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Introduction
Rapid Growth in Stochastic Modelling:

Applications of SDEs have cross-disciplinary reach used in 

biological modelling, addressing issues such as population 

dynamics, drug kinetics, and the spread of epidemics.

Modelling thermal noise in electrical circuits, and economical 

processes like stock prices.

Advantages Over Deterministic Models:

Due to the ability of SDEs to model systems with inherent 

randomness capturing random fluctuations over time, 

especially those that are unpredictable.

Impact in Specific Fields:

Stochastic modelling has significantly impacted biology, with 

valuable findings in neuroscience, environmental sciences, 

telecommunications, quantum field theory, and finance 
where understanding random fluctuations is crucial.
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The factors that cause a species to go extinct or co-exit are crucial in population biology .Three different models 

considering avg. value of noise plus error to get to the best approximate comprehension in comparison to real 

life.
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Process:

1. A process is an event that evolved over time intending to achieve a goal.

2. Generally the time is from 0 to T

3. During this time events may be happening at various points along the way that may have an effect on the eventual value of the process.

Stochastic Process:

1. A process that can be described by the change of some random variable over time, which maybe discrete or continuous.

Random Walk:

1. A stochastic process that starts off with a score of 0.

2. At each discrete event ( fixed points in time ) there is a probability chance p of increase score by (+1) and a (1-p) chance of decrease 
score by 1.

3. The event happens T times. 0+T(p+(1-p)(-1))= (2p-1) T, p=0.75 (20times) then the value = 10.

Markov Process:

1. Particular type of stochastic process where only the present value of a variable is relevant for predicting the future.

2. The history of the variable and the way that the present has emerged from the past is irrelevant.

Martingale Process:

1. A stochastic process where at any time t the expected value of final value is the current value.

2. Formula E[X_T| X_t= x] = x ( expected final value is the value at the current time).Example a random walk with p = 0.5.

3. All Martinagles are Markovian.
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Brownian Motion

Significance of Wiener Process:

1. Wiener process, also known as Brownian Motion, is a crucial continuous-time stochastic process.

2. Originating from the observation of pollen grains' motion by the botanist Robert Brown, it has 
become a fundamental building block in complex models.

3. Introduced mathematically by Norbert Wiener in 1923, it is a key component in quantitative finance, 
especially in the Black-Scholes model.

Standard Brownian Motion Definition: A stochastic process, {Wt:  0 ≤ t ≤ ∞} is a standard Brownian 

motion if :

1. W0 = 0

2. It has continuous sample paths ( UNLIKE random walk discrete-time Markov process )

3. It has independent normally distributed increments.
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Brownian Motion

It is a Gaussian process, and any continuous-time stochastic process with independent increments and finite 

second moments is also a Gaussian process by the CLT.

A Wiener Process Wt has continuous sample paths and independent normally distributed increments with distribution 

Wt – Ws ~ N (0,t -s).  If 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 then Wt1 – Ws1 and Wt2– Ws2 are independent random variables.

Simulation and Properties of Brownian Motion:

1. Simulation of Brownian motion involves discretization and random variables following a normal distribution.

2. Brownian motion is continuous everywhere but nowhere differentiable, exhibiting fractal characteristics.

3. Properties, such as the autocovariance function, continuous sample paths, and variance proportional to elapsed 
time, distinguish Brownian motion in continuous time.
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Wiener Process with a drift
Consider dx = a dt + b dW(t)

dx the rate of change some variable x

adt models rate that grows with time ( exact )

dW(t) is the derivative of Wiener process ( implying randomness )

bdW(t) is a variable that might go up or down where b is the magnitude of this volatility

Where a and b ( makes the randomness bigger or smaller ) are constants

The dx= adt can be integrated to x = x0 + at , where x0 is the initial value and then if the time period is T , the 

variable increases by aT.

bdW(t) accounts for the noise or variability to the path followed by x. The amount of this noise or variablility

is b times a Wiener process
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Stochastic Differential Equations

Differential form and Integral form:

• The n-dimensional SDE has the form

dXt= a(Xt,t) dt+ b(Xt,t) dWt, X0=x0.
• The integral form of an SDE is represented by 

Xt= x0 + ∫a(Xs,s)ds + ∫b(Xs,t)dWs over 
the interval 0 ≤ t ≤ T.

• Ito’s Lemma supposes that the value of the 
variable x follows Ito’s process 
dx=a(x,t)+b(x,t)dwt where a and b are functions 
of x and t where the drift rate is a and the 
variance is b^2.

• Then any function G of x and t follows the 
process of Ito’s formula.

Ito's Formula and Mathematical Framework:

• dG= ( ∂G/ ∂x a + ∂G/ ∂t +1/2 ∂2G/(dx)2 b^2)dt + (∂G/ ∂x)b dW

• And thus G also follows an Ito process with Ito drift and 
variance ((∂G/ ∂x)b )^2b^2

• It involves F(t)-adapted integrable and square integrable 
processes, providing a differential expression for functions 
involving stochastic processes.

• SDE is a differential equation with one or more terms 
represented by stochastic processes, where the solution is also 
a stochastic process.
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Geometric Brownian Motion

Application to Linear Stochastic Differential Equation (SDE):

• dX(t)= λX(t) dt + μX(t) dW(t), 

• λX(t) drift coeff. term with λ expected return rate (growth)

• μX(t) stochastic component with μ volatility coeff. (standard deviation of the variables returns) 

• dW(t) wp increment ( random fluctuations )

• λX(t)dt  = deterministic growth

• μX(t)dW(t) = random fluctuations

• Using Ito’s Lemma we solve to get the solution:                 X(t)= X(0) exp(λ−1/2μ^2)t + μW(t)
• Stochastic process following geometric Brownian motion 

• Effective drift with deterministic growth and volatility induced drift.

