Robinson-Amitsur ultrafilters, Jónsson's lemma, varieties of algebras, and Tarski's monsters

Pasha Zusmanovich

Tallinn University of Technology
July 16, 2011; slightly revised November 8, 2011

A theorem from 1960s

Theorem (Amitsur, A. Robinson)
If a prime associative ring R embeds in a direct product of associative division rings, then R embeds in an associative division ring.

A theorem from 1960s

Theorem (Amitsur, A. Robinson)
If a prime associative ring R embeds in a direct product of associative division rings, then R embeds in an associative division ring.

Reminder

An (associative) ring R is called prime if one of the following equivalent conditions holds:
(i) $\forall I, J \triangleleft R I, J \neq 0 \Rightarrow I J \neq 0$;
(ii) $\forall a, b \in R, a, b \neq 0 \exists x \in R: a x b \neq 0$.

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_{i}$.

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_{i}$.

Reminder
An ultrafilter \mathscr{U} on a set \mathbb{I} is a set of subsets of \mathbb{I} satisfying the following conditions:

1. $\varnothing \notin \mathscr{U}$
2. $\mathbb{X}, \mathbb{Y} \in \mathscr{U} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathscr{U}$
3. $\mathbb{X} \in \mathscr{U}, \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathbb{Y} \in \mathscr{U}$
4. $\forall \mathbb{X} \subset \mathbb{I} \quad(\mathbb{X} \in \mathscr{U}) \vee(\mathbb{I} \backslash \mathbb{X} \in \mathscr{U})$ (maximality)

The proof

The proof uses an ultrafilter constructed from the given embedding $R \subseteq \prod_{i \in \mathbb{I}} A_{i}$.

Reminder
An ultrafilter \mathscr{U} on a set \mathbb{I} is a set of subsets of \mathbb{I} satisfying the following conditions:

1. $\varnothing \notin \mathscr{U}$
2. $\mathbb{X}, \mathbb{Y} \in \mathscr{U} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathscr{U}$
3. $\mathbb{X} \in \mathscr{U}, \mathbb{X} \subset \mathbb{Y} \Rightarrow \mathbb{Y} \in \mathscr{U}$
4. $\forall \mathbb{X} \subset \mathbb{I}(\mathbb{X} \in \mathscr{U}) \vee(\mathbb{I} \backslash \mathbb{X} \in \mathscr{U})$ (maximality)

The proof (continued)

Basic fact about ultrafilters

Any set \mathcal{S} satisfying:

$$
\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \neq \varnothing
$$

(finite intersection property)
contained in some filter and hence (by Zorn's lemma) in some ultrafilter.

The proof (continued)

Basic fact about ultrafilters
Any set \mathcal{S} satisfying:

$$
\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \neq \varnothing
$$

(finite intersection property)
contained in some filter and hence (by Zorn's lemma) in some ultrafilter.

Reminder

Let \mathscr{U} be an ultrafilter on \mathbb{I}. An ultraproduct of a set of rings $\left\{A_{i}\right\}_{i \in \mathbb{I}}$ is the ring

$$
\prod_{\mathscr{U}} A_{i}=\left(\prod_{i \in \mathbb{I}} A_{i}\right) /\left\{f \mid\left\{i \in \mathbb{I} \mid f_{i}=0\right\} \in \mathscr{U}\right\}
$$

If $A_{i} \simeq A$, we have an ultrapower $A^{\mathscr{U}}$.

Łoś' theorem

For any first-order sentence φ,

$$
\prod_{\mathscr{U}} A_{i} \models \varphi \quad \Leftrightarrow \quad\left\{i \in \mathbb{I} \mid A_{i} \models \varphi\right\} \in \mathscr{U} .
$$

In particular,

$$
A^{\mathscr{U}} \equiv A .
$$

The proof (continued)

Define $\mathcal{S}=\left\{\left\{i \in \mathbb{I} \mid f_{i} \neq 0\right\} \mid f \in R, f \neq 0\right\}$. \mathcal{S} is not ultrafilter, but:

1. $\varnothing \notin \mathcal{S}$
2. $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{S}$
$\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \exists \mathbb{Z} \in \mathcal{S}: \mathbb{Z} \subset \mathbb{X} \cap \mathbb{Y}$

The proof (continued)

