
Albert User’s Guide

Written on February 7, 1996 for Albert version 3.0 by
David Pokrass Jacobs, Sekhar V. Muddana, A. Jefferson Offutt, Kurti Prabhu, David Lee,

Trent Whiteley
(Department of Computer Science, Clemson University)

In 2019 (last minor revision February 12, 2023) adapted for Albert version 4.0M7, and merged
with former online help by

Pasha Zusmanovich
pasha.zusmanovich@gmail.com

1. INTRODUCTION

Albert is an interactive research tool to assist the specialist in the study of nonassociative
algebras. This document serves as a technical guide to Albert. We refer the reader to [JMO] for
a more casual tutorial†. The main problem addressed by Albert is the recognition of polynomial
identities. Roughly, Albert works in the following way. Suppose a user wishes to study alternative
algebras. These are algebras defined by the two polynomial identities (yx)x− y(xx) and (xx)y−

x(xy), known respectively as the right and left alternative laws. In particular, the user wishes to
know if, in the presence of the right and left alternative laws, (a,b, c) ◦ [a,b] is also an identity.
Here (a,b, c) denotes (ab)c−a(bc), [a,b] denotes ab−ba, and x◦ y denotes xy+ yx. The user first
supplies Albert with the right and left alternative laws, using the identity command. Next, the
user supplies the problem type. This refers to the number and degree of letters in the target
polynomial. For example, in this problem, each term of the target polynomial has two a’s, two b’,
and one c, and so the problem type is 2a2b1c. This is entered using the generators command. It
may be that over certain fields of scalars the polynomial is an identity, but over others it is not an
identity. Albert allows the user to supply the field of scalars, but currently the user must select
either a Galois field GF(p) in which p is a prime less than 263−1, or the field of rational numbers

Q‡. This is done using the field command. If no field is entered, the default field GF(251) is
chosen.

In deciding whether a given polynomial is an identity or not, Albert internally constructs a
certain homomorphic image of the free algebra. It is not necessary that the user understand the
theory of free algebras, nor is it necessary to understand the algorithms Albert employs to create
them (which are described in [HJ1]). The user need only be aware that Albert builds a multi-
plication table for this free algebra. The user instructs Albert to begin the construction using
the build command. Once this construction has been completed, the user can query whether
the polynomial (a,b, c) ◦ [a,b] is an identity using the polynomial command. In fact, the user
can ask Albert about any homogeneous polynomial p(a,b, c) having most two a’s, two b’s and
one c in each term. For example, the polynomial (a,b, (a,b, c))+ [b,a](a,b, c) could also be tested.
With Albert, polynomials and identities may be entered from the keyboard using associators,
commutators, and much of the familiar notation used in nonassociative ring theory. Since the
standard keyboard does not have the symbol ◦, we use ∗ to denote the Jordan product. See the
section entitled Polynomial Expression Language for a complete description of how polynomials
and identities can be entered in Albert.

†Valid for version 3.0, largely valid for the current version.
‡With a little programming effort, Albert can use any field as long as it has a computer implementation with a

C/C++ interface.

1

Albert has a small set of commands, and meaningful research can be conducted using only the
identity, generators, build, and polynomial commands. These commands, and others, are
described in detail in this guide. The user who wishes to quickly learn the system is advised to
first try these commands. Thus, the typical user supplies Albert with the following input:

• A set I of polynomials whose members are assumed to be identities.
• A problem type as described above.
• A field F of scalars.

In this document “polynomial” always means a nonassociative polynomial. These objects to-
gether implicitly define a fourth object, namely the free nonassociative algebra. In this docu-
ment we refer to these four objects collectively as a configuration. Various commands may alter
or delete certain objects of a configuration. Typically, Albert spends much of its time construct-
ing a multiplication table. But once a table has been constructed, Albert can quickly decide if a
polynomial or group of polynomials are identities.

All polynomials and defining identities must be homogeneous. That is, each must be expressible
as a linear combination of words each having the same degree in each variable. This restriction
is not very severe, since any nonhomogeneous polynomial can be replaced by its homogeneous
parts. This replacement will not affect the results given a sufficiently high characteristic for the
field. Albert internally linearizes any defining identity that is not multilinear. Thus the right
alternative identity is always interpreted as (yx)z− y(xz)+ (yz)x− y(zx).

