
The algebraic and geometric classification of nilpotent
(binary, mono) Leibniz algebras

Kobiljon Abdurasulov

University of Beira Interior,
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Introduction

One of the classical problems in the theory of non-associative algebras is
to classify (up to isomorphism) the algebras of dimension n from a certain
variety defined by some family of polynomial identities. It is typical to focus
on small dimensions, and there are two main directions for the
classification: algebraic and geometric. Varieties as Jordan, Lie, Leibniz or
Zinbiel algebras have been studied from these two approaches.

The algebraic classification (up to isomorphism) of n-dimensional algebras
from a certain variety defined by a certain family of polynomial identities is
a classic problem in the theory of non-associative algebras. There are many
papers devoted to algebraic classification of small-dimensional algebras in
several varieties of associative and non-associative algebras.

An algebra A is called a Leibniz algebra if it satisfies the following
identity:

(xy)z = (xz)y + x(yz).
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Binary and mono Leibniz algebras

Let Ω denote the algebras defined by a family of polynomial identities,
then we say that an algebra A ∈ Ωi if and only if each i-generated
subalgebra of A gives an algebra from Ω. In particular, if A ∈ Ω1, then A is
a mono-Ω algebra, if A ∈ Ω2, then A is a binary-Ω algebra.

For example, let Ass be the class of associative algebras, then by Artin’s
theorem, the class Ass2 coincides with the class of alternative algebras.
Albert’s theorem follows that the class Ass1 coincides with the class of
power-associative algebras.

It is easy to see that Lie1 coincides with anticommutative algebras, i.e.,
they satisfy the identity x2 = 0. The algebraic theory of binary Lie algebras
was developed in some papers by Kuzmin, Filippov, and Grishkov. So,
Kuzmin proved Engel’s theorem for binary Lie algebras. Recently, defining
identities for mono and binary Zinbiel algebras have been described1.

1Ismailov N., Mashurov F., Smadyarov N., Journal of Algebra and its Applications,
(2023)
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Binary and mono Leibniz algebras

A concept of compatible algebras is the sum of two algebras belonging to
Ω. Multiplications of both algebras is Ω and the sum of those algebras has
an Ω multiplication as well. For example, an associative compatible algebra
is two multiplications - each multiplication is associative and their sums
also give an associative multiplication. So here’s the question:

1 take a variety of algebras - look at their compatible algebras -
construct binary ones of this variety;

2 take a variety of algebras - construct a binary variety - construct their
compatible algebras.
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Binary and mono Leibniz algebras

Below we introduce the notations.

J (x , y , z) = [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ]

L(x , y , z) = (xy)z − x(yz) + y(xz).

Definition
Let (A, [−,−]) be an anticommutative algebra. Then (A, [−,−]) is a
Malcev algebra if the following is true

J (x , y , [x , z ]) = [J (x , y , z), x ].

Definition
A complex vector space is called a binary Leibniz (binary Lie) algebra if
every two-generated subalgebra is a Leibniz (Lie) algebra. A complex vector
space is called a mono Leibniz (mono Lie) algebra if every one-generated
subalgebra is a Leibniz (Lie) algebra.
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Binary and mono Leibniz algebras

In the work of A.T. Gainov 2 it is proved that the algebra A is binary Lie
if and only if it holds the identities

[x , x ] = 0, J (x , y , [x , y ]) = 0.

Every Lie algebra is a Malcev algebra and every Malcev algebra is a
binary Lie algebra. Since the Leibniz algebras are noncommutative
generalizations of Lie algebras, it follows that every binary Lie algebra is a
binary Leibniz algebra. Every Leibniz algebra is a binary Leibniz algebra and
every binary Leibniz algebra is a mono Leibniz algebra. Moreover, every
mono Lie algebra is a mono Leibniz algebra.

2Gainov A.T., Uspekhi Mat. Nauk, 1957.
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Binary and mono Leibniz algebras

The inclusion diagram looks as follows 3:

Lie $ Malc $ Lie2 $ Lie1

$ $ $ $

Leib $ ? $ Leib2 $ Leib1

Here, an unknown algebraic variety was studied by Dzhumadil’daev, who looked
for algebras that satisfy several conditions, but could not find them.

Kazin and Yeskendir found an algebra defined by the following identities:

L(x , y , xz)− L(x , y , z)x = 0.

This algebra was called the N algebra. They also showed that this relation holds
for N algebras.

Lie $ Malc $ Lie2 $ Lie1

$ $ $ $

Leib $ N $ Leib2 $ Leib1
3Ismailov N., Dzhumadil’daev A., Mathematical Notes, (2021)
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Examples

Example 1. Non-N , but Binary Leibniz algebra:

e1e2 = e4, e1e3 = e1, e2e3 = e2.