Define $\mathcal{S}=\left\{\left\{i \in \mathbb{I} \mid f_{i} \neq 0\right\} \mid f \in R, f \neq 0\right\}$.
\mathcal{S} is not ultrafilter, but:

1. $\varnothing \notin \mathcal{S}$
2. $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{S}$
$\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \exists \mathbb{Z} \in \mathcal{S}: \mathbb{Z} \subset \mathbb{X} \cap \mathbb{Y}$
Proof of 2.
$\mathbb{X}=\left\{i \in \mathbb{I} \mid f_{i} \neq 0\right\}, \quad 0 \neq f \in R$
$\mathbb{Y}=\left\{i \in \mathbb{I} \mid g_{i} \neq 0\right\}, 0 \neq g \in R$
Since R is prime, there is $x \in R$ such that $f \times g \neq 0$, and

$$
\begin{aligned}
\mathbb{Z}=\left\{i \in \mathbb{I} \mid\left(f_{x} g\right)_{i}=f_{i} x_{i} g_{i} \neq 0\right\} & \subset\left\{i \in \mathbb{I} \mid f_{i} \neq 0\right\}=\mathbb{X} \\
& \subset\left\{i \in \mathbb{I} \mid g_{i} \neq 0\right\}=\mathbb{Y}
\end{aligned}
$$

The proof (continued)

Define $\mathcal{S}=\left\{\left\{i \in \mathbb{I} \mid f_{i} \neq 0\right\} \mid f \in R, f \neq 0\right\}$.
\mathcal{S} is not ultrafilter, but:

1. $\varnothing \notin \mathcal{S}$
2. $\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \mathbb{X} \cap \mathbb{Y} \in \mathcal{S}$
$\mathbb{X}, \mathbb{Y} \in \mathcal{S} \Rightarrow \exists \mathbb{Z} \in \mathcal{S}: \mathbb{Z} \subset \mathbb{X} \cap \mathbb{Y}$
\mathcal{S} satisfies the finite intersection property and is contained in some ultrafilter \mathscr{U}.

$$
R=R /\left(R \cap\left\{f \in \prod_{i \in \mathbb{I}} A_{i} \mid\left\{i \in \mathbb{I} \mid f_{i}=0\right\} \in \mathscr{U}\right\}\right) \subseteq \prod_{\mathscr{U}} A_{i} .
$$

Q.E.D.

A generalization

Theorem ("Robinson-Amitsur for algebraic systems")
Let $\left\{B_{i}\right\}_{i \in \mathbb{I}}$ be a set of algebraic systems from an ideal-determined class, A a finitely directly irreducible algebraic system. Then

$$
A \subseteq \prod_{i \in \mathbb{I}} B_{i} \Rightarrow \exists \text { ultrafilter } \mathscr{U} \text { on } \mathbb{I}: A \subseteq \prod_{\mathscr{U}} B_{i} \text {. }
$$

A generalization

Theorem ("Robinson-Amitsur for algebraic systems")
Let $\left\{B_{i}\right\}_{i \in \mathbb{I}}$ be a set of algebraic systems from an ideal-determined class, A a finitely directly irreducible algebraic system. Then

$$
A \subseteq \prod_{i \in \mathbb{I}} B_{i} \Rightarrow \exists \text { ultrafilter } \mathscr{U} \text { on } \mathbb{I}: A \subseteq \prod_{\mathscr{U}} B_{i} .
$$

Reminder 1

A class of algebraic systems is ideal-determined if its congruences behave "good enough" - can be described in terms of ideals.

Examples: rings, groups, Ω-groups (P.J. Higgins, Kurosh).

A generalization

Theorem ("Robinson-Amitsur for algebraic systems")
Let $\left\{B_{i}\right\}_{i \in \mathbb{I}}$ be a set of algebraic systems from an ideal-determined class, A a finitely directly irreducible algebraic system. Then

$$
A \subseteq \prod_{i \in \mathbb{I}} B_{i} \Rightarrow \exists \text { ultrafilter } \mathscr{U} \text { on } \mathbb{I}: A \subseteq \prod_{\mathscr{U}} B_{i} .
$$

Reminder 2

An algebraic system A (from an ideal-determined class) is finitely subdirectly irreducible if one of the following equivalent conditions holds:
(i) $\forall i \in \mathbb{I} \quad 0 \neq I_{i} \triangleleft A,|\mathbb{I}|<\aleph_{0} \Rightarrow \bigcap_{i \in \mathbb{I}} l_{i} \neq 0$;
(ii) $A \subseteq \prod_{i \in \mathbb{I}} B_{i},|\mathbb{I}|<\aleph_{0} \Rightarrow \exists i \in \mathbb{I}: A \subseteq B_{i}$.

