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Introduction

Continual Lie algebras are infinite-dimensional generalizations of Lie
algebras with discrete root system by considering continual root systems.
Here we establish a general relation between chain complexes and
continual Lie algebras.

The natural orthogonality condition with respect to a product among
elements of a chain complex C spaces brings about to C the structure of
a graded algebra with differential relations.

We prove the main result: a chain complex endowed with an appropriate
Leibniz-property product of elements of its spaces brings about the
structure of a continual Lie algebra with the root space determined by
parameters for the complex. That provides a new source of examples of
continual Lie algebras.

Finally, as an example, we consider the case of Čech-de Rham complex
associated to a foliation of a smooth manifold. In a particular case of
this chain complex, we derive explicitly the commutation relations for the
corresponding continual Lie algebra.



Continual Lie algebras introduced in [Saveliev] are generalizations of
infinite-dimensional Lie algebras with systems of discrete roots [Kac].
Then the notion was generalized and developed in [Saveliev-Vershik].
These algebras are formulated in such a way that the space of roots is
defined by continual sets of vectors. In commutation relations, the
generators depend on kernels which are functionals of continual roots.
Jacobi identity for continual Lie algebras result in non-trivial functional
relations for kernels. Similar constructions appeared recently in the study
of certain Hall algebras of coherent sheaves described in terms of certain
continuum limits of Kac-Moody algebras [Appel-Sala-Schiffmann].

Though the general theory of continual Lie algebras and their
representations is missing, there exist many applications, especially in the
theory of completely integrable and exactly solvable models
[Razumov-Saveliev]. Various applications can be also found in other
fields of mathematics [Bakas, Devchand-Saveliev, Vershik].

In original papers [Saveliev-Vershik], in order to find new classes of
examples of continual Lie algebras various approaches were studied. In a
series of papers [Saveliev-Vershik] the authors have generalized first
known examples and have found new non-trivial and fundamental ones



arising from various branches of mathematics, in particular, functional
analysis [Vershik], differential geometry algebraic geometry,
non-commutative geometry, and mathematical physics [Bakas]. Some of
them came from physical applications, e.g., equations related to the Ricci
flow and cosmology [Bakas]. Though they appear in various corners of
modern mathematical research, at some stage, the arsenal of ideas of
generation of new examples of continual Lie algebras was exhausted. An
intriguing question is how to construct a general way which would allow
to create continual Lie algebras. In many cases, this problem reduces to
the question of finding new appropriate solutions for relations (0.1)
(which is a very interesting problem by itself) following from Jacobi
identity.

The idea of this work is to use properties of general chain complexes,
(with complex spaces depending on sets of parameters) in order to derive
the structure of continual Lie algebras.

The plan is the following. We first recall the notion of a continual Lie
algebra [Saveliev]. Then, starting from a general (infinite) chain complex,
we first define a product acting of elements of various spaces of a
complex. We require the Leibniz rule to be fulfilled for (co)boundary



operators with respect to this product. In addition to that we assume its
skew-symmetry properties. Thus we endow the complex with the
structure of a graded differential algebra C.

We then apply the natural condition of orthogonality with respect to a
product among the chain complex spaces. For instance, in differential
geometry, the orthogonality condition reduces to the integrability
condition for differential forms. Further actions of (co)boundary
operators, as well as consequences from the definition of the
multiplication, generate a system of differential relations for elements of
various chain complex spaces with extra compatibility conditions for
indices. This determines the structure of a graded algebra with
differential relations for C. By choosing independent elements satisfying
the above relations, we then show the main result: for a graded
differential algebra associated to a chain complex, the independent
generators, the system of differential relations, and Jacobi identity define
the structure of a continual Lie algebra with the root space provided by
the spaces parameters of a chain complex.

Then we consider the example of the Čech-de Rham cochain bicomplex
[Crainic-Moerdijk] associated to a smooth manifold foliation



[Dubrovin-Novikob-Fomenko, Bazaikin-Galaev,
Bazaikin-Galaev-Gumenyuik]. This bicomplex has a deep geometric
meaning [Galaev] and is defined for the spaces of differential forms and
holonomy embeddings acting between sections of the transversal basis for
a foliation.

