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Complex networks

Complex networks are ubiquitous:

Social networks

Biological networks

Computer networks

Communication networks

Electrocal networks

et cetera . . .

©Martin Grandjean
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Complex networks

Complex networks are closely related
to graphs.

However, while graphs are
deterministic objects, complex
networks are mostly studied using
statistical methods.

©Martin Grandjean
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Graphs

A weighted graph is described by a tuple

Γ = (V,E,w),

where V = {1, . . . , N} is the set of vertices,
E ⊂ V × V the set of edges,
w : E → R \ {0} the weighting function.

A weighted graph is said to be unsigned if the
weighting function maps to R+ and signed if w maps
to R \ {0}.

An important characteristic of a network is the degree distribution.

din(Γ) = {2, 2, 1, 1, 2}
dout(Γ) = {1, 2, 2, 2, 1}
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Degree distribution in complex networks

The degree distribution of most real
complex networks is described by a power
law:

X ∼ P(k) : f(x) = ax−k, k > 1.

In most cases, 2 < k < 3.

Some properties:

The mean is defined for k > 2.

Finite variance for k > 3.

Heavy tail, finite probability of
extreme events.
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Algebraic description

A weighted graph Γ is uniquely described by its
adjacency matrix A.

aij =

{
w(j, i), (i, j) ∈ E,

0, otherwise.

For the graph shown in Fig.:

A =


0 1 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
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Elementary algebraic operations

Define 1 = [1, 1, . . . , 1]T to be the column vector of all ones. Then,

dout =1T ·A

din =A · 1.

Furthermore, we define the square matrices Dout = diag(dout) and
Din = diag(din).
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Ranking of nodes in a graph

The problem of ranking consists in determining the relative weight or
importance of each node in a network based upon the structure of node’s
connections.

We distinguish two characteristics of a vertex: a score and a rank.

The scoring function s : V → R assigns to each node a real value that
characterizes its importance.

The ranking function r : V → N assigns to each node its position in the
hierarchy (rank of the most important node equals 1).
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Scoring function: properties

We will concentrate on considering scores. Any particular scoring scheme is
required to fulfill some natural properties:

1 Be uniquely defined.

2 Generate non-negative scores.

Problem: there is no ground truth.

Possible directions:

Axiomatic characterization of scoring (ranking).

General properties: existence, uniqueness, convergence.

Specific properties: behavior under structured perturbations, etc.

In the following, I will argue that many problems related to scoring nodes
can be formulated and analyzed in a linear-algebraic context.
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Intuition behind the scores

Let si be the score of the ith node. Suppose that
each node ”shares” its score with all nodes, to which
it has outbound connections.

For instance, s1 = s2 + s4, s2 = s1 + s5, etc.

Using the previously defined adjacency matrix, these
relations can be written succinctly as

As = s, (∗)

where s is the column vector of individual scores.

The equation (∗) amounts to finding the eigenvector of A corresponding to a
unit eigenvalue. However, there is no guarantee that such eigenvalue exists.
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First remedy: normalization

To overcome this difficulty, we assume that the score
is being split equally between all outbound nodes.

Thus, we modify the adjacency matrix by dividing
the weights of outgoing arcs by the respective
out-degrees:

Anorm = A
(
Dout)−1

=


0 1

2
0 1

2
0

1 0 0 0 1
0 1

2
0 0 0

0 0 1
2

0 0

0 0 1
2

1
2

0


Anorm is a column stochastic matrix.

The modified problem

Anorms = s

always has a solution (why?), which is referred to as
the eigenvector centrality score.
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Eigenvector centrality: pro and contra

The eigenvector centrality scheme is used in many
applications.

However, it has several drawbacks:

Can yield multiple scores (= not unique)

Is not defined if there are ”dangling” nodes (i.e.,
nodes without outgoing connections).

We need a mathematical instrument to analyse such
problems in a systematic way.

The main tool is the Perron-Frobenius th. and its
friends, e.g., Gershgorin’s circle th.

...

Eigenvector centrality has a unique and well defined
solution if the underlying directed graph is connected.
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Further improvement: PageRank

The problem with EC is that the matrix Anorm is
only non-negative. Hence, it has to satisfy some
additional properties (be irreducible ⇔ graph be
connected).

Let’s approach this problem from a different side and
make the matrix positive! Define

APR = αAnorm + (1− α)
1

n
J,

where n = |V |, J = 1 · 1⊤, and α ∈ (0, 1) (α = 0.85).

The PageRank score is defined as the solution to

APR s = s.

This solution always exists and is unique.
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Comparison: PageRank vs. Eigenvector centrality
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Interpretation: PageRank

The PageRank algorithm can be neatly interpreted
in terms of a Markov chain. Consider the transition
matrix

APR = αAnorm + (1− α)
1

n
J,

The elements of Anorm describe the probability of
moving from node i to node j ∈ OUT (i), while the
second term describes the probabilities of a random
transition from node i to a random node with equal
probability.

The PageRank score is thus the stationary
distribution of the considered MC.
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An alternative approach: HITS

In the HITS algorithm, a node i is associated with two values: a
non-negative authority score ui, and a non-negative hub score hi.

