically equivalent to a
metric space in which all possible distances belong to
the interval [0,1]. This means that, without loss of
generality, complete information and decision on
convergence is in the sequence (d(xn, x0)) in [0,1].
Decision must be: Either converges or does not.
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Standard convergence of sequences

Roughly spoken, a sequence (xn) of points in a metric
space (X ,d) converges to a point x0 ∈ X if and only if
all sets

Lε = {n ∈ N | d(xn, x0) < ε}, ε > 0

are extremely big (i.e. cofinite).
Even less formally, a sequence (xn) of points in a
metric space (X ,d) converges to a point x0 ∈ X if and
only if almost all points of the sequence are
undistinguishable from the limit point by arbitrary
precise measurements.
It suggests two kind of possible generalizations: how
many points and by how precise measurements.
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Convergence with respect to a filter

The first kind of possible generalization: a sequence
(xn) converges to a point x0 ∈ X if and only if all sets

Lε = {n ∈ N | d(xn, x0) < ε}, ε > 0

are big in some sense.
Standard way how to characterize big sets is that they
belong to a suitable filter, i.e. class of subsets of N
closed with respect to supersets and finite
intersections.
A sequence (xn) converges to a point x0 ∈ X with
respect to a filter F if and only if all sets

Lε = {n ∈ N | d(xn, x0) < ε}, ε > 0

belong to F . It was introduced by H. Cartan (1937).
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Convergence with respect to an ideal

Dual formulation: a sequence (xn) converges to a point
x0 ∈ X if and only if all sets

Gε = {n ∈ N | d(xn, x0) ≥ ε}, ε > 0

are small in some sense.
Standard way how to characterize small sets is that
they belong to a suitable ideal, i.e. class of subsets of
N closed with respect to subsets and finite unions.
A sequence (xn) converges to a point x0 ∈ X with
respect to an ideal I if and only if all sets

Gε = {n ∈ N | d(xn, x0) ≥ ε}, ε > 0

belong to I.
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Statistical convergence

The above concept (equivalent to the convergence with
respect to a filter) was rediscovered in 1999 by
Kostyrko, Šalát and Wilczyński. They were inspired by
the statistical convergence.
Convergence with respect to the ideal of sets of
asymptotic density 0, i.e.

Id =

{
A ⊂ N | lim

n→∞

|A ∩ {1,2, . . . ,n}|
n

= 0
}

is called statistical convergence.
It was introduced by Fast (1951) and has several
applications in number theory.
Convergence is still strict: either converges or does not.
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Fuzzy convergence

The second king of generalization of the standard
convergence was introduced by M. Burgin in 2000.
In his approach a sequence (xn) is r -convergent to a
point x0 if for every ε > 0 the set of all indices n such
that xn belongs to the r + ε ball around x0 is cofinite, i.e.

Lε+r = {n ∈ N | d(xn, x0) < r + ε}

is cofinite.
The fact that this kind of convergence depends on a
positive real number r is probably the reason why he
calls this kind of convergence a fuzzy convergence.
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Motivating example

Consider the sequence given by xn = 1+(−1)n

2 and the
following three statements.
“The sequence does not converge”.
“The sequence has two accumulation points 0 and 1”.
“The sequence half converges to 0 and half converges
to 1 with respect to asymptotic density”.
In our opinion, the last statement contains the most
information.
This is a motivation to introduce a partial convergence
with respect to a measure on N.
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Measure on N

By a measure on N we will mean any monotone
function µ : 2N → [0,1] such that µ(F ) = 0 and
µ(N \ F ) = 1 for every finite F ⊂ N.
µ is said to be {0,1}-measure if µ(A) ∈ {0,1} for all
A ⊂ N.
A measure µ is subadditive if

µ(A ∪ B) ≤ µ(A) + µ(B)

for all A,B ⊂ N, it is superadditive if

µ(A ∪ B) ≥ µ(A) + µ(B)

for all disjoint A,B ⊂ N.
A measure is additive if it is both subadditive and
superadditive.
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Measure on N

We will need also some other properties of measures.
A measure µ is submodular (supermodular) if

µ(A ∪ B) + µ(A ∩ B) ≤ (≥) µ(A) + µ(B)

for all A,B ⊂ N,
it is intersective if

µ(A ∩ B) ≥ µ(A) + µ(B)− 1

holds for all A,B ⊂ N.
Super(submodularity) is stronger than
super(subadditivity) Also, every supermodular measure
is also intersective.
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Degree of convergence

Let (X ,d) be a metric space, x = (xn) a sequence in X
and let x0 ∈ X . Suppose that µ is a measure on N. The
number

Lµ(x, x0) = inf{µ({n ∈ N| d(xn, x0) < ε}), ε > 0}

is called the degree of convergence of the sequence
x to the point x0 with respect to the measure µ.
We call a point x0 ∈ X a µ−limit of a sequence x if
Lµ(x, x0) = 1 and we will denote this fact by x µ→ x0.
It appears that statistical convergence and more
general convergence with respect to a filter are very
special cases of the above concept.
Properties of such a convergence strongly depend on
properties of the chosen measure.
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{0,1}- measures

Recall that a measure is {0,1}-measure if
µ(A) ∈ {0,1} for all A ⊂ N.
In the class of {0,1}-measures some of the above
defined properties coincide, especially

subadditive = submodular,
superadditive = supermodular = intersective.

