Approximability of Lie groups

Pasha Zusmanovich

University of Ostrava

CSASC2016, Barcelona September 22, 2016

Zilber's program

Treatment of quantum mechanics (and foundations of physics in general) from the point of view of model theory. The main goal is to (properly) handle infinities in physics.

Zilber's program

Some highlights:

- Physics practice (finite computations) dictate that it should be treated in the scope of a first-order, and not higher order, theory.
- Instead of analytic continuity consider continuity in terms of Zariski topology.
- Physics should be based on mathematical structures which are categorical (for example, C qualifies, while R does not). Reasons: such structures 1) exhibit homogeneity 2) allow notion of dimension.
- The physical principle "quantum mechanics applied to 'large' structures degenerates to classical mechanics" translates to mathematical principle of "finite approximation": 'large' finite structures are treated as infinite ones having first-order categorical theory.

Some parallel developments

(All around 2013-2014)

Chalons & Ressayre

Phenomenological approach to quantum mechanics: mathematical objects exist up to an error in their transmission. Technical tool: predicate-like calculus of binary relations.

Kapustin, Moldoveanu

System of axioms, basing on category theory, and involving some Lie-algebraic structures, leading to Quantum Mechanics as the only possible theory. (Sort of) continuity is assumed, appearance of $\mathbb C$ follows from axioms.

Kornyak

"Quantum discrete dynamical systems". Discretize everything; instead of $\mathbb R$ or $\mathbb C$, use cyclotomic fields.

3/6

^{4/6} Approximation according to Zilber

Definition

A structure A is approximated by a family of structures $\{B_i\}$ if there is a surjection $\prod_{\mathscr{U}} B_i$ (ultraproduct) $\to A$.

Compare with other (more traditional?) notions of approximation: *embedding* into direct product or ultraproduct.

Question

Whether (say) SO(3) is approximated by finite groups?

No, if finite groups are simple (Pillay, 2015).

From ultraproducts to direct products

Theorem (Bergman-Nahlus)

For any cardinal $\kappa > 2$, and any algebraic system A consisting of more than one element, the following are equivalent:

- (i) For any surjective homomorphism $f : \prod_{i \in \mathbb{I}} B_i \to A$, $|\mathbb{I}| < \kappa$, there is $i_0 \in \mathbb{I}$ such that f factors through the canonical projection $\prod_{i \in \mathbb{I}} B_i \to B_{i_0}$.
- (ii) For any surjective homomorphism $f : \prod_{i \in \mathbb{I}} B_i \to A$, there is a κ -complete ultrafilter \mathscr{U} on \mathbb{I} such that f factors through the canonical homomorphism $\prod_{i \in \mathbb{I}} B_i \to \prod_{\mathscr{U}} B_i$.

Corollary

Zilber's question is equivalent to: whether the *direct product* of finite groups can be mapped surjectively onto SO(3)?

5/6

B. Zilber, *Perfect infinities and finite approximation*, Infinity and Truth (ed. C. Chong et al.), World Scientific, 2014, 199–223.

P. Zusmanovich, *On the utility of Robinson–Amitsur ultrafilters. I, II*, J. Algebra **388** (2013), 268–286; **466** (2016), 370–377; arXiv: 0911.5414, 1508.07496

That's all. Thank you.