On correlation matrices and versal deformations

Pasha Zusmanovich

University of Ostrava

Mathematics, Modeling and Data Science Workshop
Mulhouse
December 2017

Matrix nearness problem

A problem: given a square (symmetric) matrix, find the nearest correlation matrix.

The problem is difficult (Higham, Boyd, ...)

... and its occurrence in "real life"

(Huge) "correlation" matrices, computed by bankers, are almost never positive-semidefinite (but they have to be).

... and its pedestrian "solution"

Let A be a symmetric matrix which need to be approximated.

1. Do the spectral decomposition: $A=B J B^{\top}$.
2. Get a "corrected" diagonal matrix \widehat{J} by replacing negative eigenvalues in J by "small" positive ones.
3. Go back to the whole matrix: $\widehat{A}=B \widehat{J} B^{\top}$.
4. Normalize: $\frac{\widehat{a}_{i j}}{\sqrt{\widehat{a}_{i i} \hat{a}_{j j}}}$.

This is not a real solution of the problem, but it works surprisingly well. Why?

Arnold's theory of versal deformations of matrices

V.I. Arnold, On matrices depending on parameters, Russ. Math. Surv. 26 (1971), N2, 29-43.
"Jordan normal form" for a smooth family of matrices.

. and its application

That means that for a diagonalizable matrix with a simple spectrum all matrices "sufficiently close" to it are obtained by "slightly perturbing" eigenvalues.

Hence, if we know apriori that a "close" correlation matrix exists, it can be obtained by the procedure described above.

Another problem: justification of CONCOR

Iterative correlation matrices:
$A \mapsto$ matrix of correlations between rows (or columns) of A; iterate this procedure.

In practice, it "almost always" converges to a matrix consisting of 1 and -1 , what can be used in (sort of) clustering of the initial data, but a rigorous proof of this is absent.
${ }^{7 / 8}$ Iterative correlations can be chaotic

An example of "bad" matrix with chaotic convergence:

$$
\left(\begin{array}{llll}
1 & -0.73333333333 & -0.2 & 0.2 \\
-0.73333333333 & 1 & -0.2 & 0.2 \\
-0.2 & -0.2 & 1 & 0.33333333333 \\
0.2 & 0.2 & 0.33333333333 & 1
\end{array}\right)
$$

Can Arnold's theory help?

Some works (e.g., J.B. Kruskal, A theorem about CONCOR, Technical Report, Bell Lab., 1978) suggest that if the initial matrix is "close enough" to a matrix consisting of ± 1, then its iterative correlations converge.

Can Arnold's theory of versal deformations help?

Partially based on:
J. Nonlin. Math. Phys. 20 (2013), N3, 431-439 = arXiv:1303.3226

Slides at http://www1.osu.cz/~zusmanovich/math.html

That's all. Thank you.

