%
% file: intsyst-prague.tex
% purpose: talk at ``Integrable Systems and Quantum Symmetrices'', Prague,
% June 2016
% created: pasha jun 11-13 2016
% modified:
% modification:
%
% [t] option is to align frames to the top
\documentclass[t]{beamer}
\usepackage[vcentermath,noautoscale]{youngtab}
\usepackage[UglyObsolete]{diagrams} % Paul Taylor's diagrams package
\DeclareMathOperator{\Homol}{H}
\DeclareMathOperator{\Y}{Y}
%\def\darkblue{black!35!blue}
\setcounter{framenumber}{-1}
\setbeamertemplate{navigation symbols}{}
%\setbeamercolor{block title}{fg=\darkblue}
%\setbeamercolor{frametitle}{fg=\darkblue}
\title{Cohomology of tensor products}
\author{Pasha Zusmanovich}
\institute{University of Ostrava}
\date{Inregrable Systems and Quantum Symmetries, Prague \\ June 14, 2016}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% from now on, display counters
\setbeamertemplate{headline}
{
\vskip2pt\hskip1pt\insertframenumber /\inserttotalframenumber
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A Lie-algebraic zoo. I}
\textbf{Current Lie algebras}
\bigskip
$C^\infty (M, \mathfrak g) \simeq \mathfrak g \otimes C^\infty(M, \mathbb R)$
\bigskip
\begin{block}{Generalization}
$L \otimes A$
\\
$L$ is a Lie algebra, $A$ an associative commutative algebra
\\
$[x \otimes a, y \otimes b] = [x,y] \otimes ab$
\end{block}
\bigskip
\begin{block}{Closely related}
Kac--Moody algebras
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A Lie-algebraic zoo. II}
\textbf{``Poisson brackets of hydrodynamic type''
\\
(S.P. Novikov et al.)}
\vskip 2cm
$[u_i(x),u_j(y)] = g_{ij}(u(x))\delta^\prime(x-y) +
\sum_{k=1}^n \frac{\partial u_k}{\partial x} b_k^{ij}(u(x))\delta(x-y)$
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A Lie-algebraic zoo. III}
\textbf{Heisenberg--Virasoro, Schr\"odinger--Virasoro, etc.}
\bigskip
Certain extensions/generalizations of the Witt algebra
\medskip
\begin{block}{``Affinization'' of a Novikov algebra (Pei \& Bai, 2010--2011)}
$N \otimes \mathbb C[t,t^{-1}]$
\\
$[x \otimes t^n, y \otimes t^m] = ((n+1) xy - (m+1) yx) \otimes t^{n+m}$
\end{block}
\begin{block}{Generalization}
$A \otimes B$
\\
$A$ is a left Novikov algebra, $B$ a right Novikov algebra
\\
$[a \otimes b, a^\prime \otimes b^\prime] =
aa^\prime \otimes bb^\prime - a^\prime a \otimes b^\prime b$
\end{block}
\begin{block}{Even more generalization}
$A, B$ are algebras over Koszul dual operads
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A Lie-algebraic zoo. IV}
\textbf{``Lie algebras generated by dynamical systems''
\\
(Vershik et al.)}
\bigskip
$C(X,\mathbb C) \otimes \mathbb C[t,t^{-1}]$
\\
$(X,T)$ is a dynamical system
\\
$[f \otimes t^n, g \otimes t^m] =
(f \cdot (g \circ T^n) - g \cdot (f \circ T^m)) \otimes t^{n+m}$
\medskip
\begin{block}{Generalization}
$A \otimes B$
\\
$A, B$ are associative commutative algebras
\\
generators of $B$ act on $A$ by automorphisms
\\
$[a \otimes b, a^\prime \otimes b^\prime] =
(a(a^\prime)^b - a^\prime(a)^{b^\prime}) \otimes bb^\prime$
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A Lie-algebraic zoo. V}
\textbf{(Some) Lie algebras of symmetries of differential equations}
\bigskip
\begin{block}{Symmetries of Khokhlov--Zabolotskaya, Boyer--Finley, etc., equations (O. Morozov, 2015)}
$C^{\infty}(\mathbb R, \mathbb R) \otimes \mathbb R[t]/(t^n) +
\text{ tail of derivations}$
$
[f \otimes t^i , g \otimes t^j] =
\Big(\sum_{k=0}^{i+j} \lambda_{ijk} f^{(k)} g^{(i+j-k)}\Big) \otimes t^{i+j}
$
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A Lie-algebraic zoo}
... and (much) more
\vskip 1.5cm
\begin{block}{Question}
What these algebras have in common?
\end{block}
\begin{block}{Answer}
$A \otimes B$ with a ``twisted'' multiplication.