For rings and algebras, primeness \Rightarrow finite subdirect irreducibility.

A generalization

Theorem ("Robinson-Amitsur for algebraic systems")
Let $\left\{B_{i}\right\}_{i \in \mathbb{I}}$ be a set of algebraic systems from an ideal-determined class, A a finitely directly irreducible algebraic system. Then

$$
A \subseteq \prod_{i \in \mathbb{I}} B_{i} \Rightarrow \exists \text { ultrafilter } \mathscr{U} \text { on } \mathbb{I}: A \subseteq \prod_{\mathscr{U}} B_{i} .
$$

Reminder 2

An algebraic system A (from an ideal-determined class) is finitely subdirectly irreducible if one of the following equivalent conditions holds:
(i) $\forall i \in \mathbb{I} \quad 0 \neq l_{i} \triangleleft A,|\mathbb{I}|<\aleph_{i \in \mathbb{I}} \quad l_{i} \neq 0$;
(ii) $A \subseteq \prod_{i \in \mathbb{I}} B_{i},|\mathbb{H}|<N_{0} \Rightarrow \exists i \in \mathbb{I}: A \subseteq B_{i}$.

Monolith of $A=\bigcap_{0 \neq I \triangleleft A} I$.

A generalization

Theorem ("Robinson-Amitsur for algebraic systems")
Let $\left\{B_{i}\right\}_{i \in \mathbb{I}}$ be a set of algebraic systems from an ideal-determined class, A a finitely directly irreducible algebraic system. Then

$$
A \subseteq \prod_{i \in \mathbb{I}} B_{i} \Rightarrow \exists \text { ultrafilter } \mathscr{U} \text { on } \mathbb{I}: A \subseteq \prod_{\mathscr{U}} B_{i} .
$$

(Generalized) Jónsson's lemma (Freese, Hagemann, Herrmann, Hrushovski, McKenzie)
Let $\left\{B_{i}\right\}_{i \in \mathbb{I}}$ be a set of algebraic systems from a modular variety (i.e., the lattice of congruences is modular), A a subdirectly irreducible algebraic system. Then
$A \in \operatorname{Var}\left(\left\{B_{i}\right\}_{i \in \mathbb{I}}\right) \Rightarrow \exists$ ultrafilter \mathscr{U} on \mathbb{I} :
$A /($ centralizer of the monolith of $A) \subseteq$ homomorphic image of a subsystem of $\prod_{\mathscr{U}} B_{i}$.

Birkhoff meets Robinson-Amitsur

Birkhoff's theorem
A class of algebras forms a variety iff it is closed under subalgebras, quotients and direct products.

Birkhoff meets Robinson-Amitsur

Birkhoff's theorem
A class of algebras forms a variety iff it is closed under subalgebras, quotients and direct products.

Corollary (Birkhoff + Robinson-Amitsur)
A finitely subdirectly irreducible free algebra \mathcal{F} in an (ideal-determined) variety $\operatorname{Var}(A)$ or quasivariety $\operatorname{Qvar}(A)$ embeds in an ultrapower $A^{\mathscr{U}}$.
Proof. By Birkhoff's theorem, $\mathcal{F}=B / I$ for some $B \subseteq A^{\mathbb{I}}$ and $I \triangleleft B$. By the universal property of \mathcal{F}, it embeds in B and hence in $A^{\mathbb{I}}$. Apply Robinson-Amitsur for algebraic systems.

Criterion for absence of non-trivial identities for algebraic

 systemsLet \mathfrak{V} be a variety of algebraic systems from an ideal-determined class, and suppose that all free systems of \mathfrak{V} are finitely subdirectly irreducible. Then for an algebraic system $A \in \mathfrak{V}$, the following are equivalent:
(i) any identity of A is an identity of \mathfrak{V} (i.e., A does not satisfy nontrivial identities within \mathfrak{V});
(ii) any free system of \mathfrak{V} embeds in an ultrapower of A;
(iii) any free system of \mathfrak{V} embeds in a system elementarily equivalent to A.

