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Introduction

I will use natural units in which the speed of light is unity.
Einstein notation - Any index in a single term that appears twice
once as a subscript and once as a superscript, implies summation
of that term over all the values of the index.

Example

If α can range over the set {0, 1, 2, 3} then we have

xαx
α = x0x

0 + x1x
1 + x2x

2 + x3x
3.



Introduction

Minkowski spacetime

We shall call Minkowski spacetime the 4-tuple (E , g, I+, ϵ) where:
E is an affine space of dimension four over R, the underlying
vector space being denoted by E and E is called spacetime and
its elements are called events,
g is a bilinear form on E that is symmetric, nondegenerate and
has the signature (+,−,−,−) and g is called the pseudometric
tensor,
I+ is one of the two sheets of g’s null cone, called the future
null cone,
ϵ is a four-linear form on E that is antisymmetric and results in
±1 when applied to any basis that is orthonormal with respect
to g and ϵ is called the Levi–Civita symbol associated with the
pseudometric g.



Introduction

The signature (+,−,−,−) prevents g to be positive definite. The
scalar product of a vector v with itself can take any sign and be null
without v being zero. Accordingly, the vectors are classified in three
types (apart from the zero vector). A vector v ∈ E is said:

timelike if and only if g(v, v) > 0,
spacelike if and only if g(v, v) < 0,
null or lightlike if and only if v ̸= 0 and g(v, v) = 0.

Massive particle

Any massive particle is represented by a piecewise twice continuously
differentiable curve L (worldline) of Minkowski spacetime such that
any vector tangent to L is timelike.



Intoduction

Proper time

If A and B are two events of some worldline L of a given massive
particle and if ϕ is a parametrization of L such that A = ϕ(λ1) and
B = ϕ(λ2), we set

τ(A,B) =

∫ λ2

λ1

√
g(v(λ), v(λ))dλ

where τ(A,B) is proper time between events A and B along a
worldline L and v is the tangent vector field associated with the
parametrization ϕ. Proper time does not depend on the choice of
the parametrization. On the other hand, it depends on the worldline
connecting A to B .



Introduction

Clock hypothesis

The clock hypothesis asserts that an ideal clock measures its proper
time.This means that the number of consecutive cycles registered by
the clock increases steadily with the affine parameter of the worldline
of the clock’s center of mass.

Ideal clock

Purely mathematical construct, with its own intrinsic non-quantum
clocking mechanism, experiencing no fatigue and friction.



Definitions

Relativistic rotator

A relativistic rotator is a dynamical system described by position x
and a single null direction k and, additionally, by two parameters, m
(mass) and l (length).

Remark

The most general relativistically invariant action for a system de-
scribed by position x and null direction k has the following form:

S = −
∫

m
√

ẋẋf
(
− l2

k̇k̇
(kẋ)2

)
dλ, (1)

where λ is an arbitrary parameter, a dot denotes differentiation with
respect to λ and f is an arbitrary, non-constant, positive function.



Definitions

Fundamental dynamical system

A dynamical system described by a relativistically invariant action, is
said to be fundamental, if its both Casimir invariants of the Poincaré
group are parameters with fixed numerical values rather than arbi-
trary constants of motion.

Poincaré group

The Poincaré group is the group of Minkowski spacetime isometries.
It is a ten-dimensional Lie group.

Casimir operator

A Casimir invariant is a distinguished element of the center of the
universal enveloping algebra U(g) of a Lie algebra g.



Fundamental relativistic rotators

For action (1) we calculate the Noether constants of motion:

Pµ = pµ, (2)

Mµν = xµpν − xνpµ + kµπν − kνπµ. (3)

The momenta canonically conjugated with x and k are, respectively:

pµ = − ∂L

∂ẋµ
= m

[ ẋµ√
ẋαẋα

f (ξ)− 2
√
ẋαẋαkµ
kβ ẋβ

ξf ′(ξ)
]
, (4)

πµ = − ∂L

∂k̇µ
= 2m

√
ẋαẋα

k̇αk̇α
ξf ′(ξ)k̇µ, (5)

where

ξ = −l2
k̇αk̇

α

(kβ ẋβ)2
.



