Special and exceptional mock-Lie algebras

Pasha Zusmanovich

University of Ostrava

Polynomial Computer Algebra St Petersburg April 17, 2017

(Based on the article of the same title: Lin. Algebra Appl. **518** (2017), 79-96 = arXiv:1608.05861)

Mock-Lie algebras

By definition, mock-Lie algebras are "commutative" Lie algebras:

$$xy = yx$$
$$(xy)z + (zx)y + (yz)x = 0$$

Fact 1

Mock-Lie algebras are Jordan algebras.

Proof

Setting z = x in the Jacobi identity gives $x^2y = -2x(xy)$. Replacing x by xy gives the Jordan identity $x^2(xy) = (x^2y)x$.

Fact 2

Mock-Lie algebras satisfy $x^3 = 0$.

Proof

Set x = y = z in the Jacobi identity.

(All this assuming the characteristic of the base field \neq 2, 3).

2/11The dual life of mock-Lie algebras

nil-index 3 Jordan algebras ktrange cousins of Lie algebras

Fact 3

Finite-dimensional mock-Lie algebras are nilpotent.

Proof

Follows from the Jordan theory.

Some history

- 1960s-1970s Zhevlakov, Shestakov, et al.:
 "Jordan algebras of nil-index 3"
- 1976 Abraham: some kind of genetic algebras
- 1995 Getzler–Kapranov: "Mock-Lie algebras"
- 1997 Okubo-Kamiya: "Jordan-Lie algebras"
- 1997 Hentzel–Jacobs–Sverchkov
- 2014,2015 Burde–Fialowski, Agore–Militaru "Jacobi-Jordan algebras"
- 2016 Gutierrez Fernandez–Garcia

^{4/11} Examples

> Example 1 "Heisenberg" algebra:

$$\langle x_1, \dots, x_n, y_1, \dots, y_n, z \rangle$$

 $x_i \cdot y_i = z$

Example 2

Let V be a vector space.

 $V \oplus \bigwedge^{\varepsilon} (V)$ $(v, x) \cdot (w, y) = x \wedge w + y \wedge v, \quad \text{where } v, w \in V, \ x, y \in \bigwedge^{\varepsilon} (V)$

^{5/11} Representations

(An old) Eilenberg's approach: consider $L \oplus V$ with square-zero V and an action of L on V.

$$ho: L o \mathsf{End}(V)$$

 $ho(xy)(v) = -
ho(x)
ho(y)v -
ho(y)
ho(x)v, \quad ext{where } x, y \in L, \ v \in V$

In particular, the role of derivations is played by antiderivations:

$$D(xy) = -D(x)y - xD(y)$$

^{6/11} Cohomology

Fact 4 (Getzler-Kapranov)

The mock-Lie operad is not Koszul.

Proof

The Koszul dual operad to mock-Lie is defined by

$$xy = -yx$$
$$(xy)z = -x(yz)$$

Apply the Ginzburg–Kapranov criterion: $g_{\text{mock-Lie}}(g_{\text{dual mock-Lie}})(t) \neq t$

Question 1 Cohomology theory for mock-Lie algebras?

The standard ways to define low-degree cohomology – via *anti*derivations, central extensions, deformations – do not agree!

"Dual mock-Lie"

Question 2

Which "interesting" Lie algebras can be represented in the form $(A \otimes B)^{(-)}$, where A is a mock-Lie algebra, and B is an anticommutative antiassociative algebra?

^{8/11} Special and exceptional algebras

Fact 5 (Hentzel–Jacobs–Sverchkov)

Mock-Lie algebras do not necessarily admit a faithful representation.

Equivalently:

- in Lie parlance: the Ado theorem fails for mock-Lie;
- ► in Jordan parlance: there are exceptional mock-Lie algebras, i.e. not every mock-Lie algebra can be embedded into an associative one (with respect to anticommutator a ∘ b = ¹/₂(ab + ba)).

Question 3

Which ones do? Or: which mock-Lie algebras are special and which are exceptional?

^{9/11} Universal enveloping algebras

$$U(L) = \frac{T(L)}{\text{ideal generated by } \frac{1}{2}(x \otimes y + y \otimes x) - xy, \ x, y \in L}$$

Fact 6

The only mock-Lie algebras for which PBW holds are abelian ones.

Reason

The Gröbner base argument used to establish the PBW theorem in the Lie case fails manifestly in the mock-Lie case.

Computer experiments show that for the most low-dimensional mock-Lie algebras, dim $U(L) \ll 2^{\dim L}$.

Special algebras

A (very) partial answer to Question 3

Mock-Lie algebras of dimension \leq 6 are special.

1st proof

Using Gröbner base computations in GAP/GBNP.

2nd proof

Using direct computations with the kernel of the canonical map $L \rightarrow U(L)$.

3rd proof

Using some Jordan theory.

How to construct exceptional mock-Lie algebras

For any of the special Jordan identities (Glennie, Shestakov, Medvedev, ...), construct a mock-Lie algebra not satisfying this identity using Albert

```
(http://www1.osu.cz/~zusmanovich/albert/).
```

A rigorous check that the given algebra does not satisfy the given identity in any characteristic $\neq 2,3$ can be done in GAP.

The minimal dimension of so constructed algebra is 44.

Question 4 (a variation of Question 3)

What is:

1) the minimal dimension

2) the minimal degree of nilpotency

of an exceptional mock-Lie algebra?

A (very) partial answer

- 1) between 7 and 44.
- 2) between 6 and 9.

That's all. Thank you.

Slides at http://www1.osu.cz/~zusmanovich/math.html