The space of differential forms has already a structure of bigraded
differential algebra with respect to the natural product
[Crainic-Moerdijk]. For the bicomplex under consideration, we define the
second product, satisfying properties required for the construction of a
system of differential relations. According to the exposition we give, by
involving the orthogonality conditions for an arbitrary pairs of the
Čech-de Rham bicomplex, we apply the general scheme of construction
of a bigraded differential algebra. Then we single out generators and
commutation relations for the corresponding continual Lie algebra with
the space of roots and kernels given by the sets of holonomy embeddings.
In a particular geometric case associated to a codimension one foliation
over a three-dimensional smooth manifold, we start from the integrability
condition applied to elements of the same bicomplex space which leads
to the appearance of a continual Lie algebra with generators and kernels.



Continual Lie algebras
First, we recall the notion of a continual Lie algebra introduced in
[Saveliev]. It was then studied in [Saveliev-Vershik]. Suppose E is an
associative algebra over R or C, and K0, K˘1, K0,0 : E ˆ E Ñ E , are
bilinear mappings. The local part of a continual Lie algebra can be
defined as pG “ G´1 ‘ G0 ‘ G`1, where Gi , i “ 0,˘1, are isomorphic to E
and parametrized by its elements. The subspaces Gi consist of the
elements tXi pφq, φ P Eu, i “ 0,˘1. The generators Xi pφq are subject to
commutation relations. For instance, in the principle grading they can
have the form

rX0pφq,X0pψqs “ X0pK0,0pφ, ψqq, rX0pφq,X˘1pψqs “ X˘1pK˘1pφ, ψqq,

rX`1pφq,X´1pψqs “ X0pK0pφ, ψqq,

for all φ, ψ P E . It is also assumed that Jacobi identity is satisfied. Then
the conditions on mappings pK “ pK0,0,K0,K˘1q follow:

K˘1pK0,0pφ, ψq, χq “ K˘1pφ,K˘1pψ, χqq ´ K˘1pψ,K˘1pφ, χqq,

K0,0pψ,K0pφ, χqq “ K0pK`1pψ, φq, χqq ` K0pφ,K´1pψ, χqq,

for all φ, ψ, χ P E .



An infinite dimensional algebra G
´

E ; pK
¯

“ G1
´

E ; pK
¯

{J, is called a

continual contragredient Lie algebra, where G1pE ; pK q is a Lie algebra
freely generated by pG, and J is the largest homogeneous ideal with trivial
intersection with G0 (consideration of the quotient is equivalent to
imposing the Serre relations in the case of finite-dimensional simple
complex Lie algebras) [Saveliev-Vershik]. G is endowed with a Z-grading
G “

À

iPZ Gn, where elements of subspaces Gn satisfy the standard
grading condition rGn,Gms Ă Gn`m, where Xnpφq P Gn, and higher
mapping Kn,mpφ, ψq are present in commutation relations among Xnpφq
and Xnpψq. In general, Jacobi identity for generators that belong to all
grading spaces has the form

rXi pφq, rXjpψq,Xkpθqss ` rXjpψq, rXkpθq,Xi pφqss

`rXkpθq, rXi pφq,Xjpψqss “ 0,

Ki ,j`k pφ,Kj ,k pψ, θqq ` Kj ,k`i pψ,Kk,i pθ, φqq

`Kk,i`j pθ,Ki ,j pφ, ψqq “ 0. (0.1)



The algebra of differential relations from a chain complex Now
we formulate the construction which allows us to generate an algebra of
graded differential relations starting from a chain complex. Consider a
complex of spaces with elements depending on sets of parameters Θi ,
i P Z , and given by

. . .
δpi´1q
ÝÑ C pi ,Θi q

δpiq
ÝÑ C pi ` 1,Θi`1q

δpi`1q
ÝÑ . . . , (0.2)

with a differential δpiq satisfying the chain property δpi ` 1q ˝ δpiq “ 0,
for i P Z.
We assume also that there exists a (not necessary associative) product
among element of the spaces C pi ,Θi q,