Example 2. Non Leibniz but a N algebra:

e1e2 = −e1, e1e3 = e4, e4e2 = e4, e3e2 = −e3.

Example 3. Non binary Lie but a binary Leibniz algebra:

e1e1 = e2.

Example 4. Non Leibniz but a binary Leibniz algebra:

e1e2 = e3, e1e4 = e1, e2e4 = e2, e3e4 = −e3.

Example 5. Non mono Lie but a mono Leibniz algebra:

e1e1 = e2, e4e4 = e2, e1e2 = e3.
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Binary and mono Leibniz algebras

Ismailov N., Dzhumadil’daev A.4 proved that the algebra A is binary
Leibniz if and only if it satisfies the identities

L(x , y , z) + L(y , x , z) = 0, L(x , y , z) + L(z , y , x) = 0,
L(x , y , zt) + L(x , t, zy) + L(z , y , xt) + L(z , t, xy) = 0.

The algebra A is mono Leibniz if and only if it satisfies the identities 5

L(a, a, a) = 0, L(aa, a, a) = 0.

By using linearization for these identities

L(x , y , z) + L(y , x , z) + L(y , z , x) + L(x , z , y) + L(z , x , y) + L(z , y , x) = 0,
L(xy , z , t) + L(xy , t, z) + L(xz , y , t) + L(xt, y , z) + L(xz , t, y) + L(xt, z , y)+
L(yx , z , t) + L(yx , t, z) + L(zx , y , t) + L(tx , y , z) + L(zx , t, y) + L(tx , z , y)+
L(yz , x , t) + L(yt, x , z) + L(zy , x , t) + L(ty , x , z) + L(zt, x , y) + L(tz , x , y)+
L(yz , t, x) + L(yt, z , x) + L(zy , t, x) + L(ty , z , x) + L(zt, y , x) + L(tz , y , x) = 0.

4Ismailov N., Dzhumadil’daev A., Mathematical Notes, (2021)
5Gainov A.T., Algebra Logic, (2010)
Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 10 / 29
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4Ismailov N., Dzhumadil’daev A., Mathematical Notes, (2021)
5Gainov A.T., Algebra Logic, (2010)
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Binary and mono Leibniz algebras

From the definition of binary Leibniz algebras we can conclude the following:

There are no nontrivial 1-dimensional nilpotent binary Leibniz (Mono
Leibniz) algebras.

Two-dimensional and three-dimensional nilpotent binary Leibniz (Mono
Leibniz) algebras are Leibniz algebras.

Two-generated binary Leibniz algebras are Leibniz algebra.

A binary Leibniz (Mono Leibniz) algebra L, such that for L3 = 0, is a
Leibniz algebra.

Thus, non-Leibniz binary Leibniz algebras should be at least three generated.
Consequently, we have that any nilpotent binary Leibniz algebra with a dimension
less than five is a Leibniz algebra.
Thus, we conclude that any nilpotent non-Leibniz mono Leibniz algebra has at

least two generators and L3 6= 0. Consequently, we have that any nilpotent mono
Leibniz algebra with a dimension less than four is a Leibniz algebra.
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Classification theorem for 5-dimensional nilpotent Leibniz
algebras

The algebraic classification of complex 5-dimensional nilpotent Leibniz
algebras consists of three parts:

1. 5-dimensional algebras with identity xyz = 0 (also known as 2-step
nilpotent algebras) are the intersections all varieties of algebras defined
by a family of polynomial identities of degree three or more; for
example, they are in the intersection of associative, Zinbiel, Leibniz,
etc, algebras. All these algebras can be obtained as central extensions
of zero-product algebras. (Geometric classification 6.)

6M. Ignatyev, I. Kaygorodov, Y. Popov, Revista Matematica Complutense (2021)
Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 12 / 29



Classification theorem for 5-dimensional nilpotent Leibniz
algebras

The algebraic classification of complex 5-dimensional nilpotent Leibniz
algebras consists of three parts:

1. 5-dimensional algebras with identity xyz = 0 (also known as 2-step
nilpotent algebras) are the intersections all varieties of algebras defined
by a family of polynomial identities of degree three or more; for
example, they are in the intersection of associative, Zinbiel, Leibniz,
etc, algebras. All these algebras can be obtained as central extensions
of zero-product algebras. (Geometric classification 6.)

