On the utility of Robinson-Amitsur ultrafilter

Pasha Zusmanovich

September 13, 2010

A theorem from 1960s

Theorem (Amitsur, Robinson)

If a prime associative ring R embeds in the direct product of associative division rings, then R embeds in an associative division ring.

A theorem from 1960s

Theorem (Amitsur, Robinson)

If a prime associative ring R embeds in the direct product of associative division rings, then R embeds in an associative division ring.

Reminder 1

An (associative) ring R is called *prime* if one of the following equivalent conditions holds:

(i)
$$\forall I, J \triangleleft R \ I, J \neq 0 \Rightarrow IJ \neq 0;$$

(ii) $\forall a, b \in R, a, b \neq 0 \exists x \in R : axb \neq 0.$

A theorem from 1960s

Theorem (Amitsur, Robinson)

If a prime associative ring R embeds in the direct product of associative division rings, then R embeds in an associative division ring.

Reminder 1

An (associative) ring R is called *prime* if one of the following equivalent conditions holds:

(i)
$$\forall I, J \triangleleft R \ I, J \neq 0 \Rightarrow IJ \neq 0;$$

(ii) $\forall a, b \in R, a, b \neq 0 \exists x \in R : axb \neq 0.$

Reminder 2 A ring *R* is called *division ring* if $\forall a, b \in R \exists x, y \in R : ax = b \& ya = b.$

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Reminder

An *ultrafilter* $\mathcal U$ on a set $\mathbb I$ is a set of subsets of $\mathbb I$ satisfying the following conditions:

- 1. $\emptyset \notin \mathcal{U}$
- 2. $\mathbb{X}, \mathbb{Y} \in \mathcal{U} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{U}$
- 3. $\mathbb{X} \in \mathcal{U}, \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathbb{Y} \in \mathcal{U}$
- $\textbf{4. } \forall \mathbb{X} \subset \mathbb{I} \quad (\mathbb{X} \in \mathcal{U}) \lor (\mathbb{I} \backslash \mathbb{X} \in \mathcal{U}) \text{ (maximality)}$

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Reminder

An *ultrafilter* $\mathcal U$ on a set $\mathbb I$ is a set of subsets of $\mathbb I$ satisfying the following conditions:

- 1. $\emptyset \notin \mathcal{U}$
- 2. $\mathbb{X}, \mathbb{Y} \in \mathcal{U} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{U}$
- 3. $\mathbb{X} \in \mathcal{U}, \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathbb{Y} \in \mathcal{U}$
- 4. $\forall \mathbb{X} \subset \mathbb{I} \quad (\mathbb{X} \in \mathcal{U}) \lor (\mathbb{I} \backslash \mathbb{X} \in \mathcal{U}) \text{ (maximality)}$

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Reminder

An *ultrafilter* $\mathcal U$ on a set $\mathbb I$ is a set of subsets of $\mathbb I$ satisfying the following conditions:

- 1. $\emptyset \notin \mathcal{U}$
- 2. $\mathbb{X}, \mathbb{Y} \in \mathcal{U} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{U}$
- 3. $\mathbb{X} \in \mathcal{U}, \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathbb{Y} \in \mathcal{U}$
- $\textbf{4. } \forall \mathbb{X} \subset \mathbb{I} \quad (\mathbb{X} \in \mathcal{U}) \lor (\mathbb{I} \backslash \mathbb{X} \in \mathcal{U}) \text{ (maximality)}$

Examples

A principal ultrafilter: $\{\mathbb{X} \subset \mathbb{I} \mid i \in \mathbb{X}\}$ for some $i \in \mathbb{I}$. A cofinite filter: $\{\mathbb{X} \subset \mathbb{I} \mid \mathbb{I} \setminus \mathbb{X} \text{ is finite}\}.$

The proof (cont.)

Fact Any set S satisfying:

 $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \neq \varnothing$ (finite intersection property)

contained in some filter and hence (by Zorn's lemma) in some ultrafilter.

