On correlation matrices and versal deformations

Pasha Zusmanovich

University of Ostrava

Mathematics, Modeling and Data Science Workshop Mulhouse December 2017

1/8Matrix nearness problem

A problem: given a square (symmetric) matrix, find the nearest correlation matrix.

The problem is difficult (Higham, Boyd, ...)

^{2/8} ... and its occurrence in "real life"

(Huge) "correlation" matrices, computed by bankers, are almost never positive-semidefinite (but they have to be).

... and its pedestrian "solution"

Let A be a symmetric matrix which need to be approximated.

- 1. Do the spectral decomposition: $A = BJB^{\top}$.
- 2. Get a "corrected" diagonal matrix \widehat{J} by replacing negative eigenvalues in J by "small" positive ones.
- 3. Go back to the whole matrix: $\widehat{A} = B \widehat{J} B^{\top}$.
- 4. Normalize: $\frac{\hat{a}_{ij}}{\sqrt{\hat{a}_{ii}\hat{a}_{jj}}}$.

This is not a real solution of the problem, but it works surprisingly well. Why?

Arnold's theory of versal deformations of matrices

V.I. Arnold, *On matrices depending on parameters*, Russ. Math. Surv. **26** (1971), N2, 29–43.

"Jordan normal form" for a smooth family of matrices.

4/8

.. and its application

That means that for a diagonalizable matrix with a simple spectrum all matrices "sufficiently close" to it are obtained by "slightly perturbing" eigenvalues.

Hence, if we know *apriori* that a "close" correlation matrix exists, it can be obtained by the procedure described above.

^{6/3} Another problem: justification of CONCOR

Iterative correlation matrices:

 $A \mapsto$ matrix of correlations between rows (or columns) of A; iterate this procedure.

In practice, it "almost always" converges to a matrix consisting of 1 and -1, what can be used in (sort of) clustering of the initial data, but a rigorous proof of this is absent.

^{7/8} Iterative correlations can be chaotic

An example of "bad" matrix with chaotic convergence:

/ 1	-0.7333333333333333333333333333333333333	-0.2	0.2
-0.733333333333	1	-0.2	0.2
-0.2	-0.2	1	0.333333333333
0.2	0.2	0.333333333333	1 /

^{8/8} Can Arnold's theory help?

Some works (e.g., J.B. Kruskal, A theorem about CONCOR, Technical Report, Bell Lab., 1978) suggest that if the initial matrix is "close enough" to a matrix consisting of ± 1 , then its iterative correlations converge.

Can Arnold's theory of versal deformations help?

Partially based on: J. Nonlin. Math. Phys. 20 (2013), N3, 431–439 = arXiv:1303.3226

Slides at http://www1.osu.cz/~zusmanovich/math.html

That's all. Thank you.