A variant of Baer's theorem

Pasha Zusmanovich
University of Ostrava

AAA103, Tartu
June 9, 2023

"Baer's theorem", 1952

"If endomorphism rings of vector spaces are isomorphic, then the vector spaces themselves are isomorphic".

More precisely:

Theorem

Let V, W be (infinite-dimensional) vector spaces over a division ring D. If $\Phi: \operatorname{End}_{D}(V) \rightarrow \operatorname{End}_{D}(W)$ is an isomorphism, then there there is an isomorphism $\alpha: V \rightarrow W$ such that

$$
\Phi(f)=\alpha \circ f \circ \alpha^{-1}
$$

for any $f \in \operatorname{End}_{D}(V)$.

A bit of history

- Eidelheit, Mackey, et al. (end of 1930s-1940s): analytic setting (bounded operators on Banach spaces, continuous operators on normed spaces)
- Dieudonné, Jacobson (1940s): rings of finitary linear maps
- Baer (1952): using properties of idempotents
- Wolfson (1953, PhD thesis under Baer): using Jacobson's density theorem
- Racine (1998), Balaba (2005): super- and graded cases
- lot of authors: modules over abelian groups ("Baer-Kaplansky theorem")

Another variant of Baer's theorem

Instead of $\operatorname{End}_{D}(V)$, or its subring $\operatorname{FEnd}_{D}(V)$ of finitary linear maps, consider $\mathrm{FEnd}_{D}(V, \Pi)$, the ring generated by all "infinitesimal transvections"

$$
t_{v, f}: u \mapsto v f(u)
$$

where Π is a subspace of $V^{*}, v \in V, f \in \Pi$.

Another variant of Baer's theorem (cont.)

Theorem

Let V, W be right vector spaces over a division ring D, Π a nonzero finite-dimensional subspace of V^{*}, Γ a finite-dimensional subspace of W^{*}, and $\Phi: \operatorname{FEnd}_{D}(V, \Pi) \rightarrow \operatorname{FEnd}_{D}(W, \Gamma)$ an isomorphism of D-algebras. Then there is an isomorphism of D-vector spaces $\alpha: V \rightarrow W$ such that

$$
\Phi(f)=\alpha \circ f \circ \alpha^{-1}
$$

for any $f \in \operatorname{FEnd}_{D}(V, \Pi)$.

Idea of the proof

FEnd $_{D}(V, \Pi)$ generally, does not have idempotents, and Jacobson's density theorem does not hold, so all previous methods will not work.

Instead, write $\operatorname{FEnd}_{D}(V, \Pi)$ as $V \otimes_{D} \Pi$ and use elementary linear algebra:
$\operatorname{Hom}_{D}\left(V \otimes_{D} \Pi, W \otimes_{D} \Gamma\right) \simeq \operatorname{Hom}_{D}(V, W) \otimes_{D} \operatorname{Hom}_{D}(\Pi, \Gamma)$,
Hence Φ belonging to the left-hand side can be written as some element of the tensor product at the right-hand side of $\operatorname{rank} \mathrm{rk}(\Phi)$.

Idea of the proof (cont.)

The crucial lemma

$$
\operatorname{Tr} \Phi(\xi)=\operatorname{rk}(\Phi) \operatorname{Tr}(\xi)
$$

for any $\xi \in V \otimes_{D} \Pi$.
Apply the crucial lemma for Φ and for Φ^{-1} to get $\mathrm{rk}(\Phi)=1$, and the rest is trivial.

Open question

What about Lie and Jordan rings $\operatorname{FEnd}_{D}(V)^{(\pm)}, \operatorname{FEnd}_{D}(V, \Pi)^{(\pm)}$?

That's all. Thank you.