The proof (cont.)

Fact Any set S satisfying:

 $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \neq \emptyset$ (finite intersection property)

contained in some filter and hence (by Zorn's lemma) in some ultrafilter.

Reminder

Let \mathcal{U} be an ultrafilter on \mathbb{I} . An *ultraproduct* of a set of rings $\{A_i\}_{i\in\mathbb{I}}$ is the ring

$$\prod_{\mathcal{U}} A_i = \Big(\prod_{i \in \mathbb{I}} A_i\Big) \Big/ \{f \mid \{i \in \mathbb{I} \mid f_i = 0\} \in \mathcal{U}\}.$$

If $A_i \simeq A$, we have an *ultrapower* $A^{\mathcal{U}}$.

The proof (cont.)

Łoś' theorem For any first-order sentence $\varphi,$

$$\prod_{\mathcal{U}} A_i \models \varphi \quad \Leftrightarrow \quad \{i \in \mathbb{I} \mid A_i \models \varphi\} \in \mathcal{U}.$$

In particular,

$$Th\Big(\prod_{\mathcal{U}}A_i\Big)\supseteq\bigcap_{i\in\mathbb{I}}Th(A_i)$$

 and

$$A^{\mathcal{U}}\equiv A.$$

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

1. $\emptyset \notin S$

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

1.
$$\emptyset \notin S$$

2. $\mathbb{X}, \mathbb{Y} \in S \xrightarrow{?} \mathbb{X} \cap \mathbb{Y} \in S$

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

1. $\emptyset \notin S$

2.
$$X, Y \in S \Rightarrow X \cap Y \in S$$

 $X, Y \in S \Rightarrow \exists \mathbb{Z} \in S : \mathbb{Z} \subset X \cap Y$

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

1. $\emptyset \notin S$

2.
$$X, Y \in S \Rightarrow X \cap Y \in S$$

 $X, Y \in S \Rightarrow \exists \mathbb{Z} \in S : \mathbb{Z} \subset X \cap Y$
 $X = \{i \in I \mid f_i \neq 0\}, 0 \neq f \in R$
 $Y = \{i \in I \mid g_i \neq 0\}, 0 \neq g \in R$
Since *R* is prime, there is $x \in R$ such that $fxg \neq 0$, and

$$\mathbb{Z} = \{i \in \mathbb{I} \mid (f \times g)_i = f_i \times_i g_i \neq 0\} \subset \{i \in \mathbb{I} \mid f_i \neq 0\} = \mathbb{X}$$
$$\subset \{i \in \mathbb{I} \mid g_i \neq 0\} = \mathbb{Y}.$$

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

1. $\emptyset \notin S$

2.
$$\underline{\mathbb{X}}, \underline{\mathbb{Y}} \in \mathcal{S} \Rightarrow \overline{\mathbb{X}} \cap \underline{\mathbb{Y}} \in \mathcal{S}$$

 $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \exists \mathbb{Z} \in \mathcal{S} : \mathbb{Z} \subset \mathbb{X} \cap \mathbb{Y}$
3. $\mathbb{X} \in \mathcal{U}, \mathbb{X} \subset \mathbb{Y} \xrightarrow{?} \mathbb{Y} \in \mathcal{U}$

 $4. \ \forall \mathbb{X} \subset \mathbb{I} \quad (\mathbb{X} \in \mathcal{U}) \lor (\mathbb{I} \backslash \mathbb{X} \in \mathcal{U}) ?$

The proof (cont.)

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_i$.

Define $S = \{\{i \in \mathbb{I} \mid f_i \neq 0\} \mid f \in R, f \neq 0\}$. Which (ultra)filter properties it satisfies?