• The equation describes the dynamics of the variable over time under the Black Scholes framework
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Euler Method

Euler–Maruyama Method for the Approximate Numerical Solution of a SDE:

• Numerical technique = is an extension of the Euler method for ODEs to SDEs

dXt= a(Xt,t) dt+ b(Xt,t) dWt, the with initial condition X0=x0.

Suppose we want to solve the SDE on some interval of time [0,T] using discrete time steps. Then the EM 

approx. to the true solution is the Markov chain Y defined as follows:

• Partition the interval [0,T] into N equal subintervals of width Δt > 0

• 0= τ0 <τ1<……..<τN = T , Δt =T/N 
• Set Y0 = X0
• Recursively define Yn for 0 ≤ n ≤ N-1 by 

Yn+1=Yn  +a(Yn, τN) Δt + b(Yn, τN) ΔWn

ΔWn =W(τn+1 )−W(τn).

The random variables ΔWn are independent and identically distributed normal random variables with expected 
mean zero and variance Δt
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Simulation by Euler-Maruyama Method

Comparison and Error Analysis

• Euler Method is applied with a step size Δt=Rδt, where R=4.
• The SDE considered has parameters λ=2, μ=1, and initial condition 

X(0)=1.
• The discretized Brownian path over the interval [0,1] is computed 

with a step size of δ=2^ -8, and the true solution Xtrue is 
evaluated.

• Discrepancy between the exact solution (Xtrue) and the Euler–
Maruyama (EM) solution at the endpoint t=T is computed as the 
error (err), yielding a value of 0.6907.

• Varying the step size Δt=Rδt with smaller R values of 2 and 1 
results in reduced endpoint errors of 0.1595 and 0.0821, 
respectively.

• The comparison and error analysis highlight the sensitivity of the 
Euler–Maruyama method to the chosen step size, influencing the 
accuracy of the numerical approximation.

Implementation and Parameter Setting:
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Lotka-Volterra Predator Prey Model



LV Deterministic

Illustrations depict a phase portrait and time series, 
showing cyclic dynamics of prey and predator 
populations over time.

Describes the dynamics between prey (x) and predator (y) 
populations with the system of equations :

Prey :          dx/dt= ax(t) − bx(t)y(t),
Predator:   dy/dt= −cy(t) + dx(t)y(t),

• Key parameters : a,b,c,d are positive constants.

• Highlights the interdependence of the populations, with 
cycles of growth and decline.

• New young being born Prey being eaten  

• Natural death Population growth from eating

Basic model with no environmental limit on the size of the 
population and any limit to the appetite of the predator. Set 
b=d=α , c=1 , a=2, α = 0 ( extinction)

dR = R(2 − αF)dt 
dF =  F(αR − 1)dt
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Stochastic Modeling Model 1

Langevin Approach:

• The model considers changes in populations (ΔR and 
ΔF)  or demographic variability over a small time 
interval Δt, represented by the system:

ΔR = R(t + Δt) − R(t),
ΔF = F(t + Δt) − F(t),

• Stochastic differential equations are derived based on 
expectations and covariances of the stochastic 
variables ΔR and ΔF, resulting in the system 

dR = R(2 − αF)dt +sqrt[R(2 + αF)]dW1(t),
dF = F(αR − 1)dt +sqrt[F(αR + 1)]dW2(t),

The model, governed by a single parameter α, describes 
the dynamics of two populations (R and F) with two 
independent Wiener processes dW1(t) and dW2(t).
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Stochastic Modeling Model 2:

As the environmental variability is introduced by 
modifying the parameters of the model, consider the
following modification of the parameter α
α → α + σ dW(t)/dt

where W(t) is a Brownian motion and σ ≥ 0 is a 
constant.
R(t) and F(t) represent the size of the population of
rabbits and foxes respectively, satisfying the stochastic 
differential system

dR = R(2 − αf)dt − σRFdW(t),
dF = F(αR − 1)dt + σRFdW(t),

where the term σRF represents the weighted contact 
term with noise intensity rate σ.
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Stochastic Modeling Model 3:

This model introduces distinct linear perturbations to 

the variations resulting in the following stochastic

System: 

dR = R(2 − αF)dt + σ1RdW1(t),

dF = F(αR − 1)dt + σ2FdW2(t),

where dW1(t),dW2(t) are two independent Wiener 
processes, the terms σ1R and σ2F represent the noise 
intensity rates for rabbits and foxes respectively.

σ1 and σ2 > 0
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ANALYSIS

There are important differences in their behaviors regarding their extinctions 

• Model 1 : both population extinguish in a reasonable time, obviously depending of the parameter α and the 

initial values of the populations.

• Model 2 : the mean extinction-time depends on new parameter σ, the white noise. For α =0.05 and a 

reasonable σ ≈ 0.001 this mean large extinction-time.

• Model 3:  great differences depending whether σ1 < 2 or not. 

0 < σ1, σ2≪ 0.1  very large extinction-time.
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Significance of Multi-Species Models:
Species in close proximity often compete for resources, highlighting 

the importance of multi-species models.

Focus on Lotka-Volterra Model:
Lotka-Volterra model, a key ecological tool, is extensively studied 

for its theoretical and practical relevance.

Recommendations Based on Results:
Model 1 is supported, while Models 2 and 3 show minimal validity, 

requiring further exploration.

SDEs for Studying Species Competition:
Stochastic differential equations (SDEs) provide valuable numerical 

solutions for studying species competition over time.

Permanence and Extinction Concepts:
Vital in population studies, with stochastic Lotka-Volterra systems 

driven to extinction under high white noise and persisting under 

low noise conditions.

ANALYSIS AND

CONCLUSION