Proof.

(i) \Rightarrow (ii) follows from "Birkhoff + Robinson-Amitsur".
(ii) \Rightarrow (iii) follows from Łoś' theorem.
(iii) \Rightarrow (i) is trivial.

Criterion for absence of non-trivial identities for algebras

For an algebra A over a field K belonging to one of the following varieties of algebras: all algebras, associative algebras, or Lie algebras, the following are equivalent:
(i) A does not satisfy a nontrivial identity;
(ii) any free algebra embeds in an ultrapower of A;
(iii) any free algebra embeds in an algebra elementary equivalent to A.

Proof. Follows from the criterion for algebraic systems.

Criterion for absence of non-trivial identities for algebras

For an algebra A over a field K belonging to one of the following varieties of algebras: all algebras, associative algebras, or Lie algebras, the following are equivalent:
(i) A does not satisfy a nontrivial identity;
(ii) any free algebra embeds in an ultrapower of A;
(iii) any free algebra embeds in an algebra elementary equivalent to A.

Proof. Follows from the criterion for algebraic systems.
Two issues:

- Whether free algebras are finitely subdirectly irreducible?
- "Birkhoff + Robinson-Amitsur" gives embedding on the level of K-algebras, not of $K^{\mathscr{U}}$-algebras.

In which varieties free algebras are finitely subdirectly irreducible?

variety		why?
all algebras	yes	no zero divisors
associative	yes	
Lie	yes	Shirshov-Witt theorem
alternative	no	explicit example
Jordan	no	explicit example

(If the answer is "yes", they are even prime).

K-algebras vs. $K^{\mathscr{U}}$-algebras

"Birkhoff + Robinson-Amitsur" establishes embedding (under appropriate conditions) of K-algebras:

$$
\mathcal{F} \subseteq A^{\mathscr{U}} .
$$

To be able to apply Łoś' theorem, one needs embedding of $K^{\mathscr{U}}$-algebras:

$$
K^{\mathscr{U}} \mathcal{F} \subseteq A^{\mathscr{U}} .
$$

By the universal property of the tensor product, we have a surjection

$$
\mathcal{F} \otimes_{K} K^{\mathscr{U}} \rightarrow K^{\mathscr{U}} \mathcal{F},
$$

but, generally, this is far from being an isomorphism. This is so, however, if \mathcal{F} does not have commutative subspaces of dimension >1, in particular, for absolutely free, free associative and free Lie algebras.

Criterion for absence of non-trivial identities for groups

Theorem

For a group G belonging to one of the following varieties: all groups, groups satisfying the identity $x^{p}=1$ for a prime $p>665$, the following are equivalent:
(i) G does not satisfy a nontrivial identity (within the given variety);
(ii) any free group in the variety embeds in an ultrapower of G;
(iii) any free group in the variety embeds in a group elementary equivalent to G.

Criterion for absence of non-trivial identities for groups

Theorem

For a group G belonging to one of the following varieties: all groups, groups satisfying the identity $x^{p}=1$ for a prime $p>665$, the following are equivalent:
(i) G does not satisfy a nontrivial identity (within the given variety);
(ii) any free group in the variety embeds in an ultrapower of G;
(iii) any free group in the variety embeds in a group elementary equivalent to G.

Question

Semigroups?

Application: PI

Theorem (Regev, 1972)
If A, B are PI , then $A \otimes B$ is PI .

Application: PI

Theorem (Regev, 1972)
If A, B are PI , then $A \otimes B$ is PI .
Theorem (Procesi-Small, 1968)
If $A=M_{n}(K)$, and B is PI , then $A \otimes B$ is PI .

Application: PI

Theorem (Regev, 1972)
If A, B are PI , then $A \otimes B$ is PI .
Theorem (Procesi-Small, 1968)
If $A=M_{n}(K)$, and B is PI , then $A \otimes B$ is PI .
Theorem
If A is finite-dimensional, B is PI , then $A \otimes B$ is PI .
Proof. Suppose the contrary. Then a free associative algebra of exponential growth embeds in

$$
\left(A \otimes_{K} B\right)^{\mathscr{U}} \simeq\left(A \otimes_{K} K^{\mathscr{U}}\right) \otimes_{K^{\mathscr{U}}} B^{\mathscr{U}}
$$

of polynomial growth, a contradiction.

