Lie *p*-algebras of cohomological dimension one

Pasha Zusmanovich

University of Ostrava

7ECM, Berlin July 19, 2016

(Based in arXiv:1601.00352)

What is cohomological dimension?

A – an object in a category with "good" cohomology theory (Lie algebras, associative algebras, groups, ...)

Cohomological dimension of A: the least number n such that

 $\mathsf{H}^{n+1}(A,\,\cdot\,)=0$

A natural question

Objects of "small" cohomological dimension (say, \leq 1).

Example

Free objects have cohomological dimension 1.

Groups of cohomological dimension ≤ 1

Elementary fact

Groups of cohomological dimension 0 are trivial.

A classical theorem (Stallings, Swan, late 1960s) Groups of cohomological dimension 1 are free.

Associative algebras of cohomological dimension ≤ 1

A classical result

(Eilenberg, Hochschild, Rosenberg, Zelinsky, ..., 1940-1950s)

Associative algebras of cohomological dimension 0 are finite-dimensional separable algebras (roughly, semisimple algebras).

Associative algebras of cohomological dimension 1: interesting, but messy (Cuntz–Quillen, 1995).

Lie algebras of cohomological dimension ≤ 1

Elementary fact

Lie algebras of cohomological dimension 0 are trivial.

Question (Bourbaki)

Is it true that Lie algebras of cohomological dimension 1 are free?

Theorem (G.L. Feldman, 1983)

Yes, for 2-generated algebras.

Theorem (A.A. Mikhalev–Umirbaev–Zolotykh, 1994) No, generally. Example:

$$\langle x, y, z \mid x + [y, z] + (\operatorname{ad} x)^{p} z = 0 \rangle$$

over a field of characteristic p > 2.

Lie algebras of cohomological dimension 1

Remaining questions

What about characteristic 0? characteristic 2? Lie p-algebras?

Main fact about cohomological dimension

Cohomological dimension does not increase when passing to subalgebras. In particular, the class of Lie algebras of cohomological dimension 1 is closed with respect to subalgebras.

Proof

Shapiro's lemma about cohomology of coinduced modules.

Lie *p*-algebras of cohomological dimension 1

Example

Free Lie *p*-algebras have cohomological dimension ∞ .

Proof

The free Lie *p*-algebra of rank 1, $\langle x, x^{[p]}, x^{[p]^2}, \ldots \rangle$, is infinite-dimensional and abelian, hence has cohomological dimension ∞ .

Theorem

A Lie *p*-algebra of cohomological dimension 1 is 1-dimensional.

Proof

The condition

$$x^{[p]} = \lambda(x)x$$

+ Feldman's result.

On the condition $x^{[p]} = \lambda(x)x$

A famous question (Jacobson, 1960s) Is a Lie *p*-algebra satisfying

$$x^{[p]^{n(x)}} = x,$$

abelian?

Theorem

A Lie p-algebra over an algebraically closed field satisfying

$$x^{[p]^{n(x)}} = \lambda(x)x,$$

with n(x)'s bounded, contains a nonzero *p*-nilpotent element.

Corollary

An alternative proof of the theorem about Lie *p*-algebras of cohomological dimension one.

Lie *p*-algebras of *restricted* cohomological dimension ≤ 1

Category of Lie *p*-algebras:

restricted cohomology \rightsquigarrow restricted cohomological dimension (cd_{*})

Theorem (Hochschild, 1950s)

Lie p-algebras of restricted cohomological dimension 0 are finite-dimensional tori.

Examples

Let

$$0 \rightarrow L_1 \rightarrow L \rightarrow L_2 \rightarrow 0.$$

Then

$$\mathsf{cd}_*(\mathcal{L}_1) = egin{matrix} 0 \\ 1 \end{bmatrix}$$
 and $\mathsf{cd}_*(\mathcal{L}_2) = egin{matrix} 1 \\ 0 \end{bmatrix}$ \Rightarrow $\mathsf{cd}_*(\mathcal{L}) = 1.$

(Follows from the Lyndon-Hochschild-Serre spectral sequence).

Lie *p*-algebras of restricted cohomological dimension 1

Conjecture

Any Lie p-algebra of restricted cohomological dimension 1 is of the form

$$(\ldots(\mathscr{L}\bowtie T_1)\bowtie T_2)\ldots)\bowtie T_n,$$

where \mathscr{L} is a free Lie *p*-algebra, T_i 's are finite-dimensional tori, and $\bowtie \in \{\rtimes, \ltimes\}$.

Some facts supporting the conjecture

For a Lie *p*-algebra of restricted cohomological dimension 1 the following holds:

- A *p*-subalgebra is either a torus, or is infinite-dimensional.
- ► An abelian *p*-subalgebra is either a torus, or (the free Lie *p*-algebra of rank 1) ⊕ (torus).
- It has (ordinary) cohomological dimension ∞ .

That's all. Thank you.