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Zilber’s program

Treatment of quantum mechanics (and foundations of physics in
general) from the point of view of model theory. The main goal is
to (properly) handle infinities in physics.
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Zilber’s program

Some highlights:

I Physics practice (finite computations) dictate that it should
be treated in the scope of a first-order, and not higher order,
theory.

I Instead of analytic continuity consider continuity in terms of
Zariski topology.

I Physics should be based on mathematical structures which are
categorical (for example, C qualifies, while R does not).
Reasons: such structures 1) exhibit homogeneity 2) allow
notion of dimension.

I The physical principle “quantum mechanics applied to ’large’
structures degenerates to classical mechanics” translates to
mathematical principle of “finite approximation”: ’large’ finite
structures are treated as infinite ones having first-order
categorical theory.
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Some parallel developments

(All around 2013–2014)

I Chalons & Ressayre
Phenomenological approach to quantum mechanics:
mathematical objects exist up to an error in their transmission.
Technical tool: predicate-like calculus of binary relations.

I Kapustin, Moldoveanu
System of axioms, basing on category theory, and involving
some Lie-algebraic structures, leading to Quantum Mechanics
as the only possible theory. (Sort of) continuity is assumed,
appearance of C follows from axioms.

I Kornyak
“Quantum discrete dynamical systems”. Discretize
everything; instead of R or C, use cyclotomic fields.
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Approximation according to Zilber

Definition
A structure A is approximated by a family of structures {Bi} if
there is a surjection

∏
U Bi (ultraproduct) → A.

Compare with other (more traditional?) notions of approximation:
embedding into direct product or ultraproduct.

Question
Whether (say) SO(3) is approximated by finite groups?

No, if finite groups are simple (Pillay, 2015).
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From ultraproducts to direct products

Theorem (Bergman–Nahlus)

For any cardinal κ > 2, and any algebraic system A consisting of
more than one element, the following are equivalent:

(i) For any surjective homomorphism f :
∏

i∈I Bi → A, | I | < κ,
there is i0 ∈ I such that f factors through the canonical
projection

∏
i∈I Bi → Bi0 .

(ii) For any surjective homomorphism f :
∏

i∈I Bi → A, there is a
κ-complete ultrafilter U on I such that f factors through the
canonical homomorphism

∏
i∈I Bi →

∏
U Bi .

Corollary

Zilber’s question is equivalent to: whether the direct product of
finite groups can be mapped surjectively onto SO(3)?
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That’s all. Thank you.