However, if a defining identity is not multilinear, the user is advised not to linearize it before
entering it, but rather enter it in its non-multilinear form. In most cases, this allows Albert to
treat it more efficiently, since the identity’s symmetry can be exploited. In general, the larger
the degree of the problem type, the more memory Albert requires. Given two problems involv-
ing the same degree and the same defining identities, Albert will cope best with the one having
fewer letters. The defining identities influence the problem, too. Defining identities such as the
commutative law (as in the case of Jordan algebras) and the anticommutative law “drive down”
the dimension of the free algebra, thus enabling larger problems to be solved than might other-
wise be possible. If Albert is unable to complete a problem having degree n, adding additional
identities of degree less than n may allow Albert to finish.

The program owes its name to A.A. Albert whose work was pioneering in nonassociative ring
theory. It was designed and implemented at Clemson University by David P. Jacobs, Sekhar
Muddana, and Jeff Offutt. Kurti Prabhu also helped during the early design. Subsequent fea-
tures have been implemented by David Lee and Trent Whiteley. The idea of constructing free
nonassociative algebras was motivated by several papers of E. Kleinfeld. Irvin Hentzel has also
assisted in the program’s development through helpful discussions.

Finally, a word of caution. Like any program, the possibility is high for errors. Please report
any suspected bugs or general comments.

2. COMMAND LANGUAGE

The commands available with Albert are: identity, remove, generators, field, build, dis-

play, polynomial, xpand, type, view, save, quit.
Each command begins with a keyword, and the user can use any initial substring of the key-

word. For example, the identity command can be used by typing i, id, etc. Every command is
terminated by a carriage return. Some commands (e.g. identity, polynomial) require a polyno-
mial as an argument. This polynomial may at times exceed the screen-width. In such cases, the
user can continue on the next line by terminating the preceding line with a backslash (\).

2.1. identity command.

identity pol ynomial

Examples:
2

identity (x,x,[y,x])

i (x,(x,(x,y,x),x),x)

This command appends the polynomial to the current set of identities. Albert assigns a unique
number to the entered identity for future use. Entering a new identity destroys any existing
multiplication table in memory.

• Arguments: polynomial as described in the section Polynomial Expression Language.
Names defined in the configuration file (see the section Configuration file) can also be
used to enter a polynomial. The entered polynomial must be homogeneous.

• Errors: malformed or non-homogeneous polynomial.

2.2. remove command.

remove number|∗

This command removes one or more identities from the current set of identities. For example,

remove 2

would remove the identity whose number is 2. The remaining identities are renumbered after
deletion of the identity. An asterisk (∗) can be used in place of number to remove all existing
identities:

r *

The remove command will destroy a resident multiplication table, if present.

• Arguments: the number of the identity, or ∗

• Errors: invalid number.

2.3. generators command.

generators problem_type

Before beginning the construction of an algebra, Albert must know what the generators will
be, and the degrees of the generators. This information is referred to as the problem type, and the
generators command is used to define it. This problem type is stored in the current configuration.
Entering a new problem type destroys any existing problem type and any multiplication table, if
present. For example,

generators aabcc

gen aabcc

g 2ab2c

• Arguments: problem_type is a string of lower-case letters indicating the generators and
degrees used in the problem. For example, aabcc indicates that the algebra to be built
will be generated by a, b, and c, and will be spanned by words in these letters having at
most two a’s, one b, and two c’s. This word must have degree at least two. This can also
be entered in abbreviated form as 2a1b2c, 2ab2c, b2a2c, etc.

2.4. field command.

field number|Q

This command changes the field of scalars, and this information is stored as part of the current
configuration. When the field is changed, any resident multiplication table is destroyed. For
example,

field 17

will cause subsequent algebras to be constructed over the field GF(17). When Albert is first
entered, the default field GF(251) is selected. This field remains in effect until the field is changed.

• Arguments: number must be a prime p less than 263−1, in which case the field is changed
to GF(p); if Q is specified, the field is changed to Q.

• Errors: number out of range or not prime.
3

2.5. build command.

build

This command invokes Albert to begin construction of the algebra defined by the current con-
figuration. Albert constructs the algebra using the current set of identities, problem type, and
field stored in the current configuration. Status information is printed during the construction.
An old multiplication table is destroyed.

• Arguments: none.
• Errors: problem type not defined, or memory overflow during the construction.

2.6. display command.

display

Typing display causes Albert to display the current set of defining identities, field, problem
type, and information about the multiplication table, if present.

2.7. polynomial command.

polynomial pol ynomial

After a multiplication table has been constructed using build, this command may be used to
test whether the given polynomial is zero in the resident algebra. For example, typing

p 2((ba)a)a + ((aa)a)b - 3((aa)b)a

might cause Albert to respond with:

Polynomial is not an identity.

