Octonion matrix algebras

Pasha Zusmanovich

University of Ostrava

Zheltokhsan Algebraic Conference in memory of Marat Tulenbaev

December 25, 2020
(Joint work with Arezoo Zohrabi)

Octonion matrix algebras

$S^{+}\left(M_{n}(\mathbb{O}), J\right)=\left\{A \in M_{n}(\mathbb{O}) \mid J(A)=A\right\} \quad$ Hermitian
$S^{-}\left(M_{n}(\mathbb{O}), J\right)=\left\{A \in M_{n}(\mathbb{O}) \mid J(A)=-A\right\}$ skew-Hermitian
$J:\left(a_{i j}\right) \mapsto\left(\overline{a_{j i}}\right)$ an involution

Why bother?

$\boldsymbol{S}^{+}\left(\boldsymbol{M}_{\boldsymbol{n}}(\mathbb{O}), \boldsymbol{J}\right):$
$n=1$: the ground field K
$n=2$: the 10-dimensional simple Jordan algebra of symmetric bilinear form
$n=3$: the famous 27-dimensional exceptional simple Jordan algebra
$n \geq 4$: no longer Jordan, but appear in M-theory
$\boldsymbol{S}^{-}\left(\boldsymbol{M}_{\boldsymbol{n}}(\mathbb{O}), \boldsymbol{J}\right):$
$n=1$: the 7-dimensional simple Malcev algebra \mathbb{O}^{-}.

Simplicity

Theorem 1
The algebras $S^{+}\left(M_{n}(\mathbb{O}), J\right)$ and $S^{-}\left(M_{n}(\mathbb{O}), J\right)$ are simple.

Method of the proof: use realizations

$$
S^{ \pm}\left(M_{n}(\mathbb{O}), J\right) \simeq M_{n}^{ \pm}(K) \otimes 1+M_{n}^{\mp}(K) \otimes \mathbb{O}^{-}
$$

and a variant of the Jacobson density theorem.

δ-derivations and associative forms

$$
D(x y)=\delta D(x) y+\delta x D(y)
$$

Theorem 2
δ-derivations of $S^{+}\left(M_{n}(\mathbb{O}), J\right)$ and $S^{-}\left(M_{n}(\mathbb{O}), J\right)$ are trivial (i.e., either the usual derivations, or multiplications by a scalar).
(Earlier derivations were computed by H. Petyt).
Theorem 3
Symmetric associative forms on $S^{+}\left(M_{n}(\mathbb{O}), J\right)$ and $S^{-}\left(M_{n}(\mathbb{O}), J\right)$ are:

$$
(X, Y) \mapsto \operatorname{Tr}(X Y+\bar{X} \bar{Y}) .
$$

Further questions

1) Automorphisms? Conjecture: $G_{2} \times S O(n)$.
2) Identities?
3) Subalgebras?

Some references

- M. Bremner and I. Hentzel, Identities for algebras of matrices over the octonions, J. Algebra 277 (2004), no.1, 73-95.
- P. Jordan, Zur Theorie nicht-assoziativer Algebren, Akad. Wiss. Lit. Mainz Abh. Math.-Natur. KI. 1968, no.2, 27-38.
- J. Lukierski and F. Toppan, Generalized space-time supersymmetries, division algebras and octonionic M-theory, Phys. Lett. B 539 (2002), no.3-4, 266-276.
- H. Petyt, Derivations of octonion matrix algebras, Comm. Algebra 47 (2019), no.10, 4216-4223.
- H. Rühaak, Matrix-Algebren über einer nicht-ausgearteten Cayley-Algebra, PhD Thesis, Univ. Hamburg, 1968.
- A. Zohrabi and P. Zusmanovich, On Hermitian and skew-Hermitian matrix algebras over octonions, J. Nonlin. Math. Phys., to appear.
\qquad and \qquad A δ-first Whitehead Lemma, Manuscript.

That's all. Thank you.

