Lie algebras with few subalgebras, cohomology and dual operads

Pasha Zusmanovich

Tallinn University of Technology

February 22, 2013

Lie algebras with given properties of subalgebras

Question Study such Lie algebras.

1/14

More precise questions

- ► Lie algebras with "few" subalgebras.
- Lie algebras with given properties of the lattice of subalgebras.
- Minimal non- \mathscr{P} Lie algebras, for some "nice" \mathscr{P} .

Lie algebras all whose proper subalgebras are 1-dimensional

Exercise

Over an algebraically closed field, every such finite-dimensional Lie algebra is 2-dimensional.

Lie algebras all whose proper subalgebras are 1-dimensional

Exercise

Over an algebraically closed field, every such finite-dimensional Lie algebra is 2-dimensional.

Theorem

Over a perfect field of characteristic 0 or p > 3, every such finite-dimensional Lie algebra is either 2-dimensional, or is a form of sl(2).

Proof: Either follows from A. Premet (1987), or by classification theory.

Lie algebras all whose proper subalgebras are 1-dimensional

Exercise

Over an algebraically closed field, every such finite-dimensional Lie algebra is 2-dimensional.

Theorem

Over a perfect field of characteristic 0 or p > 3, every such finite-dimensional Lie algebra is either 2-dimensional, or is a form of sl(2).

Proof: Either follows from A. Premet (1987), or by classification theory.

An open question

What about nonperfect fields and/or p = 2, 3?

Lie algebras all whose proper subalgebras are 1-dimensional

Exercise

Over an algebraically closed field, every such finite-dimensional Lie algebra is 2-dimensional.

Theorem

Over a perfect field of characteristic 0 or p > 3, every such finite-dimensional Lie algebra is either 2-dimensional, or is a form of sl(2).

Proof: Either follows from A. Premet (1987), or by classification theory.

An open question

What about nonperfect fields and/or p = 2, 3?

A very hard open question

What about such infinite-dimensional Lie algebras (analogs of Tarski's monsters)?

^{3/14} Lie-algebraic analogs of Tarski's monsters?

Possible approaches:

- First- (or higher?) order theory.
- Girth.
- (Absence of) identities.

Lie algebras all whose proper subalgebras are abelian

Exercise

(i) Over an algebraically closed field, every such nonabelian finite-dimensional Lie algebra is either 2-dimensional nonabelian, or 3-dimensional nilpotent (Heisenberg).

(ii) Describe the structure of such nonsimple Lie algebras over any field.

Lie algebras all whose proper subalgebras are abelian

Exercise

(i) Over an algebraically closed field, every such nonabelian finite-dimensional Lie algebra is either 2-dimensional nonabelian, or 3-dimensional nilpotent (Heisenberg).

(ii) Describe the structure of such nonsimple Lie algebras over any field.

Theorem

Over a perfect field of characteristic 0 or p > 3, there are no such nonabelian simple finite-dimensional Lie algebra of types B-D, G_2 and F_4 .

Proof: By inspection of (associative) division algebras with involution.

An open question

What about other types?

Lie algebras all whose proper subalgebras are abelian

Exercise

(i) Over an algebraically closed field, every such nonabelian finite-dimensional Lie algebra is either 2-dimensional nonabelian, or 3-dimensional nilpotent (Heisenberg).

(ii) Describe the structure of such nonsimple Lie algebras over any field.

Theorem

Over a perfect field of characteristic 0 or p > 3, there are no such nonabelian simple finite-dimensional Lie algebra of types B-D, G_2 and F_4 .

Proof: By inspection of (associative) division algebras with involution.

An open question

What about other types?

A curious connection

A.M. Vinogradov (2012): "Assembling Lie algebras from Lieons".

^{5/14} Lie algebras all whose proper subalgebras are solvable

Exercise

Over an algebraically closed field of characteristic 0, every such nonsolvable finite-dimensional Lie algebra is isomorphic to sl(2).

Lie algebras all whose proper subalgebras are solvable

Exercise

Over an algebraically closed field of characteristic 0, every such nonsolvable finite-dimensional Lie algebra is isomorphic to sl(2).

Theorem

Over an algebraically closed field of characteristic p > 3, every such nonsolvable finite-dimensional Lie algebra is an abelian extension of sl(2) by modules of some specific type (decomposable into the direct sum of no more than 2 components, with each indecomposable component of length ≤ 3 , etc.).

Proof (modulo N. Jacobson (1958), A. Rudakov & I. Shafarevich (1967), J. Schue (1969)): Cohomological juggling (computing Ext^1 , H^2 , etc.) with sl(2)-modules.

5/14

^{6/14} Lie algebras with a maximal solvable subalgebra

Exercise

Over an algebraically closed field of characteristic 0, every such semisimple finite-dimensional Lie algebra is isomorphic to sl(2).

Lie algebras with a maximal solvable subalgebra

Exercise

Over an algebraically closed field of characteristic 0, every such semisimple finite-dimensional Lie algebra is isomorphic to sl(2).