• Arguments: polynomial has to be homogeneous.
• Errors: invalid or non-homogeneous polynomial, nonexistent table, polynomial incompat-

ible with current problem type.

2.8. xpand command.

xpand pol ynomial

This command is used to see the expanded form of a nonassociative polynomial. For example,
typing

xpand (x,y,z)

would cause Albert to respond with:

(xy)z - x(yz)

The command is used for information purposes only and does not affect the current configura-
tion.

• Arguments: polynomial has to be homogeneous.
• Errors: invalid or non-homogeneous polynomial.

2.9. type command.

type word

Every nonassociative word has a particular association type. These association types are num-
bered by Albert. For example, the association type of the word ((ab)c)d is 1, while the association
type of the word (ab)(cd) is 3. Thus, typing

t (ab)(cd)

would cause Albert to respond with:

The association type of the word = 3.

This command prints the number of the association of the argument. Usually this is not im-
portant, unless the user wishes to use the W (artificial word) operator (see the section Polynomial

Expression Language).
4

• Arguments: nonassociative word like a((ac)b). The letters and their order are not impor-
tant.

• Errors: invalid word.

2.10. view command.

view b|m [gap]

This command prints the basis table or the multiplication table to the screen, provided they
exist. The first argument specifies the table to be output (b – basis table, m – multiplication table).
For example, typing

view b

will output the current basis table to the screen.
If the first argument is m, and the second, optional, argument is specified, the multiplication

table will be printed in the GAP format rather than in a human-readable format. For example,
loading the output of the command

view m gap

to GAP will recreate the algebra constructed by Albert as a GAP object.

• Arguments: first – b or m, second (optional) – gap.

2.11. save command.

save b|m [gap]

This command saves the basis table or the multiplication table to a file, provided the table
already exist. After typing the save command, the user will receive the following prompt:

File Name -->

The user may enter a directory path along with the file name. If a file name is entered, it
will be written to the current directory. The arguments have the same meaning as for the view

command. For example, typing

save m

File Name --> Mult.table

will cause the multiplication table to be written to Mult.table in the current directory.

• Arguments: first – b or m, second (optional) – gap.

2.12. quit command.

quit

This command exits the user from Albert. Any multiplication table or other information is lost.

2.13. Summary of commands.

identity polynomial enter a defining identity

remove number|∗ remove a defining identity

generators word specify the problem type

field number|Q change the current field of scalars

build build a multiplication table

display display the current configuration

polynomial polynomial query if the polynomial is an identity

xpand polynomial expand the polynomial

type word determine the association type

view b|m [gap] view basis or multiplication table

save b|m [gap] save basis or multiplication table

quit quit from Albert
5

3. BASIS TABLE AND MULTIPLICATION TABLE

There are two important structures created by the build command. These are the basis table
and the multiplication table. These tables can be seen using view, or stored using save. The
basis table contains a list of elements that form a basis in the free algebra that was constructed.
Under Albert’s method, basis elements will always be words in the original generators. Shown
below is the basis table for the 26-dimensional right alternative algebra using 2a’s and 2b’s.
There are five columns. The first of these is simply the number by which the basis element is
referred. The second and third columns indicate how the basis element factors into a product
of two lower degree basis elements. The fourth columns indicates the type (degrees in each
generator) of the element. The fifth column shows the basis element as a nonassociative word.
For example, the table indicates that basis element #25 is the product of element #13 and element
#2. It also indicates that this element has type 22 (2 a’s and 2 b’s), and shows the element as
(((ab)a)b). Obviously, the element’s type is inherent in the last columns, however this column
should make it easier to take a large table and pick out all elements of a certain type.

Basis Table:

1. 0 0 10 a

2. 0 0 01 b

3. 2 2 02 (bb)

4. 2 1 11 (ba)

5. 1 2 11 (ab)

6. 1 1 20 (aa)

7. 2 5 12 (b(ab))

8. 3 1 12 ((bb)a)

9. 4 2 12 ((ba)b)

1O. 5 2 12 ((ab)b)

11. 1 5 21 (a(ab))

12. 4 1 21 ((ba)a)

13. 5 1 21 ((ab)a)

14. 6 2 21 ((aa)b)

15. 1 10 22 (a((ab)b))

16. 2 14 22 (b((aa)b))

17. 4 5 22 ((ba)(ab))

18. 5 5 22 ((ab)(ab))

19. 7 1 22 ((b(ab))a)

20. 8 1 22 (((bb)a)a)

21. 9 1 22 (((ba)b)a)

22. 10 1 22 (((ab)b)a)

23. 11 2 22 ((a(ab))b)

24. 12 2 22 (((ba)a)b)

25. 13 2 22 (((ab)a)b)

26. 14 2 22 (((aa)b)b)

A portion of the multiplication table for the same algebra is shown below. The table lists only
the nonzero products of two basis elements. Coefficients are given in terms of the current field.

