Lie algebras, their invariants, and applications Habilitační přednáška

Pasha Zusmanovich

University of Ostrava

November 12, 2015

A terminological note

Lie algebras, Lie groups (objects)

Sophus Lie (a person)

1/11

What Lie algebras are good for?

Groups \rightsquigarrow Lie groups \rightsquigarrow Lie algebras

What Lie algebras are good for?

Groups → Lie groups → Lie algebras

Groups = symmetries

What Lie algebras are good for?

Groups \rightsquigarrow Lie groups \rightsquigarrow Lie algebras

Lie groups = continuous symmetries

$$\frac{\partial u}{\partial t} - \lambda \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 0$$

$\frac{\partial}{\partial x}$	space translation	
$\frac{\partial}{\partial t}$	time translation	
$u\frac{\partial}{\partial u}$	scalings	
$x\frac{\partial}{\partial x} + 2t\frac{\partial}{\partial t}$	Seamgs	
$2t\frac{\partial}{\partial x} - xu\frac{\partial}{\partial u}$	Galilean transform	
$4xt\frac{\partial}{\partial x} + 4t^2\frac{\partial}{\partial t} - (x^2 + 2t)u\frac{\partial}{\partial u}$	inversion	
$\alpha(x,t)\frac{\partial}{\partial u}$	linear transforms	

What Lie algebras are good for?

Groups \rightsquigarrow Lie groups \rightsquigarrow Lie algebras

Lie algebras = linearizations of Lie groups

	е	h	f
е	0	-2 <i>e</i>	h
h	2 <i>e</i>	0	-2f
f	-h	2 <i>f</i>	0

What Lie algebras are good for?

Genetic code ~> representations of Lie algebras

Bernar Venet, Acrylic on wall, 2002

Cohomology of Lie algebras

7/11

What cohomology of Lie algebras is good for?

Quantum mechanics: uncertainty principle ~ 2nd cohomology

What cohomology of Lie algebras is good for? Deformations ~ 2nd and 3rd cohomology

اتے

٦,

Relativity theory

Quantum mechanics

Classical mechanics

اتہ

Anatoly Fomenko, Deformation of the Riemann Surface of an Algebraic Function, India ink and pencil on paper, 44×62 cm, 1983

What else homological algebra is good for?

Clustering

Number of clusters = 0th cohomology

What else?

My other interests:

- History
- Mathematical Logic
- Combinatorics
- Analysis (divergent series)
- Symbolic computations
- Statistics
- Applications of mathematics to biology

two the way of Linding the constant is as follows
$$4t^{2}$$

Let us take the second $1+1+3+4+5+3c$. Let Cheils con
- stant. Then $c = 1+2+3+4+3c$
 $i+c = 4 + F + 8cc$
 $i-3c = 1-2+3-4+bc = (1+i)c = \frac{1}{2}$
 $i = \frac{1}{12}$

To je vše. Děkuji.