¨ : C pi ,Θi q ¨ C pj ,Θjq Ñ C pf pi , jq,Θgpi ,jqq, (0.3)

so that for any elements Φi P C pi ,Θi q and Φj P C pj ,Θjq,
Φi ¨ Φj “ Φf pi ,jq, where f pi , jq and gpi , jq are some functions of indices i
and j . Note that a function f pi , jq defined the index for the product (0.3)
resulting space. The function gpi , jq defines the index for the resulting
set of parameters. Let us assume that for all i P Z, the Leibniz rule



formula for the operator δpiq takes place, i.e.,

δpk ` lq pΦk ¨ Φlq “ pδpkqΦkq ¨ Φl ` p´1qdegpΦk qΦk ¨ δplqΦl . (0.4)

We assume also that the chain complex above has some properties of a
algebra with respect to the product (0.3). Namely, consider the elements
Φk P C pk ,Θkq, and Φl P C pl ,Θlq. Let us assume, in particular, that the
product (0.3) satisfies the condition

Φk ¨ Φl “ ´Φl ¨ Φk . (0.5)

for all k, l P Z, Φk P C pk,Θkq and Φl P C pl ,Θlq. Altogether, the
complex (0.2) form a graded differential algebra C. In what follows, we
skip the sets of parameters Θi in the notations for the spaces of
complexes, i.e., we set C piq “ C pi ,Θi q. Though one has to keep in mind
that a product of elements of two spaces of complex (0.2) depends on
the resulting set of parameters Θgpi ,jq.



The algebra of graded differential relations
Let us assume that the product (0.3) is defined in such a way that
common parameters of the sets Θi and Θj are present in the resulting set
Θgpi ,jq only once. For some i and j P Z, let us introduce the
orthogonality condition for a pair C pi ,Θi q and C pj ,Θjq, with respect to
the product (0.3). In particular, let us require that for a pair C pi ,Θi q,
C pj ,Θjq, there exist subspaces C 1piq Ă C pi ,Θi q and C 1pjq Ă C pj ,Θjq,
such that, for any Φi P C

1piq and Φj P C
1pjq,

Φi ¨ δpjqΦj “ 0, (0.6)

namely, Φi is supposed to be orthogonal to δpjqΦj with respect to (0.3).

By applying further differentials to (0.6) (and further consequences of
such action), and using properties of a particular function f pi , jq we
obtain relations among elements of spaces C pi ,Θi q, i P Z. In particular,
taking into account that both sides of such relations belong to the same
space, we obtain limitations (depending on the function f ) on indices. In
differential geometry, the orthogonality condition (0.6) provides the
definition of integrability conditions for differential forms, and leads to
the Frobenius theorem (see, e.g., [Ghys]).



Let us explain the notations we will use on few next pages. In (0.13) we
obtain (infinite) sequences of pairs of differential relations of the form
(0.8)–(0.10). The (infinite) sequence of pair of relations has a tree graph
structure with two sequences outgoing from one point. At each point we
call one branch ”left” and another branch as ”right” marking the

corresponding pair by L or R. We denote such pairs by
´

α
pKi q

i

¯

, where

α
pKi q

i is an element of C
´

n
pKi q

i

¯

involved in differential relations, and

pKi q is a sequence of i entries each is either L or R for i ě 1.

Let χ P C pn0q, Φ P C pnq, for any n0, n P Z. Due to the property (0.5) of
the multiplication (0.3), the orthogonality condition (0.6) applied to Φ
and χ, i.e.,

Φ ¨ δpn0qχ “ 0, (0.7)

implies that there exists α
pRq
1 P C

´

n
pRq
1

¯

, such that

δpn0qχ “ Φ ¨ α
pRq
1 . (0.8)

Let r
pRq
1 be the number of common parameters among n- and n

pRq
1 -sets

of parameters for Φ and α
pRq
1 . Since both sides of the last relation have



to belong to the same space of the complex, the compatibility condition

n0 ` 1 “ n ` n
pRq
1 ´ r

pRq
1 , (0.9)

occurs. Acting by δpn0 ` 1q on (0.8) we obtain

0 “ pδpnqΦq ¨ α
pRq
1 ` p´1qn0`1Φ ¨ δ

´

n
pRq
1

¯

α
pRq
1 . (0.10)

