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A theorem from 1960s

Theorem (Amitsur, Robinson)

If a prime associative ring R embeds in the direct product of
associative division rings, then R embeds in an associative division
ring.

Reminder 1
An (associative) ring R is called prime if one of the following
equivalent conditions holds:

(i) ∀ I , J / R I , J 6= 0⇒ IJ 6= 0;

(ii) ∀a, b ∈ R, a, b 6= 0 ∃x ∈ R : axb 6= 0.

Reminder 2
A ring R is called division ring if
∀a, b ∈ R ∃x , y ∈ R : ax = b & ya = b.
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The proof

The proof uses an ultrafilter constructed from the given embedding
R ⊆

∏
i∈I Ai .
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Reminder
An ultrafilter U on a set I is a set of subsets of I satisfying the
following conditions:

1. ∅ /∈ U
2. X, Y ∈ U ⇒ X ∩ Y ∈ U
3. X ∈ U , X ⊂ Y⇒ Y ∈ U
4. ∀X ⊂ I (X ∈ U) ∨ (I\X ∈ U) (maximality)

Examples

A principal ultrafilter : {X ⊂ I | i ∈ X} for some i ∈ I.
A cofinite filter : {X ⊂ I | I\X is finite}.
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The proof (cont.)

Fact
Any set S satisfying:

X, Y ∈ S ⇒ X ∩ Y 6= ∅
(finite intersection property)

contained in some filter and hence (by Zorn’s lemma) in some
ultrafilter.

Reminder
Let U be an ultrafilter on I. An ultraproduct of a set of rings
{Ai}i∈I is the ring∏

U
Ai =

(∏
i∈I

Ai

)/
{f | {i ∈ I | fi = 0} ∈ U}.

If Ai ' A, we have an ultrapower AU .
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The proof (cont.)

 Loś’ theorem
For any first-order sentence ϕ,∏

U
Ai |= ϕ ⇔ {i ∈ I | Ai |= ϕ} ∈ U .

In particular,

Th
(∏

U
Ai

)
⊇
⋂
i∈I

Th(Ai )

and
AU ≡ A.
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The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding
R ⊆

∏
i∈I Ai .

Define S = {{i ∈ I | fi 6= 0} | f ∈ R, f 6= 0}.
Which (ultra)filter properties it satisfies?
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The proof uses an ultrafilter constructed from the given embedding
R ⊆

∏
i∈I Ai .

Define S = {{i ∈ I | fi 6= 0} | f ∈ R, f 6= 0}.
Which (ultra)filter properties it satisfies?

1. ∅ /∈ S
2. X, Y ∈ S ⇒ X ∩ Y ∈ S

X, Y ∈ S ⇒ ∃Z ∈ S : Z ⊂ X ∩ Y
X = {i ∈ I | fi 6= 0}, 0 6= f ∈ R
Y = {i ∈ I | gi 6= 0}, 0 6= g ∈ R
Since R is prime, there is x ∈ R such that fxg 6= 0, and

Z = {i ∈ I | (fxg)i = fixigi 6= 0} ⊂ {i ∈ I | fi 6= 0} = X
⊂ {i ∈ I | gi 6= 0} = Y.
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The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding
R ⊆

∏
i∈I Ai .

Define S = {{i ∈ I | fi 6= 0} | f ∈ R, f 6= 0}.
Which (ultra)filter properties it satisfies?

1. ∅ /∈ S
2. X, Y ∈ S ⇒ X ∩ Y ∈ S

X, Y ∈ S ⇒ ∃Z ∈ S : Z ⊂ X ∩ Y

3. X ∈ U , X ⊂ Y⇒ Y ∈ U
4. ∀X ⊂ I (X ∈ U) ∨ (I\X ∈ U)

S contained in some ultrafilter U .

R = R
/(

R ∩ {f ∈
∏
i∈I

Ai | {i ∈ I | fi = 0} ∈ U}
)
⊆
∏
U

Ai .
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A generalization

Theorem (“Robinson–Amitsur for algebras”)

If a prime (nonassociative) algebra R embeds in the direct product∏
i∈I Ai , then R embeds in an ultraproduct

∏
U Ai .

Definition
A (nonassociative) algebra is called prime if one of the following
equivalent conditions holds:

(i) ∀ I , J / R I , J 6= 0⇒ IJ 6= 0;

(ii) ∀a, b ∈ R, a, b 6= 0 there is a nonzero word in elements of R
containing a, b.
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A question

Does the converse is true (at least in the associative case)?
Suppose that for an algebra R the following holds: for any set of
algebras {Ai}i∈I, if R embeds in the direct product

∏
i∈I Ai , then

R embeds in an ultraproduct
∏
U Ai . Does this imply that R is

prime? that R satisfies any other natural structural condition?
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Birkhoff meets Robinson–Amitsur

Birkhoff’s theorem
A class of algebras is a variety iff it is closed under subalgebras,
quotients and direct products.