6

Assuming the default field GF(251) were in use, the table below can be interpreted as

b1b1 = b6

b1b2 = b5

b1b3 = b10

b1b4 =−b11+b13+b14

b1b5 = b11

b1b7 =−b15+b18+b23

b1b8 =−b15+b22+b26

b1b9 = b25

Had we shown the entire multiplication table, we would have seen that b13b2 = b25. Hence
b25 factors as b1b9 and b13b2. This merely says that a((ba)b) = ((ab)a)b in a right alternative
ring. Recall that when Albert constructs an algebra in, say, 2a’s and 2b’s, products involving
more than 2a’s or more than 2b’s will be zero. Other kinds of products, too, can be zero.

Multiplication table:

(b1)*(b1)

1 b6

(b1)*(b2)

1 b5

(b1)*(b3)

1 b10

(b1)*(b4)

250 b11 + 1 b13 + 1 b14

(b1)*(b5)

1 b11

(b1)*(b7)

250 b15 + 1 b18 + 1 b23

(b1)*(b7)

250 b15 + 1 b22 + 1 b26

(b1)*(b9)

1 b25

4. THE CONFIGURATION FILE

The configuration file contains definitions for making it easier to enter identities. This file
can be edited by the user outside of Albert. Arbitrarily many definitions can be given. Long
definitions can be continued on another line by placing a backslash (\) at the end of the line. The
file can include blank lines. Comments begin with % and extend to the end of a line. A typical
configuration file might look like this:

rightalt (x,y,y) % Right alternative law.

jordan ((xx)y)x - (xx)(yx)

com [x,y]

doublecom [[x,y],z]

% A strange new identity:

ident3 (x,[x,y],x)

When Albert is initialized, the configuration file, is specified, is read into memory. Definitions
occurring within this file can be used in subsequent commands, by surrounding the defined entity

7

with $’s. For example, one now could enter the command:

identity $jordan$ - $ident3$

The identity is interpreted as ((xx)y)x− (xx)(yx)− (x, [x, y], x). The configuration file can make
use of definitions occurring elsewhere in the file. Moreover, a definition need not occur before its
use. For example, one might have

RightAlt (x,y,y) % Right alternative law.

RightAltCom [w, $RightAlt$] % Right alternators commute.

This last identity is interpreted as [w, (x, y, y)]. Circular definitions will cause great problems.

5. INVOKING ALBERT

Albert is invoked on the command line by giving its name followed by one optional argument:

albert [-f filename]

albert -h

Here filename refers to the (relative of absolute) location of a configuration file. For example:

albert -f .albert

If no options are specified, no configuration file will be used. If invoked with -h option, Albert
prints a short help message and quits.

6. SAMPLE SCENARIO

The following example illustrates interaction with Albert. Text appearing after the --> prompt
has been printed by the user; all other text has been typed by the Albert system.

[pasha@max-und-moritz] tmp--> albert -f /usr/local/albert/4.0M6/.albert

Albert version 4.0M6, 2019

Using /usr/local/albert/4.0M6/.albert

-->identity (x,x,y)

(xx)y - x(xy)

Entered as identity 1.

-->identity (x,y,y)

(xy)y - x(yy)

Entered as identity 2.

-->generators 2a2blc

Problem type stored.

-->display

Defining identities are:

1. (x,x,y)

2. (x,y,y)

Ground field is GF(251)

Problem type = [2a,2b,c]; Total degree = 5.

Multiplication table not present.
8

-->build

Building the Multiplication Table.

Build begun at Tue Jan 15 21:55:20 2019

Degree Current Dimension Elapsed Time(in seconds)

1 3 0

2 11 0

3 30 0

4 64 0

5 99 0

Build completed.

Last Matrix 20.6% dense.