On the other hand, (0.7) implies that there exists α
pLq
1 P C

´

n
pLq
1

¯

, such

that

Φ “ α
pLq
1 ¨ δpn0qχ, (0.11)

with the condition
n “ n

pLq
1 ` n0 ` 1´ r

pLq
1 , (0.12)

where r
plq
1 is the number of common parameters among n

pLq
1 and pn0 ` 1q

for α
pLq
1 and δpn0qχ.

Consequently applying the corresponding δ operators to (0.7), (0.8) and
(0.11) we obtain the system of relations:



0 “ Φ ¨ δpn0qχ, p1q

p1q ñ Φ “ α
pLq
1 ¨ δpn0qχ, p2q

δ.p2q ñ δpnqΦ “

´

δ
´

n
pLq
1

¯

α
pLq
1

¯

¨ δpn0qχ, p2
1q ñ 0,

δ.p1q ñ 0 “ pδpnqΦq ¨ δpn0qχ, p3q

p1q ñ δpn0qχ “ Φ ¨ α
pRq
1 .

0 “ δpnqΦ ¨ α
pRq
1 ` p´1qnΦ ¨ δ

´

n
pRq
1

¯

α
pRq
1 ñ 0,



p3q ñ δpn0qχ “ pδpnqΦq ¨ α
pRRq
2 ,

p4q : 0 “ pδpnqΦq ¨ δ
´

n
pRRq
2

¯

α
pRRq
2 ñ

´

α
pRRRq
3

¯

ñ ...

ó p31q
´

α
pRRLq
3

¯

ñ ...

ó

... (0.13)

p3q ñ δpnqΦ “ α
pLLq
2 ¨ δpn0qχ,

p5q : 0 “ δα
pLLq
2 ¨ δpn0qχñ

´

α
pLLRq
3

¯

ñ ...

ó p32q
´

α
pLLLq
3

¯

ñ ...

ó

... (0.14)



where we obtain (infinite) sequences (0.14) of pairs of relations for

α
pKi q

i P C
´

n
pKi q

i

¯

, i ě 1. Recall that we denote such relations as
´

α
pKi q

i

¯

. The corresponding indices n
pKi q

i satisfy (in addition to (0.9) and

(0.12)) relations for the sequence starting from p4q:

n0 “ n ` n
pRRKi`2q

i ´ r
pRRKi`2q

i , (0.15)

for the sequence starting from p5q:

n “ n0 ` n
pLLKj`2q

j ´ r
pLLKj`2q

j , (0.16)

i , j ě 2.



One can easily see that not all elements in (0.13) are independent. For
instance, from (0.9) and (0.12) we obtain
´

n
pLq
1 ´ r

pLq
1

¯

“ ´

´

n
pRq
1 ´ r

pRq
1

¯

“ n ´ n0 ´ 1. From (0.8)-(0.11), and

from p31q-p32q of (0.13) we infer that α
pLq
1 , α

pRq
1 , and α

pLLKi q

i , α
pRRKi q

i are
related by a conjugation with respect to the product (0.3):

Φ “ α
pLq
1 ¨

´

Φ ¨ α
pRq
1

¯

, δpn0qχ “
´

α
pLLKi q

i ¨ δpn0q χ
¯

¨ α
pRRKi q

i . Similar

relations apply among other elements α
pKi q

i .