Fundamental relativistic rotators

Casimir invariants of the Poincaré group are:

C1 = PµP
µ = m2

[
f 2(ξ)− 4ξf (ξ)f ′(ξ)

]
, (6)

C2 = WµW
µ = −4m4l2ξf 2(ξ)[f ′(ξ)]2, (7)

where W µ = −1
2ϵ

µαβγMαβPγ is the Pauli-Lubański-Mathisson (space-

like) vector.



Fundamental relativistic rotators

By requiring that C1 = m2 and C2 = −1
4m

4l2 we get two differential
equations of the form:

f 2(ξ)− 4ξf (ξ)f ′(ξ)− 1 = 0, (8)

16ξf 2(ξ)[f ′(ξ)]2 − 1 = 0, (9)

It is worth to notice that equations (8) and (9) have a common
solution given by the formula

f (ξ) = ±
√

1 ±
√

ξ. (10)



Fundamental relativistic rotators

Hamilton’s action

There are only two relativistic rotators which are fundamental. Their
Hamilton’s action has the form

S = −
∫

m
√

ẋẋ

√√√√1 ±

√
−l2

k̇k̇
(kẋ)2

dλ. (11)

For those rotators:
C1 = m2, (12)

C2 = −1
4
m4l2. (13)



Lagrangian singularity

The basic equation for the calculus of variations is the Euler-Lagrange
equation. This equation in physics can be used to describe both
particles and fields. For systems with a finite number of degrees of
freedom, this equation has the form

d

dt

∂L

∂q̇µ
− ∂L

∂qµ
= 0. (14)

The Euler-Lagrange equations can be recast in the general form

Aµν q̇
ν + Hµν q̈

ν +
∂2L

∂t∂q̇µ
− ∂L

∂qµ
= 0, (15)

where Aµν = ∂2L
∂q̇µ∂qν and Hµν = ∂2L

∂q̇µ∂q̇ν .



Lagrangian singularity

Definition

We say that the Lagrangian L = L(q, q̇) is singular if:

det
[ ∂2L

∂q̇µ∂q̇ν

]
= 0. (16)



Lagrangian singularity

The singularity of the Lagrangian is geometric in nature and inde-
pendent of the choice of the coordinate system.

detH ′ = det
[ ∂2L

∂q̇′i∂q̇′j

]
= det

[ ∂

∂q̇′i

( ∂q̇l

∂q̇′j

∂L

∂q̇l

)]
=

= det
[ ∂

∂q̇′i

( ∂q̇l

∂q̇′j

) ∂L

∂q̇l
+

∂q̇k

∂q̇′i

∂q̇l

∂q̇′j

∂2L

∂q̇k∂q̇l

]
=

= det
[ ∂2q̇l

∂q̇′i∂q̇′j

∂L

∂q̇l
+

∂qk

∂q′i

∂ql

∂q′j

∂2L

∂q̇k∂q̇l

]
=

= det
[∂qk
∂q′i

∂ql

∂q′j

∂2L

∂q̇k∂q̇l

]
=

= det
[∂qk
∂q′i

]
det

[ ∂ql
∂q′j

]
det

[ ∂2L

∂q̇k∂q̇l

]
=

= J2 detH.

(17)



Lagrangian singularity

Due to the geometric nature of the concept of regularity, further cal-
culations will be made in the selected map without loss of generality.
We use Cartesian map for the space-time position and spherical an-
gels for the null direction, and the arbitrary parameter is chosen as
λ = t thus:

x(t) → [t, x , y , z ],

k(t) → [1, sin θ cosφ, sin θ sinφ, cos θ].



