Structure functions and Spencer cohomology in zero and positive characteristics

Pasha Zusmanovich

University of Ostrava

"A Century of Noether's Theorem and Beyond" Opava December 1, 2018

Structure functions

Let $G \subseteq GL(n)$ be a real of complex Lie group, M an n-dimensional real of complex manifold.

A *G*-structure on *M* is a reduction of the principal GL(n)-bundle to the principal *G*-bundle.

Structure functions are obstructions to integrability (= local flattening) of M endowed with a G-structure).

Some (well known) particular cases:

G	name of a G-structure	name of a structure function
<i>O</i> (<i>n</i>)	Riemann metric	Riemann tensor
$O(n) imes \mathbb{R}^*$	almost conformal structure	Weyl tensor
$\mathit{GL}(n,\mathbb{C})\subset \mathit{GL}(2n,\mathbb{R})$	almost complex structure	Nijenhuis tensor

Spencer cohomology

Structure functions are interpreted in terms of the Spencer cohomology $H^*(\mathscr{L}_{-1}, \mathscr{L})$ of a graded Lie algebra $\mathscr{L} = \bigoplus_{n \ge -1} \mathscr{L}_n$. Major examples of \mathscr{L} : Lie algebras of Cartan type W_n , S_n , H_{2n} .

Theorem (Serre)

The Spencer cohomology vanishes in degrees > 0 for W_n and S_n , and is fully computed for H_{2n} .

Spencer cohomology is also responsible for *filtered deformations* of a graded Lie algebra \mathscr{L} , and therefore important for characteristic p > 0 analogs of Lie algebras of Cartan type.

Let L be an abelian Lie algebra acting by derivations on an associative commutative algebra A, such that AL is a free submodule of Der(A).

The Lie algebra $\mathbb{W}(L, A)$ is defined as the vector space $AL \simeq L \otimes A$ with multiplication

$$[x \otimes a, y \otimes b] = y \otimes ax(b) - x \otimes by(a).$$

The algebras $\mathbb{W}(L,A)$ (cont.)

Particular cases of the construction from the previous slide are:

- 1. $A = K[t_1, ..., t_n], L = \langle \frac{d}{d t_1}, ..., \frac{d}{d t_n} \rangle$: $\mathbb{W}(L, A) = \text{one-sided Jacobson-Witt algebra} =$ infinite-dimensional Lie algebra of the general Cartan type W_n = Lie algebra of polynomial vector fields on the plane K^n .
- A = K[t₁, t₁⁻¹,..., t_n, t_n⁻¹], L = ⟨d/dt₁,..., d/dt_n⟩: W(L, A) = two-sided Jacobson-Witt algebra = Lie algebra of polynomial vector fields on the *n*-dimensional sphere.
- K is of characteristic p > 0, A = O(n; m̄), the algebra of divided powers in n variables with shearing parameters m̄ = (m₁,...,m_n), L = ⟨∂₁,...,∂_n⟩: W(L,A) = finite-dimensional Lie algebra of the general Cartan type W(n; m̄).

A unified approach to calculation of the Spencer cohomology: case W_n

Theorem

Let *L* has a basis D_1, \ldots, D_n such that the algebra *A* decomposes as the tensor product of algebras $A_1 \otimes \cdots \otimes A_n$, with D_i acting on A_i . Then

$$\mathsf{H}^{k}(L,A) \simeq \bigoplus_{1 \leq i_{1} < \cdots < i_{k} \leq n} A_{1}^{D_{1}} \otimes \cdots \otimes (A_{i_{1}})_{D_{i_{1}}} \otimes \cdots \otimes (A_{i_{k}})_{D_{i_{k}}} \otimes \cdots \otimes A_{n}^{D_{n}}.$$

Sketch of the proof 1) $H^k(L, \mathbb{W}(L, A)) \simeq L \otimes H^k(L, A)$. 2) Apply the Künneth formula.

Corollaries

Serre's vanishing result in p = 0, and non-vanishing result in p > 0.

5/7

A unified approach to calculation of the Spencer cohomology: case S_n

6/7

The Lie algebra $\mathbb{S}(L, A)$ is defined as the kernel of homomorphism

$$div: \mathbb{W}(L, A) \to A, \quad x \otimes a \to x(a).$$

To compute the corresponding Spencer cohomology, apply the cohomology long exact sequence associated with the short exact sequence of L-modules

$$0 \to \mathbb{S}(L, A) \to \mathbb{W}(L, A) \stackrel{div}{\to} L(A) \to 0.$$

A unified approach to calculation of the Spencer cohomology: case H_{2n}

Let (D_1, \ldots, D_n) and (F_1, \ldots, F_n) be two *n*-element sets of pairwise commuting derivations of *A*. Then *A* equipped with the bracket

$$[a,b] = \sum_{i=1}^n \left(D_i(a)F_i(b) - F_i(a)D_i(b) \right)$$

is a generalization of all kinds of Hamiltonian Lie algebras.

To compute the corresponding Spencer cohomology, apply considerations based on the Künneth formula, similar to the case of $\mathbb{W}(L, A)$ (but more cumbersome).

7/7

That's all. Thank you.