On contact brackets on the tensor product

Pasha Zusmanovich

University of Ostrava

IV International Workshop on Non-Associative Algebras in
Covilhã
October 24, 2022

Poisson brackets

A associative commutative algebra with unit, with the skew-symmetric bracket $[\cdot, \cdot]$

$$
\begin{aligned}
& {[a b, c]=[a, c] b+[b, c] a} \\
& {[[a, b], c]+[[c, a], b]+[[b, c], a]=0}
\end{aligned}
$$

A paradigmatic example
D, F derivations of A

$$
[a, b]=D(a) F(b)-F(a) D(b)
$$

Fact

For any Poisson brackets $[\cdot, \cdot]_{A}$ on A, and $[\cdot, \cdot]_{B}$ on B, there is a Poisson bracket $[\cdot, \cdot]$ on $A \otimes B$ extending $[\cdot, \cdot]_{A}$ and $[\cdot, \cdot]_{B}$.

Proof
$\left[a \otimes b, a^{\prime} \otimes b^{\prime}\right]=\left[a, a^{\prime}\right]_{A} \otimes b b^{\prime}+a a^{\prime} \otimes\left[b, b^{\prime}\right]$
(tensor product of Poisson algebras).

Contact brackets

A associative commutative algebra with unit, with the skew-symmetric bracket $[\cdot, \cdot]$

$$
\begin{aligned}
& {[a b, c]=[a, c] b+[b, c] a+[c, 1] a b} \\
& {[[a, b], c]+[[c, a], b]+[[b, c], a]=0}
\end{aligned}
$$

A paradigmatic example
D a derivation of A

$$
[a, b]=D(a) b-D(b) a
$$

Question (Martínez-Zelmanov 2019)
Does for any Poisson bracket $[\cdot, \cdot]_{A}$ on A, and contact bracket $[\cdot, \cdot]_{B}$ on B, there exist a contact bracket $[\cdot, \cdot]$ on $A \otimes B$ extending $[\cdot, \cdot]_{A}$ and $[\cdot, \cdot]_{B}$?

Answer
Yes \& No.
"No" generally: a "minimal" example
$A=K[x, y] /\left(x^{2}, y^{2}\right)$ with Poisson bracket $[x, y]_{A}=x y$
$B=K[x] /\left(x^{2}\right)$ with contact bracket $[1, x]_{B}=x$

How to describe structures on the tensor product?

Let one of A, B is finite-dimensional. Then

$$
\operatorname{Hom}_{K}(A \otimes B \otimes A \otimes B) \simeq \operatorname{Hom}_{K}(A \otimes A, A) \otimes \operatorname{Hom}_{K}(B \otimes B, B)
$$

so any contact bracket on $A \otimes B$ is of the form

$$
\left[a \otimes b, a^{\prime} \otimes b^{\prime}\right]=\sum_{i} f_{i}\left(a, a^{\prime}\right) \otimes g_{i}\left(b, b^{\prime}\right)
$$

We deal with multiple conditions of the form $\sum_{i} S\left(f_{i}\right) \otimes T\left(g_{i}\right)=0$ for some linear operators S and T. For example, symmetrizing and substituting 1 in the "contact condition" for this bracket, we get

$$
\sum_{i}\left(f_{i}\left(a, a^{\prime \prime}\right) a^{\prime}-f_{i}\left(a^{\prime}, a^{\prime \prime}\right) a\right) \otimes\left(g_{i}\left(b, b^{\prime \prime}\right) b^{\prime}-g_{i}\left(b^{\prime}, b^{\prime \prime}\right) b\right)=0 .
$$

As $\operatorname{Ker}(S \otimes T) \simeq \operatorname{Ker}(S) \otimes \cdot+\cdot \otimes \operatorname{Ker}(T)$, we may "partition" the set of indices i such that either $S\left(f_{i}\right)=0$, or $T\left(g_{i}\right)=0$.
The lemma on the next slide tells that we may do that simultaneously for two such conditions.

An old lemma and an application
An old lemma (Zusmanovich 2005)
Let U, W be two vector spaces, $S, S^{\prime} \in \operatorname{Hom}(U, \cdot)$, $T, T^{\prime} \in \operatorname{Hom}(W, \cdot)$. Then

$$
\begin{aligned}
\operatorname{Ker}(S \otimes & T) \cap \operatorname{Ker}\left(S^{\prime} \otimes T^{\prime}\right) \\
& \simeq\left(\operatorname{Ker} S \cap \operatorname{Ker} S^{\prime}\right) \otimes W \\
& +\operatorname{Ker} S \otimes \operatorname{Ker} T^{\prime} \\
& +\operatorname{Ker} S^{\prime} \otimes \operatorname{Ker} T \\
& +U \otimes\left(\operatorname{Ker} T \cap \operatorname{Ker} T^{\prime}\right) .
\end{aligned}
$$

An example of application

$$
\mathcal{K}^{-}\left(A \otimes K[x] /\left(x^{2}\right)\right) \simeq \mathcal{K}^{-}(A) \oplus \mathcal{K}^{-}(A) \oplus \operatorname{Der}(A) \oplus A,
$$

where $\mathcal{K}^{-}(A)$ is the space of skew-symmetric linear maps on A with the "contact condition".
"Yes" for polynomial(-like) algebras

For some algebras, each contact bracket is the sum of paradigmatic examples, i.e., is of the form

$$
\sum_{i}\left(D_{i}(a) F_{i}(b)-D_{i}(b) F_{i}(a)\right)+D(a) b-D(b) a .
$$

Examples: $K\left[x_{1}, \ldots, x_{n}\right]$ and $K\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$.
For such algebras A and B, any contact brackets on A and B are extended to a contact bracket on $A \otimes B$.

The text is available as
https://web.osu.cz/~Zusmanovich/papers/tensprodcontact.pdf

That's all. Thank you.