6M. Ignatyev, I. Kaygorodov, Y. Popov, Revista Matematica Complutense (2021)
Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 12 / 29



Classification theorem for 5-dimensional nilpotent Leibniz
algebras

The algebraic classification of complex 5-dimensional nilpotent Leibniz
algebras consists of three parts:

1. 5-dimensional algebras with identity xyz = 0 (also known as 2-step
nilpotent algebras) are the intersections all varieties of algebras defined
by a family of polynomial identities of degree three or more; for
example, they are in the intersection of associative, Zinbiel, Leibniz,
etc, algebras. All these algebras can be obtained as central extensions
of zero-product algebras. (Geometric classification 6.)

6M. Ignatyev, I. Kaygorodov, Y. Popov, Revista Matematica Complutense (2021)
Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 12 / 29



Classification theorem for 5-dimensional nilpotent Leibniz
algebras

2. 5-dimensional nilpotent symmetric Leibniz (non-2-step nilpotent)
algebras, which are central extensions of nilpotent Lie algebras with
non-zero product of a smaller dimension, are given in 7.

3. 5-dimensional nilpotent non-symmetric Leibniz algebras are given
above and summarized in Theorem (1) (see below).

Theorem (1)
Up to isomorphism, there are infinitely many isomorphism classes of
complex 5-dimensional nilpotent (non-symmetric) Leibniz algebras,
described explicitly in terms of 2 two-parameter families 18 one-parameter
families and 62 additional isomorphism classes.

7Alvarez M.A., Kaygorodov I., Journal of Algebra (2021).
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Theorem (2)
Let B be a complex 5-dimensional nilpotent binary Leibniz algebra. Then B is a
Leibniz algebra or isomorphic to one algebra from the following list:

B01 : e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e3 = −e5
B02 : e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e3 = −e5 e4e4 = e5
B03 : e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e1 = e5 e4e3 = −e5
B04 : e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e1 = e5 e4e3 = −e5 e4e4 = e5
B05 : e1e2 = e3 + e5 e2e1 = −e3 e3e4 = e5 e4e3 = −e5
B06 : e1e2 = e3 + e5 e2e1 = −e3 e3e4 = e5 e4e1 = e5 e4e3 = −e5
B07 : e1e2 = e3 + e5 e2e1 = −e3 e3e4 = e5 e4e3 = −e5 e4e4 = e5
B08 : e1e2 = e3 + e5 e2e1 = −e3 e3e4 = e5 e4e1 = e5 e4e3 = −e5 e4e4 = e5
Bα

09 : e1e2 = e3 + e5 e2e1 = −e3 e3e4 = e5 e4e1 = e5
e4e2 = e5 e4e3 = −e5 e4e4 = αe5

B10 : e1e1 = e5 e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e3 = −e5
B11 : e1e1 = e5 e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e3 = −e5 e4e4 = e5
Bα

12 : e1e1 = e5 e1e2 = e3 e2e1 = −e3 e3e4 = e5
e4e1 = e5 e4e3 = −e5 e4e4 = αe5

B13 : e1e1 = e5 e1e2 = e3 e2e1 = −e3 e3e4 = e5 e4e2 = e5 e4e3 = −e5
B14 : e1e1 = e5 e1e2 = e3 e2e1 = −e3 e3e4 = e5

e4e2 = e5 e4e3 = −e5 e4e4 = e5
Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 14 / 29



The algebraic classification of 4-dimensional nilpotent mono
Leibniz algebras

Theorem (3)
Up to isomorphism, there are infinitely many complex 4-dimensional nilpotent
(non-binary Leibniz) mono Leibniz algebras, described explicitly in terms of 10
one-parameter families and 12 additional isomorphism classes.

M01 : e1e1 = e2 e2e3 = e4
M02 : e1e1 = e2 e2e3 = e4 e3e1 = e4
Mα

03 : e1e2 = e3 e1e3 = αe4 e2e1 = −e3 e3e1 = (1− α)e4
Mα

04 : e1e2 = e3 e1e3 = αe4 e2e1 = −e3 e2e2 = e4 e3e1 = (1− α)e4
M05 : e1e2 = e3 e2e1 = −e3 e2e3 = e4 e3e1 = e4 e3e2 = −e4
M06 : e1e2 = e3 e2e1 = −e3 e2e2 = e4

e2e3 = e4 e3e1 = e4 e3e2 = −e4
M07 : e1e2 = e3 e2e1 = −e3 e3e3 = e4
M08 : e1e2 = e3 + e4 e2e1 = −e3 e3e3 = e4

M09, Mα
10, M11, . . . M19, M20, M21, M22.

Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 15 / 29



Classification of 4-dimensional nilpotent algebras with
nil-index 3

An element x ∈ A is called nilpotent, if there is an integer r ≥ 1 such
that x r = 0. If any element in A is nilpotent, then A is called a nil-algebra.
Now A is called a nil-algebra of nil-index n ≥ 2, if yn = 0 for all y ∈ A and
there is x ∈ A such that xn−1 6= 0.

1 A Lie algebra is a nil-algebra with nil-index 2.
2 A symmetric Leibniz algebra is a nil-algebra with nil-index 3.
3 A dual alternative algebras is a nil-algebra with nil-index 3.
4 Commutative nil-algebras with nil-index 3 are Jordan algebras.
5 Any finite-dimensional Jordan nil-algebra is nilpotent. 8

6 The intersection of left mono Leibniz and right mono Leibniz algebras
gives the variety of nil-algebras of nil-index 3. 9

8Schafer R.D., Academic Press (1966).
9Benayadi S., Kaygorodov I., Mhamdi F., Communications in Algebra, (2023)
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Classification of 4-dimensional nilpotent algebras with
nil-index 3

Theorem (4)
Let n be a complex 4-dimensional nilpotent algebra of nil-index 3. Then n is a
2-step nilpotent algebra or isomorphic to one algebra from the following list:

Abdurasulov K. (UBI) Non-Associative Day in Mulhouse 13.12.2023 17 / 29



Geometric classification

The degenerations between the (finite-dimensional) algebras from a certain
variety V defined by a set of identities have been actively studied in the past
decade. The description of all degenerations allows one to find the so-called rigid
algebras and families of algebras, i.e., those whose orbit closures under the action
of the general linear group form irreducible components of V (with respect to the
Zariski topology).

Let T be a set of polynomial identities. The set of algebra structures on V
satisfying polynomial identities from T forms a Zariski-closed subset of the variety
Hom(V⊗V,V). We denote this subset by L(T ). The general linear group GL(V)
acts on L(T ) by conjugations:

(g ∗ µ)(x ⊗ y) = gµ(g−1x ⊗ g−1y)

for x , y ∈ V, µ ∈ L(T ) ⊂ Hom(V⊗ V,V) and g ∈ GL(V). Thus, L(T ) is
decomposed into GL(V)-orbits that correspond to the isomorphism classes of
algebras. Let O(µ) denote the orbit of µ ∈ L(T ) under the action of GL(V) and
O(µ) denote the Zariski closure of O(µ).
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Geometric classification

Let A and B be two n-dimensional algebras satisfying the identities from
T , and let µ, λ ∈ L(T ) represent A and B, respectively. We say that A
degenerates to B and write A→ B if λ ∈ O(µ). Note that in this case we
have O(λ) ⊂ O(µ).

Let A be represented by µ ∈ L(T ). Then A is rigid in L(T ) if O(µ) is
an open subset of L(T ). Recall that a subset of a variety is called
irreducible if it cannot be represented as a union of two non-trivial closed
subsets. A maximal irreducible closed subset of a variety is called an
irreducible component.
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In many cases, the irreducible components of the variety are determined by the
rigid algebras, i.e. algebras whose orbit closure is an irreducible component. It is
worth mentioning that this is not always the case and Flanigan had shown that
the variety of 3-dimensional nilpotent associative algebras has an irreducible
component which does not contain any rigid algebras. It is, instead, defined by
the closure of a union of a one-parameter family of algebras. Kaygorodov,
Khrypchenko, Lopes proved (2023) the following theorems

Theorem (5)
For any n ≥ 2, the variety of all n-dimensional nilpotent algebras is irreducible
and has dimension n(n−1)(n+1)

3 .

Theorem (6)
For any n ≥ 2, the variety of all n-dimensional commutative nilpotent algebras is
irreducible and has dimension n(n−1)(n+4)

6 .

Theorem (7)
For any n ≥ 2, the variety of all n-dimensional anticommutative nilpotent algebras
is irreducible and has dimension (n−2)(n2+2n+3)

6 .
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Geometric classification of 2 and 3 dimensional algebras

1 Two-dimensional pre-Lie algebras [Benes, Burde (2009)]
2 Two-dimensional algebras [Kaygorodov, Volkov (2019)]
3 Three-dimensional Novikov algebras [Benes, Burde (2014)]
4 Three-dimensional Jordan algebras [Gorshkov, Kaygorodov, Popov

(2019)]
5 Three dimensional Leibniz and anticommutative algebras [Ismailov,

Kaygorodov, Volkov (2019)]
6 Three-dimensional transposed Poisson algebras [Beites, Fernandez,