Application: algebras with same identities

Theorem (Razmyslov, 1982)
If $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ are finite-dimensional simple Lie algebras over an algebraically closed field of characteristic 0 , then

$$
\operatorname{Var}\left(\mathfrak{g}_{1}\right)=\operatorname{Var}\left(\mathfrak{g}_{2}\right) \Leftrightarrow \mathfrak{g}_{1} \simeq \mathfrak{g}_{2} .
$$

Theorem (Drensky-Racine, 1992)
Ditto for finite-dimensional simple Jordan algebras.

Application: algebras with same identities

Theorem (Razmyslov, 1982)
If $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ are finite-dimensional simple Lie algebras over an algebraically closed field of characteristic 0 , then

$$
\operatorname{Var}\left(\mathfrak{g}_{1}\right)=\operatorname{Var}\left(\mathfrak{g}_{2}\right) \Leftrightarrow \mathfrak{g}_{1} \simeq \mathfrak{g}_{2}
$$

Theorem (Drensky-Racine, 1992)
Ditto for finite-dimensional simple Jordan algebras.
Joint proof. Using the fact that in these classes of algebras primeness is equivalent to simplicity, and by the embedding machinery above, reduced to the case where $\mathfrak{g}_{1} \subseteq \mathfrak{g}_{2}$, which follows easily from the known structural results.

Application: Tarski's monsters
Olshanskii (1979), Rips (197?)

Application: Tarski's monsters

Olshanskii (1979), Rips (197?)
Girth of groups
Schleimer (2000), Akhmedov (2003)

Application: Tarski's monsters

Olshanskii (1979), Rips (197?)
Girth of groups
Schleimer (2000), Akhmedov (2003)
Growth sequence
$g_{n}(G)=$ number of generators of $G \times \cdots \times G(n$ times $)$. Wise (2002): groups with $g_{n} \equiv 2$.
Garion \& Glasner (2010): for a Tarski's monster, $g_{n} \leq 3$.

Application: Tarski's monsters

Olshanskii (1979), Rips (197?)
Girth of groups
Schleimer (2000), Akhmedov (2003)
Growth sequence
$g_{n}(G)=$ number of generators of $G \times \cdots \times G$ (n times).
Wise (2002): groups with $g_{n} \equiv 2$.
Garion \& Glasner (2010): for a Tarski's monster, $g_{n} \leq 3$.
Theorem
(i) A Tarski's monster all whose proper subgroup are infinite cyclic does not satisfy a nontrivial identity iff it has infinite girth.
(ii) A Tarski's monster all whose proper subgroups are cyclic of order p does not satisfy a nontrivial identity except $x^{p}=1$ and its consequences, iff it has infinite relative girth.
(iii) For a Tarski's monster satisfying condition (i) or (ii), $g_{n} \equiv 2$.

Speculations

Lie-algebraic analogs of Tarski's monsters
Do there exist infinite-dimensional Lie algebras all whose proper subalgebras are 1-dimensional?

Speculations

Lie-algebraic analogs of Tarski's monsters

Do there exist infinite-dimensional Lie algebras all whose proper subalgebras are 1-dimensional?

Tits' alternative
Tits (1972): a linear group contains either a solvable subgroup of finite index, or a nonabelian free subgroup.
Platonov (1967): a linear group which satisfies a nontrivial identity, contains a solvable subgroup of finite index.

Speculations

Lie-algebraic analogs of Tarski's monsters
Do there exist infinite-dimensional Lie algebras all whose proper subalgebras are 1-dimensional?

Tits' alternative
Tits (1972): a linear group contains either a solvable subgroup of finite index, or a nonabelian free subgroup.
Platonov (1967): a linear group which satisfies a nontrivial identity, contains a solvable subgroup of finite index.

Jacobson's problem
In a Lie p-algebra, does $x^{p^{n(x)}}=x$ imply abelianity?
Weaker question: does it imply a nontrivial identity?

That's all. Thank you.

Based on arXiv:0911.5414
Slides at http://justpasha.org/math/ultra/