1.
$$\emptyset \notin S$$

2.
$$\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{S}$$

 $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \exists \mathbb{Z} \in \mathcal{S} : \mathbb{Z} \subset \mathbb{X} \cap \mathbb{Y}$

3.
$$\mathbb{X} \in \mathcal{U}, \mathbb{X} \in \mathbb{Y} \Rightarrow \mathbb{Y} \in \mathcal{U}$$

4. $\forall \mathbb{X} \subset \mathbb{I} \quad (\mathbb{X} \in \mathcal{U}) \lor (\mathbb{I} \backslash \mathbb{X} \in \mathcal{U})$

 ${\mathcal S}$ contained in some ultrafilter ${\mathcal U}.$

$$R = R \Big/ \Big(R \cap \{ f \in \prod_{i \in \mathbb{I}} A_i \mid \{ i \in \mathbb{I} \mid f_i = 0 \} \in \mathcal{U} \} \Big) \subseteq \prod_{\mathcal{U}} A_i.$$

A generalization

Theorem ("Robinson-Amitsur for algebras")

If a prime (nonassociative) algebra R embeds in the direct product $\prod_{i \in \mathbb{I}} A_i$, then R embeds in an ultraproduct $\prod_{\mathcal{U}} A_i$.

A generalization

Theorem ("Robinson–Amitsur for algebras")

If a prime (nonassociative) algebra R embeds in the direct product $\prod_{i \in \mathbb{I}} A_i$, then R embeds in an ultraproduct $\prod_{\mathcal{U}} A_i$.

Definition

A (nonassociative) algebra is called *prime* if one of the following equivalent conditions holds:

- (i) $\forall I, J \triangleleft R \ I, J \neq 0 \Rightarrow IJ \neq 0$;
- (ii) $\forall a, b \in R, a, b \neq 0$ there is a nonzero word in elements of R containing a, b.

A question

Does the converse is true (at least in the associative case)? Suppose that for an algebra R the following holds: for any set of algebras $\{A_i\}_{i \in \mathbb{I}}$, if R embeds in the direct product $\prod_{i \in \mathbb{I}} A_i$, then R embeds in an ultraproduct $\prod_{\mathcal{U}} A_i$. Does this imply that R is prime? that R satisfies any other natural structural condition? Birkhoff meets Robinson-Amitsur

Birkhoff's theorem

A class of algebras is a variety iff it is closed under subalgebras, quotients and direct products.

Birkhoff meets Robinson-Amitsur

Birkhoff's theorem

A class of algebras is a variety iff it is closed under subalgebras, quotients and direct products.

Corollary (Birkhoff + Robinson–Amitsur)

A prime relatively free algebra \mathscr{F} in a variety Var(A) embeds in an ultrapower $A^{\mathcal{U}}$. **Proof.** By Birkhoff's theorem, $\mathscr{F} = B/I$ for some $B \subseteq A^{\mathbb{I}}$ and

 $I \triangleleft B$. By the universal property of \mathscr{F} , it embeds in \overline{B} and hence in $A^{\mathbb{I}}$. Apply Robinson–Amitsur for algebras.

Criterion for absence of non-trivial identities of algebras

Theorem

For an algebra R over a field K belonging to one of the following variety of algebras: all algebras, associative algebras, or Lie algebras, the following is equivalent:

- (i) R does not satisfy a nontrivial identity;
- (ii) A free algebra embeds in an ultrapower of R;
- (iii) A free algebra embeds in an algebra elementary equivalent to R.

Criterion for absence of non-trivial identities of algebras

Theorem

For an algebra R over a field K belonging to one of the following variety of algebras: all algebras, associative algebras, or Lie algebras, the following is equivalent:

- (i) R does not satisfy a nontrivial identity;
- (ii) A free algebra embeds in an ultrapower of R;
- (iii) A free algebra embeds in an algebra elementary equivalent to R.
- (ii) \Rightarrow (iii) \Rightarrow (i) are trivial.

(i) \Rightarrow (ii) "almost" follows from "Birkhoff + Robinson–Amitsur". Two issues:

- Whether a free algebra is prime?
- ► "Birkhoff + Robinson-Amitsur" gives embedding on the level of K-algebras, not of K^U-algebras.