Theorem

Over an algebraically closed field of characteristic p > 5, every such semisimple finite-dimensional Lie algebra is isomorphic to an algebra of the form

 $S \otimes K[x_1, \ldots, x_n]/(x_1^p, \ldots, x_n^p) +$ "some tail of derivations",

where S is isomorphic to sl(2), or the Zassenhaus algebra $W_1(n)$. **Proof** (modulo B. Weisfeiler (1984)): Computing deformations of algebras of this kind.

6/14

Current Lie algebras

L is a Lie algebra *A* is an associative commutative algebra

A current Lie algebra is a vector space $L \otimes A$ under the bracket

$$[x \otimes a, y \otimes b] = [x, y] \otimes ab$$

where $x, y \in L$, $a, b \in A$.

Current Lie algebras

L is a Lie algebra *A* is an associative commutative algebra

A current Lie algebra is a vector space $L \otimes A$ under the bracket

$$[x \otimes a, y \otimes b] = [x, y] \otimes ab$$

where $x, y \in L$, $a, b \in A$.

Kac-Moody algebras

$$\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] + \mathbb{C}t\frac{d}{dt} + \mathbb{C}z$$
$$[x \otimes f, y \otimes g] = [x, y] \otimes fg + (x, y)\operatorname{Res}\frac{df}{dt}g z$$

where \mathfrak{g} is a simple finite-dimensional Lie algebra, $x, y \in \mathfrak{g}$, $f, g \in \mathbb{C}[t, t^{-1}]$, (\cdot, \cdot) is the Killing form on \mathfrak{g} .

(Co)homology of current Lie algebras

Question

What can be said about it?

Answer

A lot:

B. Feigin (1970–1990s),
H. Garland & J. Lepowsky (1976),
B. Feigin & B. Tsygan (1983–1984),
J.-L. Loday & D. Quillen (1984),
P. Hanlon (1986), ...

but ...

^{9/14} How to "compute" (co)homology of current Lie algebras "in general"?

Cauchy formula:

$$\bigwedge^n (L \otimes A) \simeq \bigoplus_{\lambda \vdash n} Y_\lambda(L) \otimes Y_{\lambda^{\sim}}(A)$$

 Y_{λ} is a *Young symmetrizer* associated with the Young diagram λ . Examples:

$$Y_{\square} = \frac{1}{3!} \sum_{\sigma \in S_3} (-1)^{\sigma} \sigma$$
$$Y_{\square} = \frac{1}{3!} \sum_{\sigma \in S_3} \sigma$$
$$Y_{\square} = \frac{1}{3} (e + (12) - (13) - (123))$$

 λ^{\sim} is obtained from λ by interchanging rows and columns

^{10/14} How Young symmetrizers interact with the differential?

each Young diagram λ represents $Hom(Y_{\lambda}(L), M) \otimes Hom(Y_{\lambda}(A), V)$

How Young symmetrizers interact with the differential?

each Young diagram λ represents $Hom(Y_{\lambda}(L), M) \otimes Hom(Y_{\lambda}(A), V)$

^{12/14} Lie algebras coming from Koszul dual operads

Fact

lf:

A is an algebra over a binary quadratic operad \mathscr{P} , B is an algebra over the Koszul dual operad $\mathscr{P}^!$, then:

 $A\otimes B$ carries a Lie algebra structure under the bracket

$$[a \otimes b, a' \otimes b'] = aa' \otimes bb' - a'a \otimes b'b,$$

where $a, a' \in A$, $b, b' \in B$.

Examples

operad	dual operad	Lie algebras
Lie	associative commutative	current Lie algebras
associative	associative	$gl_n(A)$
left Novikov	right Novikov	stay tuned

^{13/14} Novikov algebras and their affinizations

left Novikov algebra: $[L_x, L_y] = L_{[x,y]}$; $[R_x, R_y] = 0$ right Novikov algebra: $[R_x, R_y] = R_{[x,y]}$; $[L_x, L_y] = 0$ where $L_x(a) = xa$, $R_x(a) = ax$

Affinization of a left Novikov algebra

$$N\otimes \mathbb{C}[t, t^{-1}]$$

 $[x\otimes t^m, y\otimes t^n] = \left((m+1)xy - (n+1)yx\right)\otimes t^{m+n}$

where N is a left Novikov algebra, $x, y \in N$, $m, n \in \mathbb{Z}$.

Particular cases

- "Poisson brackets of hydrodynamic type" (I. Gelfand & I. Dorfman (1979–1981), A. Balinskii & S.P. Novikov (1985)).
- Schrödinger-Virasoro, Heisenberg-Virasoro (Y. Pei & C. Bai (2010-2012)).
- Finite-dimensional simple Lie algebras over p = 2,3 ?

(Co)homology of Lie algebras coming from dual operads

Question

Express (co)homology and other invariants (symmetric invariant bilinear forms, etc.) of $A \otimes B$ in terms of invariants of A and B.

Potential applications

- "Physics" (central extensions, 2-Lie algebras from (higher) gauge theory, ...)
- Structure theory of finite-dimensional Lie algebras in small characteristics.
- New invariants (cyclic cohomology-like?) of nonassociative algebras.

That's all. Thank you.

Slides at http://justpasha.org/math/ihes.pdf