The sequence of relations (0.13) cancels when one of relations
(0.9)–(0.12) or (0.15)–(0.16) for a sequence of pairs of equations is not
fulfilled. The natural grading is given by the condition that both sides of
differential relations in (0.13) belong to the same chain complex space.
We consider the simplest form (0.2) of a complex. In general, for more
complicated actions of δ, such that δpiq : C piq Ñ C pi ` kpiqq, where kpiq
depends on i P Z (see, e.g., [Huang] for non-trivial actions of certain δ
operators among chain complex spaces for vertex algebras. Consideration
of such complexes will be given by the author in another article). The
corresponding differential relations as well as compatibility relations could
be different from (0.13)



As an upshot, the orthogonality condition (0.6) for all choices of n0,
n P Z, and the conditions (0.15)–(0.16), applied to the chain complex
(0.2) bring about the structure of a graded algebra with differential
relations (0.13) with respect to the multiplication (0.5). As we can see,
the system of relations (0.13) has a tree structure. ”Left” and ”right”
directions have a mixture of dependent elements. Let us denote

npiq “ n
pKi q

i . For n0, n P Z, let I pn0, nq be the set of sequences of indices
pnpiqq, i ě 0, marking all paths pKi q in the tree structure of (0.13),
describing ”left” or ”right” choice at each point. Let I “

Ť

n0,nPZ
I pn0, nq,

be the space of all sequences over the tree graph for a complex (0.2).
Denote by I0 Ă I the subset of such paths that include pairs of
independent elements only. Then we are able to single out generators and
commutation relations of a Lie algebra with a continual space of roots.



Construction of a continual Lie algebra from a chain complex
Let us further assume that the spaces C piq, i P Z admit also an an
ordinary (not necessary commutative) product ΦΨ among elements for
Φk P C pkq, and Φl P C plq, for all k , l P Z. Then, as a product (0.3),
satisfying conditions (0.5) and (0.4), one can take

Φk ¨ Φl “ rΦk ,Φl s “ ΦkΦl ´ ΦlΦk , (0.17)

where brackets mean the ordinary commutator. It is known that the
introduction of the commutator with respect to the original
multiplication of an algebra transfers it into a Lie algebra when Jacobi
conditions are satisfied. In our case we show that the differential algebra
C defined above being supplied with the orthogonality conditions deliver
the structure of a continual Lie algebra.



Our setup of combined with the previous discussion provides us with a
proof of the main result:

Proposition

For the set I0 of all pairs of independent elements α
pKi q

i , the
orthogonality condition (0.6), the generators
!

χ, δpn0qχ, Φ, δpnqΦ, α
pKi q

i , δpnpiqqα
pKi q

i

)

, npiq “ n
pKi q

i , the relations

(0.13), and Jacobi identity (0.1) form a continual Lie algebra GpΘnpiqq

with the root space depending on the set of parameters Θnpiq, of spaces
C
`

npiq,Θnpiq

˘

.

Though the structure of the system (0.13) may seem to be not very
complicated, actual properties of the corresponding continual Lie algebra
depends on properties of the spaces of a specific the bicomplex (0.2) and
the nature of parameters Θi . For a fixed choice of a path of independent
functions/differential equations in the system (0.13), there exists a
variety of choices on how to identify generators of a continual Lie algebra
with generators of the differential algebra. Therefore, the actual form of
commutation relations for the corresponding continual Lie algebra varies
accordingly.



One can also chose various ways how to define a grading for each specific
GpΘnpiqq, for generators of a continual Lie algebra resulting from (0.13).
The structure of the product (0.3) together with the condition (0.4), and
the action of the differentials δ provide Jacobi identity for generators on
the continual Lie algebra GpΘnpiqq, and, simultaneously, apply conditions
of the form (0.1) to elements of the parameter spaces Θpnpiqq, i ě 0.
Next we specify the above construction and Proposition (1) in the case
of double cochain complex (0.27)–(0.28) associated with differential
forms [Crainic-Moerdijk]. We derive explicitly the generators and
commutation relations for the corresponding continual Lie algebras.



An example: double complex associated with foliations
Recall the formulation of the Čech-de Rham cohomology given in
[Crainic-Moerdijk] for foliations on smooth manifolds. In this case the
spaces in (0.2) are differential forms Cn,mpFq defined on a foliation, and
the coboundary operators is given by δp,q “ p´1qpd ` δq, where d and δ
are differentials.

The ordinary product for differential forms ωn,mph1, . . . , hmq P C
n,m pFq

is given by (0.29). The product (0.3) required for the formulation is
provided by the commutator (0.17). As it was mentioned in
[Crainic-Moerdijk], the bicomplex (0.27)–(0.28) has the structure of a
bigraded differential algebra with respect to the ordinary product (0.29).
According to the previous explanations, for the bicomplex (0.27)–(0.28)
generate the graded differential algebra with relations (0.13) with respect
to the product (0.17).