Corollary (Birkhoff + Robinson–Amitsur)

A prime relatively free algebra F in a variety Var(A) embeds in an
ultrapower AU .
Proof. By Birkhoff’s theorem, F = B/I for some B ⊆ AI and
I / B. By the universal property of F , it embeds in B and hence in
AI. Apply Robinson–Amitsur for algebras.
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Criterion for absence of non-trivial identities of algebras

Theorem
For an algebra R over a field K belonging to one of the following
variety of algebras: all algebras, associative algebras, or Lie
algebras, the following is equivalent:

(i) R does not satisfy a nontrivial identity;

(ii) A free algebra embeds in an ultrapower of R;

(iii) A free algebra embeds in an algebra elementary equivalent to
R.

(ii) ⇒ (iii) ⇒ (i) are trivial.
(i) ⇒ (ii) “almost” follows from “Birkhoff + Robinson–Amitsur”.
Two issues:

I Whether a free algebra is prime?

I “Birkhoff + Robinson–Amitsur” gives embedding on the level
of K -algebras, not of KU -algebras.
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In which varieties free algebras are prime?

name identities why?
all algebras yes no zero divisors
associative (xy)z = x(yz) yes

Lie xy = −yx yes Shirshov–Witt
(xy)z + (zx)y + (yz)x = 0 theorem

alternative (xx)y = x(xy) no explicit example
(xy)y = x(yy)

Jordan xy = yx no explicit example
(xy)(xx) = x(y(xx))
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K -algebras vs. KU -algebras

“Birkhoff + Robinson–Amitsur” establishes embedding (under
appropriate conditions) of K -algebras:

F ⊆ AU .

To be able to apply  Loś’ theorem, one needs embedding of
KU -algebras:

KUF ⊆ AU .

By the universal property of the tensor product, we have a
surjection

F ⊗K KU → KUF ,

but, generally, this is far from being an isomorphism. This is so,
however, if F does not have commutative subalgebras of
dimension > 1, in particular, for absolutely free, free associative
and free Lie algebras.
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“Robinson–Amitsur for groups”

Theorem
If a group G , all whose abelian subgroups are cyclic either of prime
order, or of infinite order, embeds in the direct product

∏
i∈I Fi of

groups, then G embeds in an ultraproduct
∏
U Fi .

Question
Does the converse is true?
Suppose that for a group G the following holds: for any set of
groups {Fi}i∈I, if G embeds in the direct product

∏
i∈I Fi , then G

embeds in an ultraproduct
∏
U Fi . Could G be characterized in

terms of some structural properties?
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Criterion for absence of non-trivial identities of groups

Theorem
For a group G the following is equivalent:

(i) G does not satisfy a nontrivial identity;

(ii) A nonabelian free group embeds in an ultrapower of G ;

(iii) A nonabelian free group embeds in a group elementary
equivalent to G .

Question
Semigroups?
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Application: PI

Theorem (Regev, 1972)

If A, B are PI, then A⊗ B is PI.

Theorem (Procesi–Small, 1968)

If A = Mn(K ), and B is PI, then A⊗ B is PI.

Theorem
If A is finite-dimensional, B is PI, then A⊗ B is PI.

Proof. Suppose the contrary. Then a free associative algebra of
exponential growth embeds in

(A⊗K B)U ' (A⊗K KU )⊗KU BU

of polynomial growth, a contradiction.
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Application: algebras with same identities

Theorem (Razmyslov, 1982)

If g1, g2 are finite-dimensional simple Lie algebras over an
algebraically closed field of characteristic 0, then
Var(g1) = Var(g2) iff g1 ' g2.

Theorem (Drensky–Racine, 1992)

Ditto for finite-dimensional simple Jordan algebras.

Joint proof. Using the fact that in these classes of algebras
primeness is equivalent to simplicity, and by the embedding
machinery above, reduced to the case where g1 ⊆ g2, which
follows easily from the known structural results.
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Application: Tarski’s monsters

Rips (197?), Olshanskii (1979)

Girth of groups

Schleimer (2000), Akhmedov (2003)

Growth sequence

Number of generators of G × · · · × G (n times).
Wise (2002): groups with growth sequence equal to 2.

Theorem

(i) A Tarski’s monster of type p does not satisfy any nontrivial
identity except xp = 1 and its consequences, iff it has infinite
relative girth.

(ii) A Tarski’s monster of type ∞ does not satisfy any nontrivial
identity iff it has infinite girth.

(iii) Growth sequence of Tarski’s monsters satisfying conditions (i)
or (ii), is 2.
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Speculations

Lie-algebraic analogs of Tarski’s monsters

Do there exist infinite-dimensional Lie algebras all whose proper
subalgebras are 1-dimensional?

Tits’ alternative
Tits (1972): a linear group contains either a solvable subgroup of
finite index, or a nonabelian free subgroup.
Platonov (1967): a linear group which satisfies a nontrivial
identity, contains a solvable subgroup of finite index.

Jacobson’s problem

In a Lie p-algebra, does xpn(x)
= x imply abelianity?

Weaker question: does it imply a nontrivial identity?
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That’s all. Thank you.

Based on arXiv:0911.5414 .
Slides at http://justpasha.org/math/iceland-2010.pdf .