-->v m gap

T := EmptySCTable (99, Zero(GF(251)));

SetEntrySCTable (T, 1, 1, [1, 11]);

SetEntrySCTable (T, 1, 2, [1, 10]);

SetEntrySCTable (T, 1, 3, [1, 8]);

SetEntrySCTable (T, 1, 4, [250, 15, 1, 18, 1, 19]);

... (long output suppressed) ...

SetEntrySCTable (T, 64, 3, [1, 99]);

A := AlgebraByStructureConstants (GF(251), T);

-->polynomial (a,b,c)*[a,b]

Polynomial is an identity.

-->polynomial (a,b,(a,b,c)) + [b,a](a,b,c)

Polynomial is an identity.

-->polynomial [a,[b,(a,b,c)]]

Polynomial is not an identity.

-->remove 1

Identity 1 removed.

Destroyed the Multiplication Table.

-->generators 4a2b

Problem type changed.

-->display

Defining identities are:

1. (x,y,y)
9

Ground field is GF(251)

Problem type = [4a,2b]; Total degree = 6.

Multiplication table not present.

-->build

Building the Multiplication Table.

Build begun at Tue Jan 15 21:58:25 2019

Degree Current Dimension Elapsed Time(in seconds)

1 2 0

2 6 0

3 15 0

4 35 0

5 77 0

6 146 0

Build completed.

Last Matrix 7.8% dense.

-->poly (a,a,b)^2

Polynomial is not an identity.

-->poly (a,a,b)^3

Polynomial type not a subtype of Target_type.

-->quit

For further examples, and for illustration of a methodology for using Albert, see [HJ2], [HJK],
[HJM], [J], [HJPS], [HP1], [HP2], [DZ], and [Z].

7. POLYNOMIAL EXPRESSION LANGUAGE

The identity, polynomial, and xpand commands require a nonassociative polynomial to be
entered. This section describes the proper syntax of nonassociative polynomials. In Appendix
A, a formal grammar is given. Nonassociative polynomials are described using the following
operators.

• addition: x+ y.

• subtraction: x− y.

• unary minus: −x.

• scalar product: 3x. The scalar is interpreted to be from the ring of integers.

• juxtaposed product: xy.

• commutator: [x, y]= xy− yx.

• associator: (x, y, z)= (xy)z− x(yz).

• Jordan product: x∗ y= xy+ yx.

• Jordan associator: < x, y, z >= (x∗ y)∗ z− x∗ (y∗ z).

• Jacobi: J(x, y, z)= (xy)z+ (yz)x+ (zx)y.
10

• left associated exponential: x3 = (xx)x. Warning: xy3 means ((xy)(xy))(xy) not x((yy)y).

• left/right multiplication: the general from of these expressions is {A y1 y2 . . . yk}, where
each yi is of the form x‘ or x′. Here A and x can be more complicated expressions. x‘
denotes left multiplication by x, and x′ denotes right multiplication. A sequence of such
operators are applied from left to right, and surrounded by braces. For example, {xy‘z′u′}

denotes ((yx)z)u, and {xy‘z′u′(w(ts))‘} denotes (w(ts))((yx)z)u, and {xy′z′}− {zy‘x‘} denotes
(xy)z− x(yz).

• artificial word: W{n;a : b : a : c : d}. Here n is called an association type. Often it is cumber-
some to type in long parenthesized expressions. To simplify the typing, the artificial word
construct can be used. W{n;a : b : a : c : d} represents the word having letters a,b,a, c,d
and association type n. Albert places a well-ordering on associations. If two associations
w1 and w2 have different degrees, then w1 < w2 if w1 has smaller degree. Suppose w1 and
w2 have the same degree. If this degree is 1 or 2, then w1 = w2. But if

w1 = (l1)(r1)

w2 = (l2)(r2)

then w1 < w2 if either r1 < r2, or r1 = r2 and l l < l2. Thus, the smallest degree n associa-
tion type is

(. . . (((xx)x)x)x) . . .)x,

and the largest degree in association type is

x(. . . (x(x(x(xx)))) . . .).

The degree 4 association types, in order, are:

((xx)x)x

(x(xx))x

(xx)(xx)

x((xx)x)

x(x(xx))

Thus W{4;a : a : c : b} means a((ac)b). Note that typing in a number n that exceeds
the number of degree n association types is an error. The user can easily determine the
number for an association using the type command described in the section Command

Language.

