A small step in classification of simple Lie algebras in characteristic 2

Pasha Zusmanovich

University of Ostrava

June 12, 2015

Partially based on arXiv:1410.3645 (joint with Alexander Grishkov)

Classification problem of simple Lie algebras

- $p=0$: classic (Killing, E. Cartan, ...)
- $p>3$: a 3-volume set by H. Strade (the last one appeared in 2012)
- $p=2,3$: open

First surprise
The 3-dimensional simple Lie algebra S

$$
[e, h]=e, \quad[f, h]=f, \quad[e, f]=h
$$

has absolute toral rank 2. Toral elements: $h+e+e^{[2]}, h+f+f^{[2]}$.
Theorem (Skryabin 1998)
There are no finite-dimensional simple Lie algebras over an algebraically closed field of absolute toral rank 1.

Ongoing project (Grishkov \& Premet)
Absolute toral rank 2?

Theorem (Grishkov \& Zusmanovich, 2014)
A finite-dimensional simple Lie algebra over an algebraically closed field, of absolute toral rank 2, and having a Cartan subalgebra of toral rank 1 , is isomorphic to S.

Next goal
Simple Lie algebras having a Cartan subalgebra of toral rank 1.

- Description of simple Lie algebras having a Cartan subalgebra of toral rank 1 as certain filtered deformations (Skryabin 1998).
- Computation of these filtered deformations in some cases.
- Low-degree cohomology of $S \otimes$ (commutative associative algebra).
- Dealing with a certain family of 15-dimensional simple Lie algebras.
- GAP.

A 2-parameter deformation of

$$
S \otimes \mathcal{O}_{1}(2)+f^{[2]} \otimes\langle 1, x\rangle+\partial
$$

(only those products are listed which differ in the deformed algebra).

Some properties:

- simple;
- of absolute toral rank 3;
- $\mathrm{H}^{2}(L, K)=0$;
- do not possess symmetric invariant bilinear forms;
- p-envelope coincides with derivation algebra and is of dimension 19;
- subalgebra generated by absolute zero divisors is of dimension 7.
$\{e \otimes 1, \quad e \otimes x \quad\}=f^{[2]} \otimes \alpha x$
$\left\{e \otimes 1, \quad e \otimes x^{(2)}\right\}=f^{[2]} \otimes \beta 1$
$\left\{e \otimes 1, \quad e \otimes x^{(3)}\right\}=\left\{e \otimes x, \quad e \otimes x^{(2)}\right\}=f^{[2]} \otimes \beta x+\partial$
$\left\{e \otimes x, \quad e \otimes x^{(3)}\right\}=h \otimes 1$
$\left\{e \otimes x^{(2)}, e \otimes x^{(3)}\right\}=h \otimes x$
$\left\{e \otimes x, \quad h \otimes x^{(3)}\right\}=f \otimes 1$
$\left\{e \otimes x^{(2)}, h \otimes x^{(3)}\right\}=f \otimes x$
$\left\{e \otimes x^{(3)}, h \otimes x^{(3)}\right\}=f \otimes x^{(2)}$
$\left\{e \otimes x, \quad f \otimes x^{(3)}\right\}=\left\{e \otimes x^{(3)}, f \otimes x \quad\right\}=f^{[2]} \otimes 1$
$\left\{e \otimes x^{(2)}, f \otimes x^{(3)}\right\}=\left\{e \otimes x^{(3)}, f \otimes x^{(2)}\right\}=f^{[2]} \otimes x$
$\left\{h \otimes x, \quad h \otimes x^{(3)}\right\}=f^{[2]} \otimes 1$
$\left\{h \otimes x^{(2)}, h \otimes x^{(3)}\right\}=f^{[2]} \otimes x$
$\{e \otimes 1, \quad \partial \quad\}=f \otimes \alpha x^{(3)}$

"Commutative" cohomology

"Commutative" Lie algebras:

$$
[x, y]=[y, x] \quad(\text { instead of }[x, x]=0)
$$

+ Jacobi identity.
A natural cohomology in this class: in the Chevalley-Eilenberg complex, replace alternating cochains by symmetric ones.

Question
Derived functor? Universal enveloping algebra?

That's all. Thank you.

Slides at http://justpasha.org/math/porto.pdf