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Now we have a zoo. What we can do with it?}
\begin{block}{Question}
To compute (co)homology and other invariants of such algebras.
\end{block}
\begin{block}{An attempt of answer}
Decompose the Chevalley--Eilenberg complex according to the Cauchy formula:
$$
\bigwedge\nolimits^n (A \otimes B) \simeq
\bigoplus_\lambda \Y_\lambda(A) \otimes \Y_{\lambda^\sim}(B)
$$
$\Y_\lambda$ = Young symmetrizer corresponding to the Young diagram $\lambda$
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{How Young symmetrizers interact with the differential?}
% all arrows
\begin{diagram}[width=2.3em,height=2.5em]
&&&&&& \yng(1) &&&&&&& \\ %1
&&&&& \ldTo && \rdTo &&&&& \\ %2
&&&& \yng(1,1) &&&& \yng(2) &&&& \\ %3
&&& \ldTo && \rdTo\rdTo(5,2) & & \ldTo(6,2)\ldTo && \rdTo &&& \\ %4
&& \yng(1,1,1) &&&& \yng(2,1) &&&& \yng(3) && \\ %5
& \ldTo && \rdTo\rdTo(4,2)\rdTo(6,2)\rdTo(10,2) && \ldTo(6,2)\ldTo & \dTo & \rdTo\rdTo(6,2) && \ldTo(10,2)\ldTo(6,2)\ldTo(4,2)\ldTo && \rdTo & \\ %6
\yng(1,1,1,1) &&&& \yng(2,1,1) && \yng(2,2) && \yng(3,1) &&&& \yng(4) \\ %7
\dots &&&& \dots && \dots && \dots &&&& \dots
\end{diagram}
\begin{center}
{\tiny
each Young diagram $\lambda$ represents
$Hom(Y_\lambda(L),?) \otimes Hom(Y_\lambda(A),?)$
}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{How Young symmetrizers interact with the differential?}
% non-vanishing arrows (taken from low.tex)
\begin{diagram}[width=2.3em,height=2.5em]
&&&&&& \yng(1) &&&&&&& \\ %1
&&&&& \ldTo && \rdTo &&&&& \\ %2
&&&& \yng(1,1) &&&& \yng(2) &&&& \\ %3
&&& \ldTo && \rdTo & & \ldTo(6,2)\ldTo && \rdTo &&& \\ %4
&& \yng(1,1,1) &&&& \yng(2,1) &&&& \yng(3) && \\ %5
& \ldTo && \rdTo\rdTo(4,2) && \ldTo(6,2)\ldTo & \dTo & \rdTo && \ldTo(10,2)\ldTo(6,2)\ldTo(4,2)\ldTo && \rdTo & \\ %6
\yng(1,1,1,1) &&&& \yng(2,1,1) && \yng(2,2) && \yng(3,1) &&&& \yng(4) \\ %7
\dots &&&& \dots && \dots && \dots &&&& \dots
\end{diagram}
\begin{center}
{\tiny
each Young diagram $\lambda$ represents
$Hom(Y_\lambda(L),?) \otimes Hom(Y_\lambda(A),?)$
}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A plethora of questions. I}
\begin{block}{Question}
Why this miracle happens only for current Lie algebras?
\end{block}
\begin{block}{Question}
When some partial miracle may happen?
\end{block}
\begin{block}{A (very) partial answer}
\begin{itemize}
\item
$\Homol^2$ for ``$A \otimes B$ over Koszul dual operads'' when
``noncommutative $2$-cocycles'' on $A$ and $B$ are ``small''
(captures the Heisenberg-- and Schr\"odinger--Virasoro cases).
\item $\Homol^2$ for ``Lie algebras generated by dynamical systems''.
\item $\Homol^2$ for symmetry Lie algebras of some differential equations.
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{A plethora of questions. II}
Algebras currently not in ``the zoo'' which I would like
very much to include:
\begin{itemize}
\item Lax operator algebras (Krichever, Schlichenmaier, Sheinman)
\item The Gaudin algebras
$[S_i(x),S_j(y)] = \sum_k c_{ij}^k \frac{S_k(x) - S_k(y)}{x-y}$
\item The Onsager algebra
\item ``Lie algebras over noncommutative rings'' (Berenstein and Retakh)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% don't include this final frame into the total count;
% TeX twice for that!
\newcounter{finalframe}
\setcounter{finalframe}{\value{framenumber}}
\setbeamertemplate{headline}{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% [c] option is to align frames on the center (overriding the global [t] option)
\begin{frame}[c]
\begin{center}
{\Huge
That's all. Thank you.
}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setcounter{framenumber}{\value{finalframe}}
\end{document}
% eof