The general case
Let us recall that we assume in this case non-negative indices for all
bicomplex spaces Cni ,mi . Let χ P Cn0,m0 , Φ P Cn,m. The orthogonality
condition (0.6) with respect ot the product (0.17) leads to systems of the
form (0.13) when applied to the double complex (0.2). In particular, for
χ P Cn0,m0 and Φ P Cn0,m0 , we obtain the system (0.13) of relations for

elements χ, δn0,m0χ, Φ, δn,mΦ, α
pKi q

i P Cn
pKi q

i ,m
pKi q

i , δnpiq,mpiqα
pKi q

i , i ě 1,
for n ě 0, m ě 0.

Let r
pKi q

i and t
pKi q

i be numbers of common degrees and transversal
sections of Cni ,mi for the forms χ P Cn0,m0 and Φ P Cn0,m0 . Then the
compatibility conditions (0.9)–(0.12) and (0.15)–(0.16) for indices n, m,

n0, m0, n
pKi q

i , m
pKi q

i , satisfy the relations in vector form:

pn0 ` 1,m0 ` 1q “ pn,mq `
´

n
pRq
1 ,m

pRq
1

¯

´

´

r
pRq
1 , t

pRq
1

¯

, (0.18)

for p2q in (0.13):

pn,mq “

´

n
pLq
1 ,m

pLq
1

¯

` pn0 ` 1,m0 ` 1q ´
´

r
pLq
1 , t

pLq
1

¯

, (0.19)



For the sequence starting from p4q in (0.13) we have:

pn0,m0q “ pn,mq `
´

n
pRRKi q

i ,m
pRRKj q

j

¯

´

´

r
pRRKi q

i , t
pRRKj q

j

¯

, (0.20)

for the sequence starting from p5q in (0.13):

pn,mq “ pn0,m0q `

´

n
pLLKi q

i ,m
pLLKj q

j

¯

´

´

r
pLLKi q

i , t
pLLKj q

j

¯

. (0.21)

i , j ě 2. Note that it is assumed that all the resulting indices in the
compatibility conditions are non-negative. For the general complex (0.2),
i P Z. For the bicomplex (0.27)–(0.28) we have p, q are non-negative.

Since we assume that 0 ď r
pLLKi q

i ď n
pLLKi q

i , and 0 ď tpLLKi q ď m
pLLKi q

i ,
from the compatibility conditions (0.18)–(0.19) and (0.20)–(0.21) we see
that, depending on the signs of n´ n0 ´ δi ,1, m´m0 ´ δi ,1, and only one
branch of systems of the form p2q–p21q exists at each vertex of the three
graph associated to the double complex (0.27)–(0.28).



Recall that according to Theorem 1 of [Crainic-Moerdijk], the definition
of the spaces Cn,m do not depend on the choice of the transversal basis
U , still it depends on parameters of foliation F . Nevertheless, differential
forms ωn,m do depend on holonomy mappings hj , j ě 0, and play the role
of extra parameters in the consideration.

As explained before, due to Proposition (1), a path pKi q, i ě 1, defining

the generators
!

χ, δn0,m0χ, Φ, δn,mΦ, α
pKi q

i , δnpiq,mpiqα
pKi q

i

)

,

npiq “ n
pKi q

i , mpiq “ m
pKj q

i , and relations for independent elements of
Cn,m in (0.13), form a continual Lie algebra GpFq with the space of roots
provided by the holonomy mappings and of parameters of the foliation F .