Let I be an ideal of subsets of N. Then µI defined by

µI(A) =
{

0 if A ∈ I
1 if A /∈ I

is a submodular (hence also subadditive) measure.
The smallest ideal on N is Fin, the ideal of all finite sets.
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{0,1}- measures

Let F be a filter of subsets of N. Then µF defined by

µF (A) =
{

0 if A /∈ F
1 if A ∈ F

is a supermodular (hence also superadditive and
intersective) measure.
The smallest filter is Cof, the filter of all cofinite sets.
All subadditive {0,1}-measures are of the form µI and
all superadditive {0,1}- measures are off the form µF .
LµF is in fact the convergence with respect to a filter F
and LµCof is exactly the standard convergence.
µCof is the smallest measure and µFin is the largest
measure. Consequently, the standard convergence is
the strongest one.
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{0,1}- measures

If F is a filter then

IF = {N \ F | F ∈ F}

is the dual ideal to F and vice versa.
Maximal filter is called ultrafilter and its dual ideal is
maximal as well (and vice versa). U is an ultrafilter if
and only if for every A ⊂ N either A ∈ U or N \ A ∈ U .
Let U be an ultrafilter andM its dual ideal. Then for
every A ⊂ N exactly one of the sets A,N \ A belongs to
U and the other one belongs toM. Consequently both
measures µU and µM coincide, thus they are additive.
Moreover, all additive {0,1}-measures are of such kind.
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Asymptotic density measures

For a set A ⊂ N the numbers

d(A) = lim inf
n→∞

|A ∩ {1,2, . . . ,n}|
n

and
d(A) = lim sup

n→∞

|A ∩ {1,2, . . . ,n}|
n

are called the lower and upper asymptotic density of
the set A, respectively. If d(A) = d(A) we call this
common value d(A) asymptotic density.
d is a subadditive measure and d is a superadditive
and intersective measure. We will see that
convergence with respect to d coincides with the
statistical convergence, hence it has “nice” properties.
Convergence with respect to d is strange.
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Convergence with respect to d

Recall that a sequence x = (xn) in a metric space
statistically converges to a point x0 (i.e. x stat−→ x0) if and
only if for every ε > 0, denoting

Lε = {n ∈ N | d(xn, x0) < ε}, Gε = {n ∈ N | d(xn, x0) ≥ ε},

we have d(Gε) = 0, i.e.

d(Lε) = 1.

This shows that that

x stat−→ x0 ⇐⇒ x
µd→ x0,

i.e. convergence with respect to d and statistical
convergence coincide.
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Convergence with respect to d

There are sequences x = (xn) in [0,1] (the so called

maldistributed sequences) such that xn
d→ a holds for

every a ∈ [0,1]. An example of such sequence is
({log log n}), the sequence of fractional parts of
log log n.
Although [0,1] is a compact space, there are
sequences x in [0,1] such that

Ld(x,a) = 0

for every a ∈ [0,1]. For example every uniformly
distributed sequence in [0,1] has this property. But
here we have to note that in this example d can be
replaced by d .
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Uniformly distributed sequences

A sequence x = (xn) in [0,1] is called uniformly
distributed (u.d.) if

d({n ∈ N | xn ∈ [a,b)}) = b − a

holds for every interval [a,b) ⊂ [0,1].
Thus, if x is u.d., then for all x0 ∈ [0,1] and ε > 0 we
have

d({n ∈ N | xn ∈ (x0 − ε, x0 + ε)}) = 2ε,

consequently

Lµd (x, x0) = Lµd
(x, x0) = 0.
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Pairs of dual measures

Let µ be a measure on N. The measure µ∗ defined by

µ∗(A) = 1− µ(N \ A), A ⊂ N

is called the dual measure to µ. Note that (µ∗)∗ = µ.
If µ is submodular then µ∗ is supermodular and µ ≥ µ∗,
hence also

Lµ(x, x0) ≥ Lµ∗(x, x0)

for all sequences x and points x0 in a metric space.
Let I be an ideal of subsets of N and let F be its dual
filter. Then µI and µF form a pair of dual measures.
Here µI is submodular and µF is supermodular, hence
µI ≥ µF .
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Pairs of dual measures

If µ is subadditive then µ∗ is intersective (be careful, not
necessary superadditive! ) and µ ≥ µ∗, hence also

Lµ(x, x0) ≥ Lµ∗(x, x0)

for all sequences x and points x0 in a metric space.
Also d and d form a pair of dual measures where the
first one is subadditive, the second one is intersective
(also superadditive) and d ≥ d .
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Uniqueness of limits

One of the most important property of limit is its
uniqueness in Hausdorff, hence metric spaces. In our
case we have the following more general theorem.