The operators can be intermixed in any arbitrary fashion. For example, the following con-
structs are allowed:

(x, [x, y], x)

J(x,< x, y, z >, z)

[x3, (x, x∗ y, y)]

All variables must be entered lower case letters. The order in which operators are applied,
is controlled using parenthesis. Thus one may write (x ∗ y)∗ z or x ∗ (y∗ z). An ambiguous
expression such as x ∗ y∗ z is illegal. Most expressions have the same common meaning as
they do in mathematics. For example, scalar multiplication and unary minus (−) have higher
precedence over addition and subtraction, and therefore 3(a,b, c)+ (c,b,a) means (3(a,b, c))+
(c,b,a). However, there are some caveats. When used in the presence of ^ or ∗, juxtaposition has
higher precedence: xy3 means ((xy)(xy))(xy) not x(y2 y), and xy∗ x means (xy)∗ x.

11

APPENDIX A: FORMAL GRAMMAR

polynomial → term

| + term

| − term

| polynomial + term
| polynomial − term

term → product

| int product

product → atom_or_double_atom

| atom_or_double_atom ↑ int

| atom_or_double_atom ∗ atom_or_double_atom

atom_or_double_atom → atom

| double_atom

double_atom → atom atom

atom → small_letter

| commutator

| associator

| jacobi

| jordan_associator

| artificial_word

| operator_product

| (polynomial)

commutator → [polynomial, polynomial]

associator → (polynomial, polynomial, polynomial)

jacobi → J (polynomial, polynomial, polynomial)

jordan_associator → < polynomial, polynomial, polynomial >

artifcial_word → W { int; letter_list }

letter_list → small_letter

| letter_list : small_letter

operator_product → { atom operator_list }

operator_list → operator

| operator_list operator

operator → atom‘
| atom’

12

int: Positive. Sequence of digits not beginning with 0.

REFERENCES

[DZ] A. Dzhumadil’daev, P. Zusmanovich, The alternative operad is not Koszul, Experiment. Math. 20 (2011),

no. 2, 138–144; Corrigendum: 21 (2012), no. 4, 418.

[JMO] D.P. Jacobs, S.V. Muddana, A.J. Offutt, A computer algebra system for nonassociative identities, Hadronic

Mechanics and Nonpotential Interactions, Part 1 (ed. H.C. Myung), Nova Sci. Publ., 1993, 185–195.

[HJ1] I.R. Hentzel, D.P. Jacobs, A dynamic programming method for building free algebras, Comput. Math. Appl.

22 (1991), no.12, 61–66.

[HJ2] I.R. Hentzel, D.P. Jacobs, A condition guaranteeing commutativity, Intern. J. Algebra Comput. 2 (1992),

no.3, 291–295.

[HJK] I.R. Hentzel, D.P. Jacobs, E. Kleinfeld, Rings with (a,b, c) = (a, c,b) and (a, [b, c],d) = 0: a case study using

Albert, Intern. J. Comp. Math. 49 (1993), no.1-2, 19–27.

[HJM] I.R. Hentzel, D.P. Jacobs, S.V. Muddana, Experimenting with the identity (xy)z = y(zx), J. Symb. Comput. 16

(1993), no.3, 289-293; Erratum: 17 (1994), no.2, 213.

[HJPS] I.R. Hentzel, D.P. Jacobs, L.A. Peresi, S.R. Sverchkov, Solvability of the ideal of all weight zero elements in

Bernstein algebras, Comm. Algebra 22 (1994), no.9, 3265–3275.

[HP1] I.R. Hentzel, L.A. Peresi, The nucleus of the free alternative algebra, Experiment. Math. 15 (2006), no.4,

445–470.

[HP2] I.R. Hentzel, L.A. Peresi, Nuclear elements of degree 6 in the free alternative algebra, Experiment. Math. 17

(2008), no.2, 245–255.

[J] D.P. Jacobs, The Albert nonassociative algebra system: a progress report, ISSAC ’94 Proceedings of the

International Symposium on Symbolic and Algebraic Computation, ACM, 1994, 41–44.

[Z] P. Zusmanovich, Special and exceptional mock-Lie algebras, Lin. Algebra Appl. 518 (2017), 79–96.

13

	1. Introduction
	2. Command Language
	2.1. identity command
	2.2. remove command
	2.3. generators command
	2.4. field command
	2.5. build command
	2.6. display command
	2.7. polynomial command
	2.8. xpand command
	2.9. type command
	2.10. view command
	2.11. save command
	2.12. quit command
	2.13. Summary of commands

	3. Basis table and multiplication table
	4. The configuration file
	5. Invoking Albert
	6. Sample Scenario
	7. Polynomial Expression Language
	Appendix A: Formal Grammar
	References