In which varieties free algebras are prime?

name	identities		why?
all algebras		yes	no zero divisors
associative	(xy)z = x(yz)	yes	
Lie	xy = -yx	yes	Shirshov–Witt
	(xy)z + (zx)y + (yz)x = 0		theorem
alternative	(xx)y = x(xy)	no	explicit example
	(xy)y = x(yy)		
Jordan	xy = yx	no	explicit example
	(xy)(xx) = x(y(xx))		

K-algebras vs. $K^{\mathcal{U}}$ -algebras

"Birkhoff + Robinson–Amitsur" establishes embedding (under appropriate conditions) of *K*-algebras:

$$\mathscr{F} \subseteq A^{\mathcal{U}}.$$

To be able to apply Łoś' theorem, one needs embedding of $K^{\mathcal{U}}$ -algebras:

$$K^{\mathcal{U}}\mathscr{F}\subseteq A^{\mathcal{U}}.$$

By the universal property of the tensor product, we have a surjection

$$\mathscr{F}\otimes_{\mathsf{K}}\mathsf{K}^{\mathcal{U}}\to\mathsf{K}^{\mathcal{U}}\mathscr{F},$$

but, generally, this is far from being an isomorphism. This is so, however, if \mathscr{F} does not have commutative subalgebras of dimension > 1, in particular, for absolutely free, free associative and free Lie algebras.

"Robinson-Amitsur for groups"

Theorem

If a group G, all whose abelian subgroups are cyclic either of prime order, or of infinite order, embeds in the direct product $\prod_{i \in \mathbb{I}} F_i$ of groups, then G embeds in an ultraproduct $\prod_{\mathcal{U}} F_i$.

"Robinson-Amitsur for groups"

Theorem

If a group G, all whose abelian subgroups are cyclic either of prime order, or of infinite order, embeds in the direct product $\prod_{i \in \mathbb{I}} F_i$ of groups, then G embeds in an ultraproduct $\prod_{\mathcal{U}} F_i$.

Question

Does the converse is true?

Suppose that for a group G the following holds: for any set of groups $\{F_i\}_{i \in \mathbb{I}}$, if G embeds in the direct product $\prod_{i \in \mathbb{I}} F_i$, then G embeds in an ultraproduct $\prod_{\mathcal{U}} F_i$. Could G be characterized in terms of some structural properties?

Criterion for absence of non-trivial identities of groups

Theorem

For a group G the following is equivalent:

- (i) G does not satisfy a nontrivial identity;
- (ii) A nonabelian free group embeds in an ultrapower of G;
- (iii) A nonabelian free group embeds in a group elementary equivalent to G.

Criterion for absence of non-trivial identities of groups

Theorem

For a group G the following is equivalent:

- (i) G does not satisfy a nontrivial identity;
- (ii) A nonabelian free group embeds in an ultrapower of G;
- (iii) A nonabelian free group embeds in a group elementary equivalent to G.

Question

Semigroups?

Application: PI

Theorem (Regev, 1972) If A, B are PI, then $A \otimes B$ is PI.

Application: PI

Theorem (Regev, 1972) If A, B are PI, then $A \otimes B$ is PI. Theorem (Procesi–Small, 1968) If $A = M_n(K)$, and B is PI, then $A \otimes B$ is PI.

Application: PI

Theorem (Regev, 1972)

If A, B are PI, then $A \otimes B$ is PI.

Theorem (Procesi-Small, 1968)

If $A = M_n(K)$, and B is PI, then $A \otimes B$ is PI.

Theorem

If A is finite-dimensional, B is PI, then $A \otimes B$ is PI.