Double cochain complex: Godbillon-Vey type example
Here we provide the explicit example for Proposition (1) in the case of
the orthogonality condition (0.6) applied to the particular case when,
Φ “ χ. In particular, in differential geometry, the case of a foliation F of
codimension one defined by a one-form on a three-dimensional manifold,
and the formulation of the Godbillon-Vey cohomology class, are included
in this consideration.
We require the orthogonality for χ P Cn,mpFq within its own bicomplex
space, i.e., to satisfy the condition

χ ¨ δn,mχ “ 0. (0.22)

Thus, for α
pRq
1 P Cn1,m1pFq one has

δn,mχ “ χ ¨ α
pRq
1 , (0.23)

and n ` 1 “ n ` n1 ´ r , m ` 1 “ m `m1 ´ t, and (0.23) is possible only
when n1 “ r ` 1, m1 “ t ` 1, 0 ď r ď n, 0 ď t ď n, and
α
pRq
1 P C r`1,t`1pFq. If we require from (0.22) that for α

pLq
1 P Cα,βpFq,

χ “ α
pLq
1 ¨ δn,mχ, then n “ α` n ` 1´ r 1, α “ r 1 ´ 1, i.e., α is smaller



than the common degree which is not possible and thus such α
pLq
1 does

not exist.
Then, as a result of (0.13), we obtain the system of differential relations:

0 “ χ ¨ δn,mχ, p1q, 0 “ pδn,mχq ¨ δn,mχ, p3q

δn,mχ “ χ ¨ α
pRq
1 , 0 “ δn,mχ ¨ α

pRq
1 ` p´1qnχ ¨ δr`1,t`1α

pRq
1 , (0.24)

and the rest of the system (0.13) collapses since further its branches
follow from p3q which is trivial.
Let us denote hn “ ph1, . . . , hnq, an n-tuple of holonomy mappings. In

this case, for forms
!

χ, δn,mχ, α
pRq
1 , δr`1,t`1α

pLq
1

)

, define the following

continual Lie algebra by identifying the differential forms with generators
of GpFq as

X` “ χ, X´ “ δn,mχ, H “ α
pRq
1 , H˚ “ δr`1,t`1α

pRq
1 , (0.25)

and the commutation relations (in a non-principal grading):

“

X`phnq,X´ph
1
nq
‰

“ 0, rX`phnq,Hphr`1qs “ X´ pK`1,0 phn, hr`1qq ,

rX´phn`1q,Hphr`1qs ` p´1qn rX`phnq,H
˚phr`2qs “ 0. (0.26)



Note that an element of Cn,mpFq is an n-form ωph1, . . . , hnq depending
on n holonomy maps. Thus the space of continual roots is provided by
the space of holonomy embeddings. Taking into account (0.24), we find
the kernels

K`1,´1 phn, hr`1q “ 0, K`1,0 phn, hr`1q “ hn`1,

K0,´1 phn, hr`1q “ hn`2, K0,1 phn, hr`1q “ hn`2.

It is easy to check that Jacobi identity for generators (0.25) are fulfilled.

In the case of codimension one foliation defines by a one-form, χ, α
pRq
1 ,

χ P C 1,mpFq. Recall [Ghys] that the Godbillon-Vey cohomology class is

given by
”

α
pRq
1 ^ δ1,mα

pRq
1

ı

. The construction above clarifies the

Lie-algebraic meaning of this cohomology class.



Conclusions
In conclusion, we would like to mention a few directions of development
and further applications of the material presented here. We propose a
way to associate a continual Lie algebra to a chain complex. Thus the
properties, in particular, Jacobi identity, kernels, and relations of resulting
continual Lie algebras depend on the kind of chain complex spaces as
well as on the set of their parameters.

One can think of introducing various types of products suitable for the
construction of systems of differential relations more complicated than
(0.13). In our particular case, in order to make connection with continual
Lie algebras, we have chosen the commutator (0.17) (with respect to the
original product defined on bicomplex spaces) as the simplest natural
product. One could think of other possibilities which would be coherent
with the orthogonality condition (0.6).

In our exposition, the standard form of chain complexes was involved.
Nevertheless, one can consider more complicated setups, in particular,
chain complexes where differentials act in non-trivial ways with respect to
indices of spaces (c.f. examples in [Huang]).



That would lead to alternative forms of systems of differential relations
as well as of compatibility conditions. What could be especially
interesting, is to treat multiple chain complexes containing combinations
of a few chain-cochains.