Theorem

Let µ be a superadditive measure on N and x = (xn) a
sequence in X. Then∑

x0∈X

Lµ(x, x0) ≤ 1.
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Uniqueness of limits

Corollary

Let µ be a superadditive measure on N. Then each
sequence in X has at most one µ-limit.

Note that additive measures are superadditive, thus
both statements hold for all additive measures. Also
note that both statements can be applied in the case of
µF where F is a filter. We have already seen that the
standard convergence is the special case of
convergence with respect to the filter Cof. The above
Corollary shows that our results generalize the
standard ones.
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Convergence of subsequences

If x is a sequence and A ⊂ N then by xA we denote the
subsequence of x with indices in A. By TLuk we denote
the Łukasiewicz t-norm, i.e. the binary operation on
[0,1] defined by

TLuk(a,b) = max{0,a + b − 1}

for all pairs (a,b) ∈ [0,1]2.

Theorem

Let µ be an intersective measure on N, let x = (xn) be a
sequence in X and A ⊂ N. Then for every x0 ∈ X the
inequalities

TLuk(Lµ (x, x0), µ(A)) ≤ Lµ (xA, x0) ≤ min{Lµ (x, x0), µ(A)}.

hold.



Limit with
respect to a
measure on

N

L. Mišı́k
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Convergence of subsequences

Corollary

Let µ be an intersective measure on N, let x = (xn) be a
sequence in X and A ⊂ N. If x µ→ x0 then

Lµ (xA, x0) = µ(A).

Corollary

Let µ be an intersective measure on N, let x = (xn) be a
sequence in X such that x µ→ x0 and let A ⊂ N be such that
µ(A) = 1. Then

xA
µ→ x0.
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Preservation of operations

Theorem

Let µ be an intersective measure on N, let x = (xn),y = (yn)
be two real sequences and A ⊂ N, Let ∗ be any of
operations of addition, substraction, multiplication or division
(except by 0). Then for every real x0 and y0 the inequality

Lµ (x ∗ y, x0 ∗ y0) ≥ TLuk(Lµ (x, x0), Lµ (y, y0)) (1)

holds.

Note that each additive measure is also intersective,
hence the Theorem is valid for all additive measures as
well as for all supermodular measures.
Consequently, in the special case of additive or
supermodular {0,1}- measures we obtain the standard
result.
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Convergence in compact spaces

Theorem

Let µ be a subadditive {0,1}-measure and let (X ,d) be a
compact metric space. Then each sequence has a limit.

The condition of being {0,1}- measure is substantial.

Corollary

Let µ be an additive {0,1}-measure and let (X ,d) be a
compact metric space. Then each sequence has a unique
limit.

Remark The last corollary is well known. As the only
additive {0,1}-measures are of the form µU for an
ultrafilter U (see the last slide {0,1}-measures), it says
that every sequence in compact metric space has a
unique limit along an ultrafilter.
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Sequences with infinitely many positive
degrees of convergence

Example For every n ∈ N denote by i(n) the largest
power of 2 such that n is divisible by 2i(n). Note that
i(n) = 0 for all odd positive integers. Now define the
sequence x = (xn) by

xn = 2−i(n)−1.

One can easily check that
Ld(x,2

−k ) = Ld(x,2−k ) = 2−k > 0 for all positive
integers k . This shows that the set of points at which
the degree of convergence is positive can be infinite
also for superadditive measures, e.g. the measure d .
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Sequences with arbitrary prescribed degree
of convergence

Example Let α ∈ (0,1), let (X ,d) be a metric space,
x0 6= y0 be two different points in X and (pn) be a
sequence in X converging to x0. Define xn = pk if
n = b k

αc for some k ∈ N, otherwise put xn = y0.
Each neighbourhood of x0 contains terms
xb k0+1

α
c, xb k0+2

α
c, . . . for some k0 ∈ N. Thus

d({n ∈ N| d(xn, x0) < ε}) = lim
n→∞

n

b k0+n
α c

= α

for every ε > 0, proving

Ld((xn), x0) = Ld((xn), x0) = α.
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