Proof. Suppose the contrary. Then a free associative algebra of exponential growth embeds in

$$(A \otimes_{\mathcal{K}} B)^{\mathcal{U}} \simeq (A \otimes_{\mathcal{K}} \mathcal{K}^{\mathcal{U}}) \otimes_{\mathcal{K}^{\mathcal{U}}} B^{\mathcal{U}}$$

of polynomial growth, a contradiction.

Application: algebras with same identities

Theorem (Razmyslov, 1982)

If $\mathfrak{g}_1, \mathfrak{g}_2$ are finite-dimensional simple Lie algebras over an algebraically closed field of characteristic 0, then $Var(\mathfrak{g}_1) = Var(\mathfrak{g}_2)$ iff $\mathfrak{g}_1 \simeq \mathfrak{g}_2$.

Theorem (Drensky-Racine, 1992)

Ditto for finite-dimensional simple Jordan algebras.

Application: algebras with same identities

Theorem (Razmyslov, 1982)

If $\mathfrak{g}_1, \mathfrak{g}_2$ are finite-dimensional simple Lie algebras over an algebraically closed field of characteristic 0, then $Var(\mathfrak{g}_1) = Var(\mathfrak{g}_2)$ iff $\mathfrak{g}_1 \simeq \mathfrak{g}_2$.

Theorem (Drensky-Racine, 1992)

Ditto for finite-dimensional simple Jordan algebras.

Joint proof. Using the fact that in these classes of algebras primeness is equivalent to simplicity, and by the embedding machinery above, reduced to the case where $\mathfrak{g}_1 \subseteq \mathfrak{g}_2$, which follows easily from the known structural results.

Application: Tarski's monsters

Application: Tarski's monsters Rips (197?), Olshanskii (1979)

Application: Tarski's monsters Rips (197?), Olshanskii (1979) Girth of groups Schleimer (2000), Akhmedov (2003)

Application: Tarski's monsters

Rips (197?), Olshanskii (1979)

Girth of groups

Schleimer (2000), Akhmedov (2003)

Growth sequence

Number of generators of $G \times \cdots \times G$ (*n* times). Wise (2002): groups with growth sequence equal to 2.

Application: Tarski's monsters

Rips (197?), Olshanskii (1979)

Girth of groups

Schleimer (2000), Akhmedov (2003)

Growth sequence

Number of generators of $G \times \cdots \times G$ (*n* times). Wise (2002): groups with growth sequence equal to 2.

Theorem

- (i) A Tarski's monster of type p does not satisfy any nontrivial identity except $x^p = 1$ and its consequences, iff it has infinite relative girth.
- (ii) A Tarski's monster of type ∞ does not satisfy any nontrivial identity iff it has infinite girth.
- (iii) Growth sequence of Tarski's monsters satisfying conditions (i) or (ii), is 2.

Speculations

Lie-algebraic analogs of Tarski's monsters

Do there exist infinite-dimensional Lie algebras all whose proper subalgebras are 1-dimensional?

Speculations

Lie-algebraic analogs of Tarski's monsters

Do there exist infinite-dimensional Lie algebras all whose proper subalgebras are 1-dimensional?

Tits' alternative

Tits (1972): a linear group contains either a solvable subgroup of finite index, or a nonabelian free subgroup. Platonov (1967): a linear group which satisfies a nontrivial

identity, contains a solvable subgroup of finite index.

Speculations

Lie-algebraic analogs of Tarski's monsters

Do there exist infinite-dimensional Lie algebras all whose proper subalgebras are 1-dimensional?

Tits' alternative

Tits (1972): a linear group contains either a solvable subgroup of finite index, or a nonabelian free subgroup.

Platonov (1967): a linear group which satisfies a nontrivial identity, contains a solvable subgroup of finite index.

Jacobson's problem

In a Lie *p*-algebra, does $x^{p^{n(x)}} = x$ imply abelianity? Weaker question: does it imply a nontrivial identity?

That's all. Thank you.

Based on arXiv:0911.5414 .

Slides at http://justpasha.org/math/iceland-2010.pdf .