Kaygorodov (2023)]
7 Three-dimensional Hom-Lie algebras [Alvarez, Vera (2021)]
8 Three-dimensional Hom-Lie algebras [Fernández-Culma, Rojas (2023)]

The blue parts contain all possible degenerate. In the remaining parts,
only open components were found.
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Geometric classification of four dimensional algebras

1 4-dimensional Lie algebras [Burde, Steinhoff, (1999)]
2 4-dimensional Leibniz algebras [Ismailov, Kaygorodov, Volkov (2018)]
3 4-dimensional Zinbiel algebras [Kaygorodov, Popov, Pozhidaev, Volkov

(2018)]
4 4-dimensional nilpotent commutative algebras [Fernandez,

Kaygorodov, Khrypchenko, Volkov (2022)]
5 4-dimensional binary Lie algebras [Kaygorodov, Popov, Volkov, (2018)]
6 4-dimensional nilpotent Novikov algebras [Karimjanov, Kaygorodov,

Khudoyberdiyev (2019)]
7 4-dimensional nilpotent noncommutative Jordan algebras

[Jumaniyozov, Kaygorodov, Khudoyberdiyev (2021)]
8 4-dimensional nilpotent Poisson algebras [Abdelwahab, Barreiro,

Calderon, Ouaridi (2023)]
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Geometric classification of n ≥ 5 dimensional algebras

1 5-dimensional nilpotent Malcev algebras [Kaygorodov, Popov, Volkov,
(2018)]

2 5-dimensional nilpotent commutative CD-algebras [Jumaniyozov,
Kaygorodov, Khudoyberdiyev (2021)]

3 5-dimensional nilpotent symmetric Leibniz algebras [Alvarez,
Kaygorodov (2021)]

4 5-dimensional nilpotent associative algebras [Ignatyev, Kaygorodov,
Popov (2021)]

5 5-dimensional Zinbiel algebras [Alvarez, Junior, Kaygorodov (2022)]
6 6-dimensional nilpotent Lie algebras [Grunewald, O’Halloran, (1988)]
7 6-dimensional nilpotent Tortkara algebras [Gorshkov, Kaygorodov,

Khrypchenko (2020)]
8 6-dimensional nilpotent binary Lie algebras [Abdelwahab, Calderon,

Kaygorodov (2019)]
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Geometric classification of 5-dimensional nilpotent Leibniz
and binar Leibniz algebras

Theorem (8)
The variety of complex 5-dimensional nilpotent Leibniz algebras has
dimension 24 and it has 10 irreducible components (in particular, there is
only one rigid algebra in this variety).

Theorem (9)
The variety of complex 5-dimensional nilpotent binary Leibniz algebras has
dimension 24 and it has 10 irreducible components (in particular, there is
only one rigid algebra in this variety).
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Geometric classification of 4-dimensional nilpotent mono
Leibniz algebras

Theorem (10)
The variety of complex 4-dimensional nilpotent algebras of nil-index 3 has
dimension 15 and it has 2 irreducible components (in particular, there are
no rigid algebras in this variety).

Theorem (11)
The variety of complex 4-dimensional nilpotent mono Leibniz algebras has
dimension 15 and it has 3 irreducible components (in particular, there is
only one rigid algebra in this variety).
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Asymptotic estimates for components

Neretin Yu.A. proved the following theorems10.

Theorem (12)

The dimension of any Lien component does not exceed 2
27n

3 + O(n8/3).

Theorem (13)

The dimension of any Assn component does not exceed 4
27n

3 + O(n8/3).

Theorem (14)

The dimension of any Commn component does not exceed 2
27n

3 + O(n8/3).

10Neretin Yu.A., Izv. Akad. Nauk SSSR, Ser. Mat. (1987).
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Asymptotic estimates for components

Kashuba I., Shestakov I. proved the following theorems11.

Theorem (15)
Let Ω be an arbitrary family of non-isomorphic n-dimensional alternative
algebras over an algebraically closed field k . The dimension of any Ω
component does not exceed 4

27n
3 + O(n8/3).

Theorem (16)
Let Ω be an arbitrary family of non-isomorphic n-dimensional Jordan
algebras over an algebraically closed field k . The dimension of any Ω
component does not exceed 1

6
√
3
n3 + O(n8/3).

11Kashuba I., Shestakov I., Contemporary Mathematics (2009).
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Asymptotic estimates for components

Question. What is the dimension of the irreducible component in the set
of Hom nilpotent algebras?

Question. What are the asymptotic estimates for components of Leibniz
algebra?

Question. What are the asymptotic estimates for components of
Hom-variety algebras?
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