The hub score describes the property of a node to be connected to
authoritative nodes.

The authority score indicates that the node is pointed at by many hubs.

Formally, this can be written as

ui =
∑

j∈IN(i)

w(j, i)hj and hi =
∑

j∈OUT (i)

w(i, j)uj

or, in a vector-matrix form, as

u = Ah and h = A⊤u.

whence we immediately get the expression for u:

u = AA⊤u.
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HITS: the problem and the remedy

In u = AA⊤u, AAT is a row Gramian matrix. It has many nice properties,
but, in general, 1 /∈ Λ(AAT ). Hence, there is no immediate solution to this
problem.

In the original work, the vectors u and h were normalized during the
computation:

u =
Ah

∥Ah∥ and h =
A⊤u

∥A⊤u∥ .

We consider a different scheme, in which the respective vectors are
normalized to stochastic ones:

u = Ah (1⊤Ah)−1 and h = A⊤u (1⊤A⊤u)−1.

By eliminating h from the above we get an expression for u:(
u1⊤ − I

)
AA⊤u = 0.
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PageRank vs. Eigenvector centrality vs. HITS
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Signed graphs

In unsigned graphs, the adjacency matrix describes
the structure of communications
between the nodes.

In signed graphs, there is a two-level informational
hierarchy: the communication
structure + the information about
the relation between the vertices:
either positive or negative.

This implies that we cannot any longer consider the signed network as an
inert medium, navigated by some “surfer”, but rather as an interconnection
of active actors.



Introduction Scoring schemes Signed graphs

Exponential ranking

The idea of ER consists in computing two score-like vectors:

the stochastic vector of probabilities (trust probabilities), and

the true scoring vector (reputation values).

The probability vector pEXP results from the fixed point equation

p =
exp

(
1
µ
Ap

)
∥∥∥exp( 1

µ
Ap

)∥∥∥
1

(EXP)

The scoring vector is defined as sEXP = ApEXP.

Note that the r.h.s. of (EXP) is the soft-max function, which has several
useful properties: 1) it is monotone; 2) it maps R to (0, 1). The latter
makes it ideal for computing probabilities from unstructured data.
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Signed graphs

Theorem (structured perturbation)

Let A ∈ RN×N be a signed adjacency matrix and pEXP ∈ Σ be the solution
of (EXP). The solution of (EXP) remains invariant with respect to the
following linear transformation:

A′ = A+B (1)

where B = 1b⊤, and b is a non-zero vector, b ∈ RN \ {0}. Furthermore, the
transformation (1) preserves the ranking, i.e., rA(i) = rA′(i) for all i ∈ V .

This result implies that one can uniformly shift each individual’s evaluation
of everyone else and the overall ranking is preserved.

Furthermore, this implies that there is no substantial difference between the
negative and positive edges, given that all edges can be made either
positive or negative by an appropriate choice of the values of b.
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Quasi exponential ranking

The main drawback of exponential ranking is that it is non-linear.

Therefore, it was suggested1 to use a (partially) linearized scheme (EXP),
which we call quasi exponential ranking.

1⊤
[
1+

1

µ
Ap

]
p = 1+

1

µ
Ap. (qEXP)

This scheme has a unique solution p∗ if µ > max
aij≤0

|(aij)| (which agrees with

(EXP)). Furthermore, p∗ is the eigenvector of 1
µ
A+ J corresponding to the

spectral radius ρ
(

1
µ
A+ J

)
.

1Gromov D., Evmenova E. On the Exponential Ranking and Its Linear
Counterpart (2022) Studies in Computational Intelligence, 1015, pp. 260 - 270.
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Quasi exponential ranking: comparison

The following result remains valid for (EXP) and (qEXP). Recall that
s∗ = Ap∗ is considered to be the true scoring vector.

Let A be a signed adjacency matrix and p∗ be the vector of probabilities.
Both p∗ and s∗ = Ap∗ correspond to the same ranking of the vertices.
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Comparison of ranking schemes

Spearman’s footrule.

ρ =
n∑

i=1

|R(s1i)−R(s2i)|

Spearman’s rank correlation coefficient.

ρ =
cov(R(X),R(Y ))

σR(X)σR(Y )

,

Kendall’s τ : number of permutations needed to achieve the same order.

Bar-Ilan measure: an extention of Spearman’s footrule based upon the
idea that top nodes are more important then the nodes in the bottom.

n∑
i=1

(
1

R(s1i)
− 1

R(s2i)

)
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Quasi exponential ranking: numerical comparison

Erdős-Rényi graph with 500 nodes and parameter p ∈ {0.1, 0.2, ..., 1}:

Barabási–Albert graph with 500 nodes and parameter m ∈ {1, 2, ..., 10}:
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Quasi exponential ranking: numerical comparison

R-ary Tree graph with 500 nodes and parameter r ∈ {1, 2, ..., 10}:



Introduction Scoring schemes Signed graphs

Conclusion

The problem of network ranking is a fascinating subject with many
unsolved problems.

It can be analysed using algebraic, computational, and statistical
methods.

Its results are of great practical importance.
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Paldies!

Děkuji vám!
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