The example of the Čhech-de Rham cohomology comes from the
differential geometry of foliations. In classics, the orthogonality condition
applied to elements and their differentials of one particular bicomplex
space, boils down to the integrability condition, and leads to the
Frobenius theorem. Then it delivers the Godbillon-Vey cohomological
class whose geometric meaning is not yet completely studied [Galaev].

As for further applications in differential geometry, starting from the
orthogonality condition, it would be interesting to find other
cohomological invariants related to the Čech-de Rham bicomplex for
foliations, and to understand their geometric meaning. The constructions
considered here can be also used for the cohomology theory of smooth
manifolds, in particular, in various approaches to the construction of
cohomological classes (cf., in particular, [Losik]). Wide applications are
awaiting for new examples of continual Lie algebras in the field of
integrable models [Leznov-Saveliev, Razumov-Saveliev]. The cases of



non-commutative fields used to define continual Lie algebras would also
be useful for in non-commutative geometry.



Čech-de Rham complex for foliations
Here we recall [Crainic-Moerdijk] the notion of the basis of transversal
sections, and Čech-de Rham complex for a foliation of a smooth
manifold. Let M be a smooth manifold of dimension n, equipped with a
foliation F of co-dimension l [Crainic-Moerdijk]. A transversal section of
F is an embedded l-dimensional submanifold U Ă M which is
everywhere transverse to F leaves. If α is a path between two points x
and y on the same leaf, and if U and V are transversal sections through
x and y , then α defines a transport along the leaves from a
neighborhood of x in U to a neighborhood of y in V . Therefore, we
define a germ of a diffeomorphism holpαq : pU, xq ÝÑ pV , yq, called the
holonomy of the path α. If such a transport is defined in all of U and
embeds U into V , this embedding h : U ãÑ V is sometimes also denoted
by holpαq : U ãÑ V . Embeddings of this form will be called holonomy
embeddings.
Transversal sections U through a point x are neighborhoods of the leaf
through x in the leaf space. One defines a transversal basis for pM,Fq as
a family U of transversal sections U Ă M with the property that, if V is
any transversal section through a given point y P M, there exists a



holonomy embedding h : U ãÑ V with U P U and y P hpUq. A
transversal section is a l-disk given by a chart for the foliation. One then
constructs a transversal basis U out of a basis Ũ of M by domains of
foliation charts φU : ŨÝ̃ÑRn´l ˆ U, Ũ P Ũ , with U “ Rl .
Let us recall the construction of the Čech-de Rham cohomology in
[Crainic-Moerdijk]. Let U be a family of transversal sections of F .
Consider the double complex

Cp,qpFq “
ź

U0
h1
ÝÑ¨¨¨

hp
ÝÑUp

ΩqpU0q, (0.27)

where the product ranges over all p-tuples of holonomy embeddings hi ,
0 ď i ď p, between transversal sections from a fixed transversal basis U ,
and Ωq is the space of differential forms of order q. The vertical
differential is defined as p´1qpd : Cp,qpFq Ñ Cp,q`1pFq, where d is the
usual de Rham differential. The horizontal differential



δ : Cp,qpFq Ñ Cp`1,qpFq, is given by δ “
k`1
ř

i“0
p´1qiδi , where

δiωph1, . . . , hk`1q “

$

&

%

h˚1ωph2, . . . , hk`1q, if i “ 0,
ωph1, . . . , hi`1hi , . . . , hk`1q, if 0 ă i ă k ` 1,
ωph1, . . . , hkq, if i “ k ` 1.

(0.28)
The product is defined by

pωηq ph1, . . . , hn`n1q “ p´1qnn
1

ωph1, . . . , hnq ph
˚
1 . . . h

˚
nq .η phn`1, . . . , hn`n1q ,

(0.29)
for ω P Cn,m and η P Cn1,m1 , and h˚i being the dual to hi . Thus
pω ηqph1, . . . , hn`n1q P C

n`n1,m`m1 , and the product (0.29) delivers the
structure of a bigraded differential algebra. The cohomology of this
complex is called the Čech-de Rham cohomology Ȟ˚U pM{Fq of the leaf
space M{F with respect to the transversal basis U .
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