Lagrangian singularity

After introducing the matrix:

Ẋ =

ẋ
ẏ
ż

 , K =

sin θ cosφ
sin θ sinφ
cos θ

 , K̇ =

(
l θ̇2

lφ̇2 sin2 θ

)
,

(18)
the Lagrangian of any relativistic rotator is expressed by the formula

L = −m

√
1 − ẊT Ẋ f (ξ), (19)

where:

ξ =
K̇T K̇

(1 − KT Ẋ )2
. (20)



Lagrangian singularity

∂2L

∂K̇T∂K̇
= −2mξ

√
1 − ẊT Ẋ

K̇T K̇

[
f ′(ξ)I2 + 2ξf ′′(ξ)

K̇ K̇T

K̇T K̇

]
, (21)

∂2L

∂ẊT∂Ẋ
=

mf (ξ)√
1 − ẊT Ẋ

[
I3 +

Ẋ ẊT

1 − ẊT Ẋ
+ 2ξ

f ′(ξ)

f (ξ)

(KẊT + ẊKT

1 − KT Ẋ
+

−KKT (1 − ẊT Ẋ )

(1 − KT Ẋ )

[
2ξ

f ′′(ξ)

f ′(ξ)
+ 3

])]
,

(22)

∂2L

∂K̇T∂Ẋ
= −m

2ξf ′(ξ)
√

1 − ẊT Ẋ

K̇T K̇

[ −K̇ ẊT

1 − ẊT Ẋ
+ 2

(
ξ
f ′′(ξ)

f ′(ξ)
+ 1

) K̇KT

1 − KT Ẋ

]
. (23)



Lagrangian singularity

If we denote:

L1 =
∂2L

∂ẊT Ẋ
∈ M3×3(R), (24)

L2 = LT3 ∈ M3×2(R), (25)

L3 =
∂2L

∂K̇T Ẋ
∈ M2×3(R), (26)

L4 =
∂2L

∂K̇T K̇
∈ M2×2(R), (27)

then the Hesse matrix can be written in block form as follows

H =

(
L1 L2
L3 L4

)
∈ M5×5(R). (28)



Lagrangian singularity

For the matrix S =

(
A B
C D

)
, such that the matrices A,B,C ,D are

of n× n, n×m,m× n,m×m dimensions, respectively and a matrix
D is non-singular, the equality is true(

A B
C D

)(
In On×m

−D−1C Im

)
=

(
A− BD−1C B

Om×n D

)
, (29)

where Op×q denotes a zero matrix of dimension p × q. Calculating
determinant from the left and right side of equation (29) we obtain

detS = det(A− BD−1C ) detD (30)



Lagrangian singularity

det L4 = 4m2ξ2[f ′(ξ)]2
1 − ẊT Ẋ

(K̇T K̇ )2

[
1 +

2ξf ′′(ξ)
f ′(ξ)

]
, (31)

det(L1 − L2L
−1
4 L3) =

m3f 3(ξ)

(1 − ẊT Ẋ )
5
2

[
1 +

2ξ[f ′(ξ)]2

f (ξ)[f ′(ξ) + 2ξf ′′(ξ)]

]
.

(32)
In calculations, the Weinstein-Aronszajn identity det(Im + AB) =
det(In +BA), which holds for matrices A and B of dimension m× n
i n ×m respectively is used. The L−1

4 matrix was determined using
the Cayley-Hamilton method

L−1
4 =

1
det L4

[I2trL4 − L4]. (33)



Lagrangian singularity

For rotators described by the Lagrangian associated with the action
(1) the Hessian is expressed by the formula

detH =
4m5f 3(ξ)[f ′(ξ)]2

(
√

1 − ẊT Ẋ )3(1 − KT Ẋ )4

(
1 + 2ξ

f ′(ξ)

f (ξ)
+ 2ξ

f ′′(ξ)

f ′(ξ)

)
,

(34)
where Ẋ and K are the matrices of the spatial components of the
velocity vector and the null vector in a given map.



Lagrangian singularity

Zeroing out expression (34) leads to a differential equation of the
form

1 + 2ξ
( f ′(ξ)
f (ξ)

+
f ′′(ξ)

f ′(ξ)

)
= 0. (35)

The solution to the above equation is the function:

f (ξ) = a

√
1 ± b

√
ξ, (36)

where a and b are integration constants.



Lagrangian singularity

Conclusion

When the Hessian matrix is singular, it is not invertible and there-
fore, the accelerations cannot be uniquely determined from the ac-
tual positions and velocities, at any instant of time. In other words,
given positions and velocities, an infinite number of accelerations is
available, from which the system can choose at each stage of its
movement.



Thank you for your
attention!
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